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Abstract 10 

Large samples of hydrometeorological time series and catchment attributes are critical for improving the understanding of 

complex hydrological processes, hydrological model development and performance benchmarking. CAMELS (Catchment 

Attributes and Meteorological time series for Large Samples) datasets have been developed in several countries and regions 

around the world, providing valuable data sources and testbeds for hydrological analysis and new frontiers in data-driven 

hydrological modelling. Regarding the lack of samples from low-land, groundwater-dominated, small-sized catchments, we 15 

develop an extensive repository of a CAMELS-style dataset for Denmark (CAMELS-DK). This CAMELS addition is the first 

containing both, gauged and ungauged catchments as well as detailed groundwater information. The dataset provides dynamic 

and static variables for 3330 catchments from various hydrogeological datasets, meteorological observations, and a well-

established national-scale hydrological model. The dataset is enhanced with streamflow observations in 304 of those 

catchments. The spatially dense and full spatial coverage, supplying data for 3330 catchments, instead of only gauged 20 

catchments, together with the addition of simulation data from a distributed, process-based model enhance the applicability of 

such CAMELS data. This is especially relevant for the development of data-driven and hybrid physical informed modelling 

frameworks. We also provide quantities related to human impact on the hydrological system in Denmark, such as groundwater 

abstraction and irrigation. The CAMELS-DK dataset is freely available at https://doi.org/10.22008/FK2/AZXSYP (Koch et 

al., 2024). 25 

1 Introduction 

Hydrometeorological time series and catchment attributes are crucial for understanding and modelling hydrological systems 

(McMillan et al., 2018; Andersson et al., 2015). Long-term records of water cycle variables, such as precipitation, 

evapotranspiration (ET), streamflow, and groundwater levels, give profound insights into dynamics and trends of water 

movement. These records form the basis of supporting water resource management and climate change adaptation. Sufficient 30 
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hydrological data are required by scientists and engineers to manage water resources effectively and to make accurate 

predictions of hydrological extremes (Van Loon, 2015). Catchment attributes provide information on the physical 

characteristics of catchments, such as topography, soil type, land use, and geology, which are important for understanding how 

catchments respond to meteorological events and are relevant for land-use planning and catchment management. The similarity 

of catchment attributes is useful in comparative hydrology studies, which facilitate the transfer of knowledge from data-rich 35 

to ungauged catchments or regions where direct hydrological measurements are scarce or non-existent (Singh et al., 2014; 

Sawicz et al., 2011; Tegegn et al., 2022; Tshimanga et al., 2022). Bing able to predict in ungauged catchments enhances our 

ability to manage water resources efficiently and sustainably. 

The availability of open-access environmental data is increasing, however, data sources are distributed across different 

platforms and stored in various formats, which requires further efforts in data collection and pre-processing. Many state 40 

authorities and governmental research institutes comply with open data policies, significantly breaking down the barriers 

related to data sharing issues that have existed in the hydrology community for decades (Kibler et al., 2014). Numerous 

platforms and websites offer hydrological data from various sources, which greatly benefits large-scale studies. For example, 

the Global Runoff Data Base provides streamflow measurements from over 10,000 hydrological stations (GRDC; 

http://www.bafg.de/GRDC/), the HydroSHEDS database offers a suite of hydrographic data (https://www.hydrosheds.org/), 45 

the European Centre for Medium-Range Weather Forecasts provides multiple climate reanalysis products 

(https://www.ecmwf.int/), and Hydroweb supplies satellite-derived water levels for global rivers and lakes 

(https://hydroweb.theia-land.fr/). However, large-scale studies face a key challenge: They require a vast amount of data for 

development, and users often spend considerable time and effort navigating through different platforms for data collection and 

employing various programming packages for data pre-processing.  50 

Many studies are, consequently, focused on creating large-sample hydrology (LSH) datasets providing streamflow data for a 

large number of catchments datasets following the Findable, Accessible, Interoperable, and Reusable (FAIR) principle 

(Wilkinson et al., 2016). Newman et al. (2015b) created a comprehensive hydrometeorological dataset, which includes daily 

forcings and hydrologic response data for 671 small- to medium-sized basins throughout the contiguous United States 

(CONUS). This dataset was further enriched by Addor et al. (2017), who conined the term "Catchment Attributes and 55 

Meteorology for Large-sample Studies" (CAMELS) to describe their collection of catchment attributes for the same basins. 

Since then, CAMELS datasets have been developed in several countries, including Chile (Alvarez-Garreton et al., 2018), 

Brazil (Chagas et al., 2020), Great Britain (Coxon et al., 2020), Australia (Fowler et al., 2021), and Switzerland (Höge et al., 

2023). Some other datasets provide hydrometeorological timeseries and catchment characteristics similar to CAMELS 

conventions, but with diverging naming, such as LArge-SaMple DAta for Hydrology and Environmental Sciences for Central 60 

Europe (LamaH-CE, Klingler et al., 2021) and Iceland (LamaH-Ice, Helgason and Nijssen, 2023), historical hydro-

meteorological time series and signatures for 24 catchments in Haiti (Simbi, Bathelemy et al., 2023), a large-scale benchmark 

dataset for data-driven streamflow forecasting (WaterBench-Iowa, Demir et al., 2022), China Catchment Attributes and 
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Meteorology dataset (CCAM, Hao et al., 2021). These datasets are open access, well-formatted, and encompass a wide range 

of comprehensive variables related to hydrological processes (Klingler et al., 2021). They provide information for hydrological 65 

studies and water resources management (Jehn et al., 2020; Meyer Oliveira et al., 2023; Frame et al., 2021; Tang et al., 2023), 

but also serve as reference for the development of hydrological models, as well as the training and testing of data-driven 

algorithms (Nearing et al., 2024; Mai et al., 2022; Kratzert et al., 2019, 2021, 2018; Yin et al., 2022; Liu et al., 2023b). Details 

about recent progress and their applications have been summarized by Addor et al. (2020). Kratzert et al. (2023) introduced 

the Caravan platform, which consolidates the national CAMELS datasets into a singular dataset derived from global sources, 70 

which further improve the accessibility of the dataset. However, Clerc-Schwarzenbach et al. (2024) concerned the Caravan 

dataset, which uses ERA5-Land reanalysis data, for exhibiting an unrealistically high potential evapotranspiration and a 

significant discrepancy in precipitation relative to the original CAMELS datasets. Such differences in meteorological forcings 

influence model results. Consequently, they advocated for the augmentation of the Caravan dataset with the forcing data 

present in the original CAMELS dataset, underscoring the ongoing relevance of the original CAMELS development. 75 

While the already existing CAMELS datasets cover a wide range of hydroclimatic conditions and catchments characteristics 

it can still be considered incomplete in terms of the catchment diversity. Especially, the lack samples from low-lying, small-

size, and groundwater-dominated catchments. In the existing CAMELS datasets with a total number of 3308 catchments (CH: 

331, GB:671, CL:516, BR: 897, AUS:222, US: 671), only 7.5% of the catchments (250 out of 3308) have an elevation lower 

than 100 m, and 9.5 % of the catchments have an area size smaller than 50 km2. Hydrological regimes, with respect to their 80 

baseflow and peak flow differ between small and large catchments. The same holds for low lying catchments, where 

hydrological regimes are more affected by groundwater related processes. Hence, samples of small-sized and groundwater 

dominated catchments are necessary to increase the diversity of current existing CAMLES family. Additionally, information 

and data from well-established physical hydrological models have not yet been provided by previous LSH datasets. Simulated 

runoff, obtained from hydrological models, offers a valuable benchmark dataset and can potentially also be provided at 85 

ungauged basins. 

