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Abstract 

Large samples of hydrometeorological time series and catchment attributes are critical for improving the understanding of 

complex hydrological processes, hydrological model development and performance benchmarking. CAMELS (Catchment 

Attributes and Meteorology for Large-sample Studies) datasets have been developed in several countries and regions around 

the world, providing valuable data sources and testbeds for hydrological analysis and new frontiers in data-driven hydrological 15 

modelling. Regarding the lack of samples from low-land, groundwater-dominated, small-sized catchments, we develop an 

extensive repository of a CAMELS-style dataset for Denmark (CAMELS-DK). This CAMELS addition is the first containing 

both, gauged and ungauged catchments as well as detailed groundwater information. The dataset provides dynamic and static 

variables for 3330 catchments covering all of Denmark from various hydrogeological datasets, meteorological observations, 

and a well-established national-scale hydrological model. For 304 of those catchments, streamflow observations are provided, 20 

whereas simulated streamflow is provided for all 3330 catchments. The dataset contains timeseries spanning 30 years (1989-

2019) with a daily timestep, and the data will be updated once new observations and model simulations become available.  The 

dense and full spatial coverage for all3330all 3330 catchments, instead of only gauged catchments, together with the addition 

of various simulation data from a distributed, process-based model enhance the applicability of such CAMELS data, for 

example, for the development of data-driven and hybrid physical informed modelling frameworks or other cases where 25 

consistent full spatial coverage is required. We also provide quantities related to human impact on the hydrological system in 

Denmark, such as groundwater abstraction and irrigation. The CAMELS-DK dataset is freely available at 

https://doi.org/10.22008/FK2/AZXSYP (Koch et al., 2024). 
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1 Introduction 

Hydrometeorological time series and catchment attributes are crucial for understanding and modelling hydrological systems 30 

(Andersson et al., 2015; McMillan et al., 2018). Long-term records of water cycle variables, such as precipitation, 

evapotranspiration (ET), streamflow, and groundwater levels, give profound insights into dynamics and trends of water 

movement. These records form the basis for supporting water resource management and climate change adaptation. Sufficient 

hydrological data are required by scientists and engineers to manage water resources effectively and to make accurate 

predictions of hydrological extremes (Van Loon, 2015). Catchment attributes provide information on the physical 35 

characteristics of catchments, such as topography, soil type, land use, and geology, which are important for understanding how 

catchments respond to meteorological events and are relevant for land-use planning and catchment management. The similarity 

of catchment attributes is useful in comparative hydrology studies, which facilitate the transfer of knowledge from data-rich 

to ungauged catchments or regions where direct hydrological measurements are scarce or non-existent (Sawicz et al., 2011; 

Singh et al., 2014; Tegegn et al., 2022; Tshimanga et al., 2022). Being able to predict in ungauged catchments enhances our 40 

ability to manage water resources efficiently and sustainably. 

The availability of open-access environmental data is increasing, however, data sources are distributed across different 

platforms and stored in various formats, which requires further efforts in data collection and pre-processing. Many state 

authorities and governmental research institutes comply with open data policies, significantly breaking down the barriers 

related to data sharing issues that have existed in the hydrology community for decades (Kibler et al., 2014). Numerous 45 

platforms and websites offer hydrological data from various sources, which greatly benefits large-scale studies. For example, 

the Global Runoff Data Centre (GRDC) provides streamflow measurements from over 10,000 hydrological stations (GRDC, 

2020), the HydroSHEDS database offers a suite of hydrographic data (Lehner et al., 2008), the European Centre for Medium-

Range Weather Forecasts provides multiple climate reanalysis products (Hersbach et al., 2020), and Hydroweb supplies 

satellite-derived water levels for global rivers and lakes (Da Silva et al., 2010). However, large-scale studies face a key 50 

challenge: They require a vast amount of data for development, and users often spend considerable time and effort navigating 

through different platforms for data collection and employing various programming packages for data pre-processing.  

Many studies are, consequently, focused on creating large-sample hydrology (LSH) datasets providing streamflow data for a 

large number of catchments following the Findable, Accessible, Interoperable, and Reusable (FAIR) principle (Wilkinson et 

al., 2016). Newman et al. (2015b) created a comprehensive hydrometeorological dataset, which includes daily forcings and 55 

hydrologic response data for 671 small- to medium-sized basins throughout the contiguous United States (CONUS). This 

dataset was further enriched by Addor et al. (2017), who coined the term "Catchment Attributes and Meteorology for Large-

sample Studies" (CAMELS) to describe their collection of catchment attributes for the same basins. Since then, CAMELS 

datasets have been developed in several countries, including Chile (Alvarez-Garreton et al., 2018), Brazil (Chagas et al., 2020), 