It is worthy to mention that LSH provides an invaluable foundation to scientists aiming to apply data-driven machine learning 

(ML) techniques in hydrology, as they undoubtedly offer an ideal environment for benchmarking, training, and testing ML 

algorithms. CMAELS and similar LSH have already contribute to ML advancements, such as predicting streamflow (Wilbrand 

et al., 2023), transfer learning (Ma et al., 2021), testing advanced algorithms (Yin et al., 2022), hybrid modelling (Espinoza et 90 

al., 2023) and global-scale flood forecasting (Nearing et al., 2024). In the context of ML-based hydrological modelling, 

physical-informed data driven algorithms, which combine the strength of traditional physics-based approaches with ML/DL 

models, show often enhanced performance (Konapala et al., 2020; Liu et al., 2023a). Therefore, hydrological information from 

well-established physically based hydrological models (if existing), would further benefit applications of CAMELS datasets. 

Previous CAMELS datasets provide simulated streamflow from conceptual hydrological models, such as LamaH-CE, which 95 

is insufficient in many Danish River systems. Groundwater levels close to ground surface are found throughout the country,  
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reliable surface water modelling in Denmark always requires information of groundwater dynamics (Duque et al., 2023; Koch 

et al., 2021; Schneider et al., 2022). 

The points presented above have motivated us to compile and introduce CAMELS-DK for Danish catchments. Denmark covers 

roughly 43,000 km2, the topography is flat (highest point is 170 m above sea level), climate is temperate with precipitation 100 

evenly distributed over the year (annual average precipitation ranging between 600 mm in the east to 1000 mm in the west). 

The flat terrain and wet climate generate about 69,000 km of river courses and 195,000 lakes (https://eng.mst.dk/water/aquatic-

environment/lakes-and-watercourses). CAMELS-DK consistent data for over 3300 catchments, which cover almost the entire 

land area of Denmark. The dataset has a median catchment area of 19.61 km2 with a median elevation of 31.94 m. Around 

10%, i.e. 304 of these catchments are gauged and contain observed runoff, but the entirety of catchments in this dataset contains 105 

consistent simulated hydrological data, including simulated runoff and groundwater dynamics, in addition to hydroclimatic 

forcing and catchments attributes. These simulations are from a spatially distributed hydrological model, the National 

Hydrological Model of Denmark (DK-model), which has been thoroughly validated against data from 304 streamflow stations 

and approximately 40,000 groundwater wells. The DK-model provides a satisfying and consistent simulation of streamflow 

and incorporates a sophisticated 3D representation of groundwater processes, including a detailed hydrogeological model. 110 

With the first CAMELS dataset to provide a broad range of consistent and high-quality simulated data, we intend to generate 

a testbed for hybrid or physics-aware ML developments to further accelerate the development of such model types. 

The objective of this study is to describe the extensive repository of hydrometeorological time series and catchment attributes 

in Denmark. We followed the routine of previous CAMELS dataset and ensure this dataset is comparable and interoperable to 

the already existing CAMELS datasets. Additionally, some new features are introduced which have not been found in the 115 

previously published CAMELS datasets, such as the incorporation of simulation results (shallow/deep groundwater levels, 

irrigation) of a spatially distributed hydrological model and features of hydrogeological model and observed groundwater 

abstraction for irrigation. The dataset follows the FAIR guiding principles for scientific data management and stewardship. 

We believe this dataset will enrich existing CAMELS database with catchments that have different features and hydrological 

regimes than the already existing datasets, which respect to groundwater influence and size. The paper is organized as follows: 120 

Section 2 describes the catchment delineation. Section 3 presents the dynamic variables including climate forcings, observed 

streamflow, and simulations from the hydrological model. Section 4 presents the sources and features of catchment attributes 

of topography, soil types, land use, and geology. In Section 5, we discuss the hydrological processes in Denmark based on the 

provided dataset. Section 6 contains a short summary of the paper.  

2 Catchment delineation  125 

Denmark has been divided into 3351 topographical catchments, referred to as ID15v2.5 catchments (Fig. 1). The division was 

originally prompted by the need to know the topographic areas upstream monitoring stations, lakes, and marine waterbodies. 
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Thus, enabling the calculation of runoff and loads of nutrients, suspended matter and other chemical components coupled to 

the corresponding topographical area. For modelling purposes, the observed catchments were further subdivided and 

supplemented by a delineation also for unmonitored catchments. A topology for the sub-catchments was established, describing 130 

the downstream relations. 

The catchment delineation seeks to provide sub catchment areas at a size of about 15 km2 (hence the name ID15) where 

possible. However, the criteria that all lake outlets and monitoring stations must coincide with an outlet from a ID15 sub-

catchment introduces sub catchments sometimes considerably smaller than 15 km2. Alongside the establishment of new lakes 

or additional monitoring stations the delineation is subject to periodically updates, with additions of new or alteration of existing 135 

catchment boundaries. The most-update version ID15v2.5 includes 3351 sub-catchments with a median area of 12.98 km2, 

varying from less than one square kilometer to more than 100 km2 for the ID15 containing the largest Danish Lake. Both very 

large and some very small ID15s were created to accommodate lake catchments and monitoring stations. The delineation of 

the ID15 catchments follows topographic catchments. However, especially in flat areas and areas with modified streams and 

canals, local knowledge of such alterations was accounted for to delineate the actual surface water catchments. Additionally, 140 

ID15 catchments also coupled with the National Hydrological Model of Denmark (details are in Section 3.3), time series of 

simulated streamflow are available at catchment outlets where stream are included in the national hydrological model.  

 

Figure 1. CAMELS-DK domain. (a) ID15 catchments and geological regions of Denmark, including northern Zealand (NZ), 

eastern Denmark (ED), western Jutland (WJ), central Jutland (CJ), Djursland (DL), Himmerland (HL), northwestern Jutland 145 
(NwJ), Northern Jutland (NJ), and Bornholm (BH), (b) distribution of catchment area, and (c) an example of river channels and 

catchment boundaries delineated by ID15 shapefile in Northern Zealand. The green lines are river channels, red dot indicates the 

location of a hydrological station downstream the river section, blue dots are examples basin outlets, and the corresponding 

catchment upstream drainage area are filled with light colour.  
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3 Dynamic variables 150 

3.1 Climate data 

The climate time series are based on national gridded products produced by the Danish Meteorological Institute (DMI).  