Great Britain (Coxon et al., 2020), Australia (Fowler et al., 2021), and Switzerland (Höge et al., 2023). Some other datasets 60 

provide hydrometeorological timeseries and catchment characteristics similar to CAMELS conventions, but with diverging 
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naming, such as LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe (LamaH-CE, Klingler et 

al., 2021) and Iceland (LamaH-Ice, Helgason and Nijssen, 2023), historical hydro-meteorological time series and signatures 

for 24 catchments in Haiti (Simbi, Bathelemy et al., 2023), a large-scale benchmark dataset for data-driven streamflow 

forecasting (WaterBench-Iowa, Demir et al., 2022), China Catchment Attributes and Meteorology dataset (CCAM, Hao et al., 65 

2021). These datasets are open access, well-formatted, and encompass a wide range of comprehensive variables related to 

hydrological processes (Klingler et al., 2021). They provide information for hydrological studies and water resources 

management (Frame et al., 2021; Jehn et al., 2020; Meyer Oliveira et al., 2023; Tang et al., 2023), but also serve as reference 

for the development of hydrological models, as well as the training and testing of data-driven algorithms (Kratzert et al., 2018, 

2019, 2021; Liu et al., 2023b2023; Mai et al., 2022; Nearing et al., 2024; Yin et al., 2022). Details about recent progress and 70 

their applications have been summarized by Addor et al. (2020). Kratzert et al. (2023) introduced the Caravan platform, which 

consolidates the national CAMELS datasets into a singular dataset derived from global sources, which further improve the 

accessibility of the dataset. However, Clerc-Schwarzenbach et al. (2024) concerned the Caravan dataset, which uses ERA5-

Land reanalysis data, for exhibiting an unrealistically high potential evapotranspiration and a significant discrepancy in 

precipitation relative to the original CAMELS datasets. Such differences in meteorological forcings influence model results. 75 

Consequently, they advocated for the augmentation of the Caravan dataset with the forcing data present in the original 

CAMELS dataset, underscoring the ongoing relevance of the original CAMELS development. 

While the already existing CAMELS datasets cover a wide range of hydroclimatic conditions and catchments characteristics 

it can still be considered incomplete in terms of the catchment diversity. Especially a lack of samples from low-lying, small 

and groundwater-dominated catchments. In the existing CAMELS datasets with a total number of 3308 catchments (CH: 331, 80 

GB:671, CL:516, BR: 897, AUS:222, US: 671), only 7.5% of the catchments (250 out of 3308) have an elevation lower than 

100 m, and 9.5 % of the catchments have an area size smaller than 50 km2. Hydrological regimes, with respect to their baseflow 

and peak flow differ between small and large catchments. The same holds for low lying catchments, where hydrological 

regimes are more affected by groundwater related processes. Hence, samples of small-sized and groundwater dominated 

catchments are necessary to increase the diversity of current existing CAMELS family. Additionally, information and data 85 

from well-established physical hydrological models have not yet been provided by previous LSH datasets. Simulated runoff, 

obtained from hydrological models, offers a valuable benchmark dataset, and can potentially also be provided at ungauged 

basins. 

It is worthy to mention that LSH provides an invaluable foundation to scientists aiming to apply data-driven machine learning 

(ML) techniques in hydrology, as they undoubtedly offer an ideal environment for benchmarking, training, and testing ML 90 

algorithms. CAMELS and similar LSH have already contributed to ML advancements, such as predicting streamflow 

(Wilbrand et al., 2023), transfer learning (Ma et al., 2021), testing advanced algorithms (Yin et al., 2022), hybrid modelling 

(Espinoza et al., 2023) and global-scale flood forecasting (Nearing et al., 2024). In the context of ML-based hydrological 

modelling, physical-informed data driven algorithms, which combine the strength of traditional physics-based approaches with 
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ML/DL models, show often enhanced performance (Konapala et al., 2020; Liu et al., 2023a). Therefore, hydrological 95 

information from well-established physically basedIn the context of ML-based hydrological modelling, physical-informed data 

driven algorithms, which combine the strength of traditional physics-based approaches with ML models, show often enhanced 

performance(Konapala et al., 2020). Therefore, hydrological information from well-established hydrological models (if 

existing), would further benefit applications of CAMELS datasets. Previous CAMELS datasets provide simulated streamflow 

from conceptual hydrological models, such as LamaH-CE, which is insufficient in many Danish River systems. Liu et al. 100 

(2024) tested several hybrid schemes of combining simulations from a physically based hydrological model (PBM) and climate 

variables for streamflow estimation in Denmark, and the study found that the combination of PBM simulations (such as shallow 

groundwater levels, soil water content, streamflow) and climate variables achieve better performance with a ML model. 