Datasets with daily timesteps going back to the year 1989 are based on observations from a network of in-situ weather stations. 

Daily rainfall time series, aggregated to catchment scale with an area weighted mean function, were derived from the 10 km2 

‘Klimagrid Danmark’ data from DMI (Scharling, 1999b). The gridded dataset is based on an inverse-distance interpolation of 155 

daily observations of precipitation at DMI’s stations. The station density changes throughout the years, but generally moves 

between 200 and 500 stations, distributed across all of Denmark. As many hydrological applications are extremely sensitive 

to the exact amount of rainfall, the raw observations of precipitation were corrected for sensor/gauge under-catch. The 

correction was applied dynamically, accounting for rainfall intensity, wind speed and temperature (solid or liquid 

precipitation). CAMELS-DK provides corrected precipitation at ID15 scale based on freely available uncorrected precipitation 160 

observations, wind speed and temperature data in 10km grid format and the correction approach described by (Stisen et al., 

2011). The uncorrected or DMI corrected precipitation data are not part of this dataset. Similarly to the precipitation dataset, 

DMI also provides gridded datasets of wind speed, air temperature and potential evapotranspiration (Scharling, 1999a). All 

variables are provided at daily timesteps; however, at an original resolution of 20 km2. Potential evapotranspiration is 

calculated based on the Makkink formula, specifically modified for Danish conditions.  165 

 

Table 1. Dynamic variables in CAMELS-DK. The time series are in daily scale, and spatially aggregated with the mean function.  

Time series class Time series name  Description Unit Sources 

Climate variables 

precipitation Daily accumulated precipitation mm/d DMI's Frie Data 

(https://www.dmi.dk/frie-

data) 

temperature Daily mean temperature °C 

pet Daily potential evapotranspiration (Makkink) mm/d 

Hydrological 

variables 

Qobs Observed streamflow m3/s   

Qsim Simulated streamflow m3/s 

DK-model 

(https://dennationalehydrol

ogiskemodel.dk/) 

DKM_wcr average water content in root zone - 

DKM_dtp phreatic depth to surface layer m 

DKM_eta actual evapotranspiration mm/d 

DKM_ rec Total recharge to SZ mm/d 

DKM_sdr SZ drainage flow from point m3/s 

DKM_sre SZ exchange flow with river m3/s 

DKM_gwh groundwater head in major deeper aquifer layers m 

DKM_irr Irrigation m3/s 
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Groundwater 

abstraction 
abstraction Annual abstractions from groundwater m3/s  

Jupiter database 

(https://www.geus.dk/prod

ukter-ydelser-og-

faciliteter/data-og-

kort/national-

boringsdatabase-jupiter) 

 

3.2 Observed streamflow 

Streamflow is provided by Danish EPA (under the Ministry of the Environment and Food) and made publicly available by 170 

Aarhus University through the surface water database of the (https://odaforalle.au.dk/). Water levels are measured sub-daily 

(minutes) by hydraulic sensors at hydrological stations and aggregated to daily values.  Daily streamflow is calculated by the 

sub daily water levels applying these to the established dynamic rating curves. The rating curves vary throughout the year due 

to changes in river cross sections caused by erosion and sedimentation or regulation, and by vegetation growth and -cutting. 

Mean daily water discharges are calculated from sub-daily time series and are accessible through (https://odaforalle.au.dk/). 175 

Quality control is performed by the Environmental Protection Agency. Streamflow time series are available for over 1000 

hydrological stations spread across Denmark. However, many stations are unsuited for use in hydrological modelling. Some 

station may have very limited time series length, other stations may have dubious discharge values. Others may show 

anthropogenic influence (e.g. owing to the operation of sluices or pumping stations), which cannot be represented adequately 

in hydrological models. This meant that, based on experience with the calibration and validation of the DK-model, the 180 

observations dataset was limited to 304 stations (Stisen et al., 2020). Additionally, some of the stations (4 stations) were located 

in the middle of a ID15 catchment, these stations were excluded from the dataset. The spatial distribution of hydrological 

stations is displayed in Fig 2a. Small catchments (area < 20 km2, 37 stations) are located in the upstream of larger river systems 

and in coastal areas. Large catchments (area > 200 km2) are mainly located on the Jutland peninsular. The largest river of 

Denmark, River Gudenå, in central Jutland, has a catchment area of 2602 km2 at the most downstream station. 185 

Data availability of the 304 stations involved in CAMELS-DK is shown in Fig 2. Most of the stations have observed streamflow 

available during the entire years during 1989 to 2005 (Fig. 2b). However, many hydrological stations . Around 200 stations 

have available streamflow data for 90% of the days during the period of 1990 to 2019. Most of the stations (around 280) have 

daily streamflow data for 90% of the period 1990 to 1999, while the data availability declined during the period 2000 to 2019.  

 190 
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Figure 2. Streamflow data availability for all gauges contained in the CAMELS-DK dataset. (a) The distribution of hydrometrical 

stations and adherent catchments, (b) the number of stations have available streamflow over the entire year, and (c) the 

availability of observed streamflow for different period shown by the number of stations with percentage of available streamflow. 

3.3 DK-model simulations 195 

The National Hydrological Model of Denmark (hereafter referred to as DK-model) is an integrated groundwater surface water 

model covering most of the Danish land area of approximately 43,000 km2. It has been continuously developed at the Geologic 

Survey of Denmark and Greenland (GEUS) since the late 1990’s (Højberg et al., 2013; Stisen et al., 2020; Henriksen et al., 

2019; Koch et al., 2021; Schneider et al., 2022). It has been used in public consultancy projects, targeting, for example, water 

resource, evaluation of the impact of climate change on the hydrological cycle, or nitrate retention. However, the DK-model 200 

as a whole or in parts also has been and is being used actively in various national and international research projects, further 

pushing its development (Martinsen et al., 2022; Mahmood et al., 2023; Soltani et al., 2021; Seidenfaden et al., 2022) . 

The DK-model is setup in the MIKE SHE model code (Abbott et al., 1986; DHI, 2020), which is used to fully couple a 3D 

description of subsurface flow to 2D overland flow, a simple two-layer description of the unsaturated zone as well as 1D 

kinematic routing of streamflow. It runs as a transient model at a maximum simulation timestep of 24 hours, and, for the 205 

historic period covered by this dataset, with daily climate forcing of precipitation, potential evapotranspiration and temperature 

(as described in section 3.1). In its most recent version, which serves as a basis for the data presented here, it exists at horizontal 
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resolutions of both 100 m and 500 m (Henriksen et al., 2021),where we are using results from the 500 m version. Special 

attention has been paid the representation of surface and surface-near processes (shallow groundwater). The model has been 

calibrated for the period 2000 to 2010 against 304 timeseries of daily streamflow observations (mostly identical to the ones 210 

provided in this dataset), and against groundwater head observations from roughly 40,000 intakes distributed across the entire 

country accounting for roughly 700,000 individual observations (some intakes provide single measurements, others timeseries 

of measurements). The most significant anthropogenic impacts are accounted for in the model: Groundwater extraction for 

domestic and industrial water use is included, using data on annual average extractions from waterworks in the national well 

database Jupiter (https://eng.geus.dk/products-services-facilities/data-and-maps/national-well-database-jupiter). Groundwater 215 

extraction for irrigation in agriculture, which occurs predominantly in the western parts of Denmark, is accounted for based 

on dynamic calculations of soil water deficit in MIKE SHE (Danapour et al., 2021). Where sewage plants streamflow their 

outflow into streams, these are included as point sources in the stream network, based on yearly averages. As roughly half of 

the agricultural land in Denmark is artificially drained, saturated zone drainage is included (Møller et al., 2018). Due to the 

coarse grid resolution and the related inability to represent the drainage infrastructure explicitly as well as the effects of 220 

microtopography, and other aspects such as urban sewer systems acting as further drainage, the DK-model includes drainage 

across most of Denmark. It is parameterized using drain depths and time constants distributed based on the BASEMAP land 

use map. Generated drain flow is routed to the river network. 

Due to its nature, the DK-model simulates the hydrological cycle in an integrated manner, allowing to retrieve information 

about various compartments from its results. With hydrological processes in Denmark in general, and streamflow in particular, 225 

being strongly groundwater-dependent (Duque et al., 2023), we provide, amongst others, groundwater related variables from 

the DK-model simulations. We could previously show that data-driven methods for streamflow estimation benefit from 

information contained in simulated groundwater levels across Denmark (Liu et al., 2023a). Hence, for the CAMELS-DK 

dataset, we provide a set of simulation results from the DK-model at daily timesteps (Table 1). Those include: (1) The simulated 

streamflow at the outlet of each ID15 catchment. (2) The water content in the root zone of the two-layer unsaturated zone 230 

module of MIKE SHE. Due to the simplified description of the unsaturated zone, this accounts for the average water content 

across the entire root zone, where the root depth in the DK-model is variable in space and time dependent on soil type, 

vegetation type and season. (3) The same unsaturated zone module also provides actual evapotranspiration. (4) Recharge from 

the unsaturated to the saturated zone accounts for exchange between unsaturated and saturated zone, including bypass flow, 

and exchange between the saturate zone and overland flow or evaporation (when the saturated zone is at the surface). Here, 235 

positive values indicate flow downwards to the saturated zone, whereas negative values indicate upwards flow from the 

saturated zone, occurring for example in areas of upwelling groundwater. (5) The simulated exchange between streamflow in 

rivers and the saturated zone gives an indication of the groundwater baseflow contribution to streamflow. Most Danish rivers 

can be classified as predominantly gaining streams. (6) Another important part of the hydrological cycle in Denmark is artificial 

drainage, which we therefore included in the present dataset. Direct groundwater contribution together with flow from saturated 240 

zone drainage account for most of the streamflow generated in the DK-model. Finally, the state of the groundwater is included 
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by two variables: The depth to phreatic, which represents the depth below the surface to (7) the uppermost simulated 

groundwater table (which can be a perched groundwater table), as well as (8) the simulated groundwater head in the main 

deeper aquifer (typically in a few tens of metres depth). The former gives an indication of surface-near interactions between 

groundwater and surface water, reacting more quickly to precipitation events, whereas the latter typically shows a more delayed 245 

response to climate. 

3.4 Groundwater abstraction 

Domestic and industrial water supply in Denmark is almost exclusively covered by groundwater. Data on groundwater 

abstraction from water works are reported to the national well database Jupiter (Hansen and Pjetursson, 2011), as aggregated 

yearly values per well or well field. Those data are used as input to the DK-model and are also provide as part of the CAMELS-250 

DK dataset. Due to the close coupling between surface and subsurface processes in Denmark, groundwater extraction locally 

impacts streamflow, as for example acknowledged in national water resources assessments (Henriksen et al., 2023, 2008). 

4 Catchment attributes 

4.1 Location and topography 

The dataset is organized based on the ID15 catchment. All the catchments are identified with an eight-digital name according 255 

to the shapefile. The locations of catchment outlets are provided as longitude and latitude with the projection of WGS 84 / 

UTM zone 32N (EPSG:32632). Flow direction indicates the downstream catchments, the column was filled with –9999 for 

most downstream catchments. The number of upstream catchments and the list of upstream catchment IDs are also provided. 

The area of the individual ID15 catchments and their entire upstream accumulated area originate from the provided shapefile.  

Gauge types indicate if the catchment is gauged or ungauged, when ‘True’ indicates that the catchment is a gauged catchment, 260 

observed and simulated streamflow are available in the dataset and ‘False’ indicates only simulated streamflow is available. 

Details about the observed data, such as the length and monitoring data of the data, are provided. Catchment topography 

described using various statistics derived from elevation and slope are also provided in the attributes table, see Table 2. Please 

be aware that catchment zonal statistics are based on the entire upstream area.  

 265 

Table 2. Catchment location and topography 

Attribute name  Description type/Unit Data source 

catch_id Catchment identifier (eight-digit ID15 catchment name)  

 

catch_outlet_lon Catchment outlet longitude  

catch_outlet_lat Catchment outlet latitude  

catch_flow_dir Catchment flow direction  

catch_accum_number The total number of upstream accumulated ID15 catchment units  
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catch_area Catchment accumulated area m2 

gauged_type 
Boolean values to indicate the catchment is gauged (True) or ungauged 

(False) 
 

 

gauge_record_pct 
If gauged catchment, the time percentage with available observed 

streamflow  
% 

ele_min Minimum elevation of the catchment m 

10m DEM 

ele_median Median elevation of the catchment m 

ele_mean Mean elevation of the catchment m 

ele_max Maximum elevation of the catchment m 

slope_min Minimum slope of the catchment m/km 

slope_median Median slope of the catchment m/km 

slope_mean Mean slope of the catchment m/km 

slope_max Maximum slope of the catchment m/km 

pct_flat_area Percentage of catchment area with slope smaller than 3m/km % 

 

4.2 Climate indices  

Climate indices are based on the aforementioned grided datasets of precipitation, temperature, and potential evapotranspiration. 

To provide consistency with previous CAMELS datasets, we compute the same climatic indices for all catchments in 270 

CAMELS-DK as Addor et al. (2017), such as the mean value of daily precipitation, seasonality, and frequency. Details of 

these climate indices are listed in Table 3. It is important to note that in CAMELS-DK climatic indices are calculated for water 

years from 1989 to 2019, which is consistency to the availability of observed streamflow.  