The points presented above have motivated us to compile and introduce CAMELS-DK for Danish catchments. Denmark covers 

roughly 43,000 km2, the topography is flat (highest point is 170 m above sea level), climate is temperate with precipitation 105 

evenly distributed over the year (annual average precipitation ranging between 600 mm in the east to 1000 mm in the west). 

The flat terrain and wet climate generate about 69,000 km of river courses and 195,000 lakes (Danish Environmental Protection 

Agency, 2022). Groundwater levels close to ground surface are found throughout the country,  reliable surface water modelling 

in Denmark always requires information of groundwater dynamics (Duque et al., 2023; Koch et al., 2021; Schneider et al., 

2022). Ignoring groundwater contributions in streamflow modelling can lead to significant errors, such as the underestimation 110 

of baseflows and the misrepresentation of seasonal variations. Spatiotemporally continuous groundwater measurements are 

difficult to obtain, which means not all catchments have groundwater information when developing CAMELS-style datasets. 

On the other hand, well-developed national-scale hydrological models with three-dimensional groundwater movement are 

available in Denmark, which has been calibrated with well measurements of groundwater levels. These simulations provide 

valuable insights for surface hydrological modelling.  115 

CMALE-DK provides consistent data forThe points presented above have motivated us to compile and introduce CAMELS-

DK for Danish catchments. Denmark covers roughly 43,000 km2, the topography is flat (highest point is 170 m above sea 

level), climate is temperate with precipitation evenly distributed over the year (annual average precipitation ranging between 

600 mm in the east to 1000 mm in the west). The flat terrain and wet climate generate about 69,000 km of river courses and 

195,000 lakes (Danish Environmental Protection Agency, 2022). CAMELS-DK provides consistent data for over 3330 120 

catchments, which cover almost the entire land area of Denmark. The dataset has a median catchment area of 19.61 km2 with 

a median elevation of 31.94 m. Around 10%, i.e. 304 of these catchments are gauged and contain observed runoff, but the 

entirety of catchments in this dataset contains consistent simulated hydrological data, including simulated runoff and 

groundwater dynamics, in addition to hydroclimatic forcing and catchment attributes . These simulations are from a spatially 

distributed hydrological model, the National Hydrological Model of Denmark (DK-model), which has been thoroughly 125 

validated against data from 304 streamflow stations and approximately 40,000 groundwater wells. The DK-model provides a 

satisfying and consistent simulation of streamflow and incorporates a sophisticated 3D representation of groundwater 
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processes, including a detailed hydrogeological model. With the first CAMELS datasets to provide a broad range of consistent 

and high-quality simulated data, we intend to generate a testbed for hybrid or physics-aware ML developments to further 

accelerate the development of such model types. 130 

The objective of this study is to describe the extensive repository of hydrometeorological time series and catchment attributes 

in Denmark. We followed the routine of previous CAMELS dataset and ensure this dataset is comparable and interoperable to 

the already existing CAMELS datasets. Additionally, some new features are introduced which have not been found in the 

previously published CAMELS datasets, such as the incorporation of simulation results (shallow/deep groundwater levels, 

irrigation) of a spatially distributed hydrological model and features of hydrogeological model and observed groundwater 135 

abstraction for irrigation. The dataset follows the FAIR guiding principles for scientific data management and stewardship. 

We believe this dataset will enrich the existing CAMELS database with catchments that have different features and 

hydrological regimes than the already existing datasets, with respect to groundwater influence and size. The paper is organized 

as follows: Section 2 describes the catchment delineation. Section 3 presents the dynamic variables including climate forcings, 

observed streamflow, and simulations from the hydrological model. Section 4 presents the sources and features of catchment 140 

attributes of topography, soil types, land use, and geology. In Section 5, we discuss the hydrological processes in Denmark 

based on the provided dataset. Section 6 contains a short summary of the paper.  

2 Catchment delineation  

Denmark has been divided into 3351 topographical catchments (Højberg et al., 2021), referred to as ID15v2.5ID15 catchments 

(Fig. 1). The division was originally prompted by the need to know the topographic areas upstream monitoring stations, lakes, 145 

and marine waterbodies. Thus, enabling the calculation of runoff and loads of nutrients, suspended matter and other chemical 

components coupled to the corresponding topographical area. For modelling purposes, the observed catchments were further 

subdivided and supplemented by a delineation also for unmonitored catchments. A topology for the sub-catchments was 

established, describing the downstream relations. 