 

Table 3. Climate indices 275 

Attribute Description Unit 

p_mean Mean of daily precipitation mm/d 

t_mean Mean of daily temperature ◦C 

pet_mean Mean of daily potential evapotranspiration mm/d 

aridity aridity (PET /P, ratio of mean PET to mean precipitation) - 

p_seasonality 

seasonality and timing of precipitation (estimated using sine curves to represent the 

annual temperature and precipitation cycles; positive (negative) values indicate that 

precipitation peaks in summer (winter); values close to 0 indicate uniform precipitation 

throughout the year) - 

frac_snow fraction of precipitation falling as snow (i.e., on days colder than 0 ◦C) % 

high_prec_freq frequency of high precipitation days (≥5 times mean daily precipitation) d/yr 

high_prec_dur 

average duration of high precipitation events (number of consecutive days ≥5 times 

mean daily precipitation) d 

high_prec_timing 

season during which most high precipitation days (≥5 times mean daily precipitation) 

occur season 
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low_prec_freq frequency of dry days (< 1 mm/d) d/yr 

low_prec_dur average duration of dry periods (number of consecutive days < 1 mm/d) d 

low_prec_timing season during which most dry days (< 1 mm/day) occur season 

 

4.3 Streamflow signatures 

Hydrologic signatures are based on the observed daily streamflow at 304 hydrological stations and DK-model simulated 

streamflow at the outlet of 2942 catchments (388 catchments have no surface river flows). We calculated 13 hydrological 

signatures presented by Addor et al. (2017), which is consistent with the other CAMELS datasets (Alvarez-Garreton et al., 280 

2018; Chagas et al., 2020; Höge et al., 2023). These signatures are listed in Table 4. Additionally, nine signatures developed 

by McMillan (2020) that relate to groundwater storage, groundwater dynamics and baseflow, nine signatures showing 

infiltration excess and saturation excess of overland flow and, 15 signatures promoted by Gnann et al. (2021) are included as 

hydrological signatures (Table 4). Hydrologic signatures are calculated for the flow time series available during water years 

from 1989 to 2019 using MATLAB code provided by Gnann et al, ( 2021).  285 

  

Table 4. Hydrographical signatures based on observed and simulated streamflow.  

Attribute Description Unit 

q_mean mean daily streamflow mm/timestep 

TotalRR total runoff ratio (runoff divided by the precipitation)   

QP_elasticity 
streamflow precipitation elasticity (sensitivity of streamflow to changes in precipitation at the annual 

timescale, using the mean daily streamflow as reference) 
  

FDC_slope slope of the flow duration curve (between the log- transformed 33rd and 66th streamflow percentiles)   

BFI 
baseflow index (ratio of mean daily baseflow to mean daily streamflow, hydrograph separation 

performed using the Ladson et al., 2013 digital filter 
  

HFD_mean 
mean half-flow date (date on which the cumulative streamflow since 1 October reaches half of the 

annual streamflow) day of year 

Q5 5% flow quantile (low flow mm/timestep 

Q95 95% flow quantile (high flow mm/timestep 

high_Q_frequency frequency of high-flow days (> 9 times the median daily flow   

high_Q_duration average duration of high-flow events (number of con- secutive days > 9 times the median daily flow timestep 

low_Q_frequency frequency of low-flow days (< 0.2 times the mean daily flow   

low_Q_duration average duration of low-flow events (number of consec- utive days < 0.2 times the mean daily flow timestep 

zero_Q_frequency frequency of days with Q=0   

 

4.4 Land use and land cover 

We provide both national and continental data sources for land use and land cover (LULC). The LULC attributes are derived 290 

from two datasets: the CORINE Land Cover (CLC) from the European Copernicus program (Büttner et al., 2004) and 

Basemap04 developed by Aarhus University (Levin, 2022). CAMELS-DK calculates the catchment-scale percentage of key 
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LULC classes. The aggregated areal percentages of five land cover types are provided for all catchments, including the 

percentages of forest, crops, water, urban areas, and wetlands (Table 5).  

The CORINE Land Cover (CLC) product offers a pan-European land cover and land use inventory with 44 thematic classes, 295 

ranging from broad forested areas to individual vineyards (Büttner et al., 2004). The product is updated every six years with 

new status and change layers for 1990, 2000, 2006, 2012, and 2018. The dataset is based on multiple satellite data sources, 

such as Landsat, SPOT-4/5, RapidEye, and Sentinel-2. The geometric accuracy of the CLC data is 100 meters for the first 

dataset released in 1990, with accuracy improving to better than 100 meters in subsequent years. Basemap04 provides four 

maps of LULC representing the years 2011, 2016, 2018, and 2021, with a spatial resolution of 10 meters. The dataset combines 300 

existing thematic geographic information, such as census mapping of state forests, maps of protected habitats, agricultural 

field parcel maps, and cadastre maps (Levin, 2022).  

 

Table 5. Land use attributes. 

Attribute Description Yeas Unit Data source 

pct_ forest_corine_yyyy Percentage of agriculture 

1990, 2000, 2006, 2012, 

2018 

% 

Copernicus CORINE land cover 

(CLC, 2024) 

pct_ crop_corine_yyyy Percentage of grass and herb vegetation % 

pct_ water_corine_yyyy Percentage of medium-scale vegetation % 

pct_ urban_corine_yyyy Percentage of deciduous forest in % 

pct_ wetlands_corine_yyyy Percentage of mixed forest in % 

pct_forest_levin_yyyy Percentage of forest 

 2011, 2016, 2018, 2021 

% 

Levin, G. 2022. Aarhus 

University, 

https://dce2.au.dk/pub/TR252.p

df 

pct_ crop_levin_yyyy Percentage of agriculture % 

pct_ water_levin_yyyy Percentage of lakes and streams % 

pct_ urban_levin_yyyy Percentage of urban % 

pct_ naturewet_levin_yyyy 
Percentage of nature, (wet, agriculture, 

extensive) 
% 

pct_ naturedry_levin_yyyy 
Percentage of nature, (dry, agriculture, 

extensive) 
% 

 305 

4.5 Soil types 

Physical soil properties were derived from national and continental data sources. For the former, catchment average soil texture 

was derived for four soil layers, i.e., 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm at ~30 m spatial resolution. The 

Danish dataset by Adhikari et al. (2013) is based on a regression modelling using field data for 1958 soil profiles and 17 

environmental covariates. In addition, catchment average soil physical properties were derived from the European Soil Data 310 

Centre (ESDAC) and the dataset of 3D Soil Hydraulic Database of Europe at 1 km and 250 m resolution. A broader set of variables 
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was processed, including rooting depth, saturated hydraulic conductivity, among others. Soil maps of ESDAC are at 1000 m 

spatial resolution and are based on data from the European Soil Database in combination with data from the Harmonized World 

Soil Database (HWSD) and Soil-Terrain Database (SOTER). Several hydraulic parameters from the dataset of 3D Soil 

Hydraulic Database of Europe at 1 km and 250 m resolution, such as the water content at field capacity and saturated hydraulic 315 

conductivity (Table 6).  

 

Table 6. Catchment attributes of soil types. 

Attribute Description Unit Data source and 

References 

pct_sand Sand content %   

 

 

 

European Soil Database 

Derived data 

(Hiederer, 2013a, b) 

pct_silt Silt content %  

pct_clay Clay content %  

pct_organic Organic carbon content %  

bulk_density Bulk density g/cm3 

tawc Total available water content (from PTR) mm 

pct_gravel Coarse Fragments % 

root_depth depth available for roots m 

FC water content at field capacity cm3/cm3 

3D Soil Hydraulic 

Database of Europe at 1 

km and 250 m resolution 

(Tóth et al., 2017) 

HCC hydraulic conductivity curve log10 [cm/d] 

KS saturated hydraulic conductivity log10[cm/d] 

MRC moisture retention curve cm3/cm3 

THS Saturated water content cm3/cm3 

WP water content at wilting point cm3/cm3 

pct_claynor_30 Clay percentage in layer depth of 0-30cm %   

 

 

Adhikari, K., Kheir, R. B., 

Greve, M. B., Bøcher, P. 

K., Malone, B. P., 

Minasny, B., ... & Greve, 

M. H. (2013). High‐

resolution 3‐D mapping of 

soil texture in Denmark. 

Soil Science Society of 

America Journal, 77(3), 

860-876. 

pct_ claynor_60 Clay percentage in layer depth of 30-60cm %  

pct_ claynor_100 Clay percentage in layer depth of 60-100cm %  

pct_ claynor_200 Clay percentage in layer depth of 100-200cm %  

pct_ fsandno_30 Fine sand percentage in layer depth of 0-30cm %  

pct_ fsandno_60 Fine sand percentage in layer depth of 30-60cm %  

pct_ fsandno_100 Fine sand percentage in layer depth of 60-100cm %  

pct_ fsandno_200 Fine sand percentage in layer depth of 100-200cm %  

pct_ gsandno_30 Coarse sand percentage in layer depth of 0-30cm %  

pct_ gsandno_60 Coarse sand percentage in layer depth of 30-60cm %  

pct_ gsandno_100 Coarse sand percentage in layer depth of 60-100cm %  

pct_ gsandno_200 Coarse sand percentage in layer depth of 100-200cm % 
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4.6 Hydrogeology 320 

Hydrogeological features were obtained from the 3D hydrogeological model implemented in the DK-Model (Stisen 2019). 

The model is based on a layer structure, with in total of up to 28 hydrostratigraphical layers that have been modelled based on 

borehole data and subsurface geophysics. The layers delineate the occurrence of, i.e., quaternary, pre-quaternary sand and clay 

as well as limestone. The bottom and top of the hydrostratigraphical layers are mapped on a 100 m grid and five key variables 

were compiled for the CAMELS-DK dataset: (1) Depth to chalk specifies the vertical distance from terrain to chalk. (2) 325 

Thickness of the uppermost aquifer accumulates quaternary sand layers that are not intermittent by clay layers thicker than 1 

m. (3) Depth to uppermost aquifer specifies the vertical distance from terrain to the top of the uppermost quaternary sand layer 

thicker than 1 m. 4) Thickness of uppermost clay specifies the accumulated quaternary clay layers from terrain until a sand 

layer thicker than 1 m is present. 5)  Thickness of uppermost sand specifies the accumulated quaternary sand layers from 

terrain until a clay layer thicker than 1 m is present. All variables are stated in meters and the catchment average has been 330 

calculated for the CAMELS-DK dataset (Table 7). The hydrostratigraphical model for the island Bornholm is developed 

separately from the rest of Denmark. Bornholm’s geology is significantly different with Pre-Cambrian granite-gneisses and 

Cambrian sandstones. Available data are interpreted to build a 3D voxel model for the island. Due to these differences, the 

five hydrogeological features are not available for Bornholm. Moreover, the 14 classes of the surface geology map of Denmark 

(Pedersen et al., 2011) were processed as catchment percentages.      335 

 

Table 7. Catchment attributes of geologic features. 

Attribute Description Unit Data source 

chalk_d Depth to chalk  m https://doi.org/10.2200

8/FK2/UP1PBJ/E3WY

BX & 

https://doi.org/10.2200

8/gpub/32631 

uaquifer_t Thickness of uppermost aquifer  m 

uaquifer_d Depth to uppermost aquifer m 

uclay_t Thickness of uppermost clay m 

usand_t Thickness of uppermost sand m 

pct_aeolain_sand Percentage of aeolian sand, including dunes and cover sands % 

Surface Geology Map 

of Denmark 1:200000 

pct_water_deposit Percentage of freshwater deposits % 

pct_marsh Percentage of marsh, alternating tin  % 

pct_marine_sand Percentage of Marine sand and clay % 

pct_beach Percentage of Beach ridges % 

pct_sandy_till Percentage of Sandy and gravelly till % 

pct_till Percentage of till, clay and fine-sandy % 

pct_glaf_sand Percentage of glaciofluvial sand and gravel % 
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pct_glal_clay Percentage of glaciolacustrine laminated clay, silt and fine sand % 

pct_down_sand Percentage of downwash sandy deposits % 

pct_glam_clay Percentage of glaciomarine clay, silt and sand % 

 

5 Data Discussion 

5.1 Regional variability in catchment attributes 340 

Denmark has a gentle topography with many regions at a mean elevation lower than 50 m and low slopes (Fig. 3a, b). Across 

central Jutland, a ridge is located with elevations reaching up to about 170 m.  This ridge, together with the prevailing westerly 

winds, is responsible for the regional precipitation patterns with higher precipitation in western Jutland, and lower precipitation 

in the more eastern parts of the country (Fig. 3c).  Another important factor controlling hydrology across Denmark is the soil 

type: soils are most clayey in eastern Denmark, central and northwestern Jutland (Fig. 3d), and least clayey (mostly sandy) in 345 

western Jutland. Higher percentage of clay soil generally relates to lower hydraulic conductivities in the topsoil, leading to 

higher groundwater levels and more artificial drainage. It also leads to larger amount of water available for evapotranspiration 

and lower runoff. In contrast, the thickness of uppermost sand is high in West Jutland, north Jutland, and Himmerland (Fig. 

3e). The depth to chalk aquifers is high (> 250 m) in northwestern Jutland, central and western Jutland, but lower in North 

Zealand and Djursland with typical depths of around 60 m (Fig. 3f). The temperate climate with precipitation clearly exceeding 350 

evapotranspiration, low-lying topography, and geology dominated by clay till or sandy meltwater deposits result in high 

groundwater levels and abundant groundwater resources in Denmark.  
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Figure 3. Regional distributions of (a) mean elevation, (b) slope, (c) mean daily precipitation, (d) Clay percentage in layer depth of 

0-30cm, (e) depth of chalk, and (f) Thickness of uppermost sand in geo-regions (NJ: North Jutland, NwJ: northwestern Jutland, HL: 355 
Himmerland, DL: Djursland, NZ: North Zealand, CJ: Central Jutland, WJ: Western Jutland, and ED: East Denmark).  

 

5.2 Surface water dynamics 

CAMELS-DK provides observed streamflow data from 304 hydrological stations and simulated streamflow data for 2,942 

catchments. However, 388 catchments lack observed or simulated streamflow data because they are located upstream or in 360 

coastal areas without distinct land surface river channels. The simulated streamflow is based on the DK-model, which was 

calibrated using observed streamflow data from the period 2000-2010, see section 3.3. Fig. 4 shows the Sutcliffe and Kling-

Gupta efficiency (KGE) and Nash–Sutcliffe model efficiency coefficient (NSE) for the DK-model's simulated hydrography, 

referenced against observations from 1990-1999. The mean NSE is 0.46, and the median value is 0.64. The mean KGE is 0.64, 

and the median value is 0.69, indicating that the simulated streamflow is satisfactory at many stations, with the simulations 365 

and observations showing temporal coherence and consistency. However, the simulations demonstrate lower performance for 

high-flow and low-flow conditions, as indicated by lower NSE values in central and northern Jutland (Fig.4). Consequently, 

deep learning methods and hybrid schemes have been investigated to improve streamflow forecasting (Liu et al., 2023a). 

Additionally, the DK-model's performance in ungauged catchments has not been fully validated due to the computational 

intensity of model calibration. 370 
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Figure 4. The performance of DK-model simulated streamflow at 304 hydrological stations. (a) spatial distribution of Nash–Sutcliffe 

model efficiency coefficient, (b) spatial distribution of the Kling–Gupta efficiency (KGE), and (c) histogram of NSE and KGE.  

 375 

 

 

Figure 5. Spatial distribution of (a) Baseflow index, (b) Streamflow-precipitation elasticity, and (c) Slope of the flow duration curve. 

 

Groundwater and surface water are closely linked in Denmark (Duque et al., 2023). Fig. 5 presents three hydrographic 380 

signatures derived from DK-model simulations: Baseflow Index (BFI), Streamflow-Precipitation Elasticity (QP-elasticity), 

and the Slope of the Flow Duration Curve (FDC_slope). BFI represents the proportion of streamflow that occurs as baseflow. 

The value is higher in Himmerland, Djursland, and central Jutland, indicating that a significant portion of the streamflow 

comes from groundwater seepage (Fig. 5a). The groundwater levels are lower in these areas, resulting in the slow and steady 

release of groundwater into the streams, thereby exhibiting more stable flow conditions throughout the year. Groundwater 385 

buffers against short-term variations in precipitation in these areas. QP-elasticity indicates the sensitivity of streamflow to 

changes in precipitation, which is low in central Jutland and high in eastern Denmark. This suggests significant regulation of 
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streamflow by groundwater. The FDC_slope also shows higher values in eastern Denmark, indicating a highly variable stream 

flow that is largely due to the quick runoff of rainfall into the stream (Fig. 5c). 

 390 

Figure 6. Climatology of precipitation observed streamflow, and DK-model simulated shallow groundwater levels (dtp) in (a) 

Storå River (the largest river in West Jutland), and (b) Suså River (the largest in East Denmark).  

Groundwater – surface water interaction is significant at temporal scales as well. Fig. 6 shows the climatology (1990 - 2019) 

of precipitation, observed streamflow and depth to phreatic layers in Storå River (largest river in Western Jutland) and Suså 

River (largest river in East Denmark), close to each of their outlets. The spatial variability of precipitation is relatively small, 395 

and the seasonality is similar across Denmark. The two examples shown in Fig.6 have a comparable amplitude of precipitation 

during the year with highest precipitation occurring during the fall and winter months, and lowest precipitation during spring. 

Streamflow, though, has a more pronounced seasonality, due to higher evapotranspiration during summer, leading to lower 

runoff coefficients. Even in the climatology, the peaky streamflow response of the sandier Storå catchment becomes apparent, 

compared to the more clayey Suså catchment. Moreover, summer baseflow in the Storå catchment is higher than in the Suså 400 

catchment (see also BFI in Fig. 5a, and clay percentage in Fig. 6d), which again is due to the better connectivity between 

(shallow and deep) groundwater and rivers due to the more sandy/higher conductivity subsurface conditions in large parts of 

Western Jutland. Linked to similar processes, differences in groundwater dynamics can be seen, with the Storå catchment 

exhibiting lower groundwater tables, but higher seasonal amplitudes of the two example catchments. The steady decline of 

groundwater levels during the summer months is due to elevated levels of evapotranspiration, limiting groundwater recharge 405 

during that time. Groundwater recharge typically starts again around the beginning of September, and streamflow levels follow 

closely and begin to rise from summer baseflow conditions around the same time. 
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5.3 Groundwater dynamics 

Groundwater supplies nearly 100 percent of Danish domestic and industrial water use. Groundwater monitoring and modelling 410 

are thus important for sustainable water management in Denmark. Fig.7 shows catchment-aggregated variables from DK-

model simulations, such as depth to phreatic layers (Fig. 7a), groundwater extraction for irrigation (Fig. 7b), and reported 

groundwater abstractions (Fig. 7c) from waterworks. The spatial pattern of phreatic depth shows the groundwater level is 

highest in eastern and southern Denmark, and lowest in northern Denmark. In some catchments located in Himmerland and 

central Jutland, the average phreatic depth is around 15 meters blow land surface (Fig. 7a). An example of the time series of 415 

phreatic depth in a catchment in Himmerland shows an annual amplitude of approximately 5 meters. The groundwater table is 

higher in winter and lower in summer, which aligns with the seasonal variations in precipitation and evapotranspiration. 

Precipitation deficits can reduce the amplitude of phreatic depth, especially during winter months such as in 1996. Catchments 

with more shallow groundwater depths show typically smaller yearly amplitudes. Groundwater extraction for domestic and 

industrial water supply is based on yearly data from the national well database, Jupiter (https://www.geus.dk/produkter-420 

ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter). Groundwater abstraction for irrigation is only available 

in Jutland since there is no significant irrigation activity in the other parts of Denmark. Irrigation is provided as determined 

dynamically, demand-based by the DK-model. 
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Figure 7. Groundwater dynamics, abstraction, and irrigation abstraction. (a) catchment average depth to phreatic layers with the 425 
time series of a catchment located in Himmerland, (b) catchment summary groundwater abstraction with the yearly abstraction 

amount time series of a catchment in western Jutland, and (c) catchment summary groundwater abstraction for irrigation, with 

time series of a catchment in northern Jutland.  

6 Dataset structure 

CAMELS-DK is available at https://doi.org/10.22008/FK2/AZXSYP (Koch et al., 2024). There are four folders after download 430 

and unzipping the dataset. Landscape attributes including climate indices, topography, hydrological signatures, land use, soil 

characteristics, and hydrogeological features are saved in a folder named ‘Attributes’. These static attributes are saved in CSV 

files, where the index is the 8-digital identifier, and the columns are the names of variables (see Table 2-5). Timeseries of 

climate data, observed streamflow, DK-model simulated variables, such as depth to phreatic layers, average soil water content, 

and actual evapotranspiration, and observed yearly groundwater abstractions are available in the folder ‘Dynamics’. The 435 

timeseries data is saved separately for gauged and ungauged catchments. The shapefile of catchments boundaries, location and 
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the geo-regions of Denmark are provided in a folder named ‘Shapefile’. The Python script of processing the time series and 

landscape attributes based on original datasets are provided in a folder named ‘Python’.  

7 Conclusion 

In this study, we provided an updated version of CAMELS-DK, which involves various hydrometeorological variables and 440 

landscape features for 3330 catchments that covers the entirety of Denmark. Time series of hydrometeorological variables are 

at daily scale and span over the period from 1989 to 2023. Land cover/use are from two datasets and are available for a few 

years (1990, 2000, 2016, 2011, 2012, 2016, 2018, 2021), yearly groundwater irrigation abstraction data are available in Jutland. 

Shallow and deep groundwater levels are derived from the National Hydrologic Model of Denmark, which plays an important 

role in hydrological systems for low-laying catchments.   445 

The dataset is developed to assistant machine learning studies which require large samples for training, testing and validation. 

The dataset includes observed streamflow for 304 catchments. Other observed variables include information on, e.g, 

precipitation ang groundwater abstractions. The simulated variables, such as streamflow, groundwater levels, and irrigation 

have high accuracy in many regions of Denmark, which will benefit the development of physical-informed machine learning 

algorithms. We provide most of the original raster data and Python scripts for data processing (level-1), based on which 450 

spatially aggregated time series and attributes were calculated for 3330 catchments (level-2). The dataset follows the FAIR 

rule and is convenient to use with other CAMELS-like datasets. 

 

Appendix 

Appendix A: Additional hydrological signatures  455 

Attribute Description Unit Reference 

SnowDayRatio Snow day ratio – Euser et al.,  

(2013) RLD Rising limb density 1/day 

AC1 Lag-1 autocorrelation – McMillan, (2020) 

for groundwater RR_Seasonality Runoff ratio seasonality – 

EventRR Event runoff ratio – 
StorageFraction Ratio between active and total storage – 

Recession_a_Seasonality Seasonal variations in recession parameters – 

AverageStorage Average storage from average baseflow and storage-discharge relationship – 
Spearmans_rho Non-uniqueness in the storage-discharge relationship – 

EventRR_TotalRR_ratio Ratio between event and total runoff ratio – 

VariabilityIndex Variability index of flow – 

IE_effect Infiltration excess importance – McMillan, (2020) for 
surface water 

IE_thresh 
Infiltration excess threshold location (in a plot of quickflow volume vs. maximum 

intensity) mm/day 

IE_thresh_signif 
Infiltration excess threshold significance (in a plot of quickflow volume vs. maximum 
intensity) 

– 

SE_effect Saturation excess importance – 

SE_thresh_signif 
Saturation excess threshold significance (in a plot of quickflow volume vs. total 

precipitation) 
– 

SE_thresh 
Saturation excess threshold location (in a plot of quickflow volume vs. total 
precipitation) 

mm 
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SE_slope 
Saturation excess threshold above-threshold slope (in a plot of quickflow volume vs. 

total precipitation) 
– 

Storage_thresh 
Storage/saturation excess threshold location (in a plot of quickflow volume vs. 

antecedent precipitation index + total precipitation) 
mm 

Storage_thresh_signif 
Storage/saturation excess threshold significance (in a plot of quickflow volume vs. 
antecedent precipitation index + total precipitation) 

– 

BaseflowMagnitude Difference between maximum and minimum of annual baseflow regime mm Gnann et al., 

(2021) 
ResponseTime Catchment response time day 

FlashinessIndex Richards-Baker flashiness idex – 

PQ_Curve Slopes and breakpoints in cumulative P-Q regime curve – 

Q_n_day_max n-day maximum streamflow mm/day 
Q_skew Skewness of streamflow mm 3/ day 3 

Q_var Variance of streamflow mm 2/ day 2 

RecessionK_part Recession constant of early/late (exponential) recessions 1/day 
SeasonalTranslation Amplitude ratio and phase shift between seasonal forcing and flow cycles – 

SnowStorage Snow storage derived from cumulative P-Q regime curve mm 

zero_Q_duration Zero flow duration day 

Q_7_day_min 7-day minimum streamflow mm/day 

CoV Coefficient of variation – 
HFI_mean Half flow interval days 

BaseflowRecessionK Exponential recession constant 1/d 

 

Appendix B. Comparison of simulated and observed signatures. 

The DK-model has been calibrated jointly against observed streamflow at around 300 hydrological stations; the performance 

of DK-model simulated streamflow is satisfactory at many stations (Stisen et al., 2020). Here, we displayed some comparison 

results of signatures derived from DK-model simulated streamflow and the observations. The magnitude of streamflow, such 460 

as the mean streamflow, between simulated streamflow is aligned with the observations (Fig. B1a). The mean streamflow is 

lower than 5 m3/s at many stations (96%) and 18 stations are in large rivers with a daily average streamflow higher than 5 m3/s. 

DK-model tends to overestimate the BFI (Fig.B1b), indicating that a slightly smoother streamflow hydrograph simulated by 

the DK-model. The precipitation elasticity of streamflow, which indicates the sensitivity of streamflow to precipitation, is still 

challenged to capture accurately by the model (Fig. B1c). The slope of flow duration curves (FDC_slope) quantifies the 465 

variability of hydrographs. A steep slope indicates a highly variable stream, where flow is primarily driven by the quick runoff 

of rainfall to the stream. The simulated hydrography tends to overestimate the FDC_slope for highly variable streams but 

underestimate it for less variable streams (Fig. B1d).  
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Figure B1. Comparison of observed signatures and DK-model simulated signatures. 470 

 

Data availability 

All the data provided in this study are freely accessible. CAMELS-DK is available at GESU Dataverse 

https://doi.org/10.22008/FK2/AZXSYP (Koch et al., 2024). The ID15 catchment shapefile is provided with this dataset, 

previous version, and the newest version (ID15v3) of the shapefile can be requested by writing to id15@ecos.au.dk. High 475 

resolution DEM data is available here https://dataforsyningen.dk/data/928. The gridded climate data is created by the Danish 

Meteorological Institute (DMI) and downloaded from DMI Data API (https://opendatadocs.dmi.govcloud.dk/DMIOpenData). 

Precipitation has been corrected based on the approach described by Stisen et al. (2011), original data without correction or 

DMI corrections of precipitation are unavailable in this dataset. The observed streamflow data can be downloaded from the 

Danish Environmental Protection Agency (https://mst.dk/erhverv). Users should contact for streamflow data from additional 480 

stations. Simulation results of surface water and groundwater dynamics from The National Hydrological model of Denmark 

are available at (https://dennationalehydrologiskemodel.dk/).  
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