The catchment delineation seeks to provide sub catchment areas at a size of about 15 km 2 (hence the name ID15 catchments) 150 

where possible. However, the criteria that all lake outlets and monitoring stations must coincide with an outlet from a ID15 

sub-catchment introduces sub catchments sometimes considerably smaller than 15 km2. Alongside the establishment of new 

lakes or additional monitoring stations the delineation is subject to periodically updates, with additions of new or alteration of 

existing catchment boundaries. The most-update version ID15v2.5of ID15 catchments includes 3351 sub-catchments with a 

median area of 12.98 km2, varying from less than one square kilometer to more than 100 km2 for the ID15 catchments 155 

containing the largest Danish Lake. Both very large and some very small ID15sID15 catchments were created to accommodate 

lake catchments and monitoring stations. The delineation of the ID15 catchments follows topographic catchments. However, 

especially in flat areas and areas with modified streams and canals, local knowledge of such alterations was accounted for to 
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delineate the actual surface water catchments. Additionally, ID15 catchments also coupled with the National Hydrological 

Model of Denmark (details are in Section 3.3), time series of simulated streamflow are available at catchment outlets where 160 

stream are included in the national hydrological model.  

 

Figure 1. CAMELS-DK domain. (a) ID15 catchments and geological regions of Denmark, including northern Zealand (NZ), 

eastern Denmark (ED), western Jutland (WJ), central Jutland (CJ), Djursland (DL), Himmerland (HL), northwestern Jutland 

(NwJ), Northern Jutland (NJ), and Bornholm (BH), (b) distribution of catchment area, and (c) an example of river channels and 165 
catchment boundaries delineated by ID15 shapefilecatchments in Northern Zealand. The green lines are river channels, red dot 

indicates the location of a hydrological station downstream the river section, blue dots are examples basin outlets, and the 

corresponding catchment upstream drainage area are filled with light colour.  

3 Dynamic variables 

3.1 Climate data 170 

The climate time series are based on national gridded products produced by the Danish Meteorological Institute (DMI).  

Datasets with daily timesteps going back to the year 1989 are based on observations from a network of in-situ weather stations. 

Daily rainfall time series, aggregated to catchment scale with an area weighted mean function, were derived from the 10 km2 

‘Klimagrid Danmark’ data from DMI (Scharling, 1999b). The gridded dataset is based on an inverse-distance interpolation of 

daily observations of precipitation at DMI’s stations. The station density changes throughout the years, but generally moves 175 

between 200 and 500 stations, distributed across all of Denmark. The impact of the reduction in the number of gauges was 

evaluated by DMI, and found to be minimal at national scale, but can have local impacts (Andersen, 2021). As many 

hydrological applications are extremely sensitive to the exact amount of precipitation, the raw observations of precipitation 
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were corrected for sensor/gauge undercatch. Operational precipitation gauges are typically situated 1–1.5 meters above the 

ground and are influenced by turbulence around the gauge. This turbulence leads to a systematic undercatch of measured 180 

precipitation compared to true precipitation. The extent of undercatch depends on wind speed and precipitation type, with 

particularly significant undercatch observed for snow during windy conditions. However, even liquid precipitation is subject 

to undercatch. In Denmark, the undercatch is estimated to average around 5–10% in summer and 15–20% in winter. This 

systematic bias results in an underestimation of true precipitation, making correction essential for any water resources analysis 

or hydrological modeling exercise. The precipitation correction model applied in this study is based on a Danish study of the 185 

Hellman raingauge. The model uses empirical relationships to estimate undercatch based on wind speed, shelter conditions at 

the gauge (turbulence), and temperature (to determine precipitation type—liquid, solid, or mixed). Additionally, the model 

accounts for wetting losses caused by evaporation of water from the inner sides of the rain gauge before measurement. The 

correction was applied dynamically, accounting for rainfall intensity, wind speed and temperature (solid or liquid 

precipitation).  CAMELS-DK provides corrected precipitation at ID15 catchments scale based on freely available uncorrected 190 

precipitation observations, wind speed and temperature data in 10km grid format and the correction approach described by 

(Stisen et al., 2011). The uncorrected or DMI corrected precipitation data are not part of this dataset. Similarly to the 

precipitation dataset, DMI also provides gridded datasets of air temperature and potential evapotranspiration (Scharling, 

1999a). Potential evapotranspiration is calculated based on the Makkink formula  (Van Kraalingen and Stol, 1997) by DMI, 

specifically modified for Danish conditions. Temperature and potential evapotranspiration are provided at daily timesteps; 195 

however, at an original resolution of 20 km2.  

The climate data was downloaded directly from the DMI Application Programming Interface (Frie Data). Precipitation 

correction was then applied to all grids to account for the undercatch biases. The raster data was subsequently clipped to each 

catchment boundary, and a mean daily value was calculated based on all grids that fall within or touch the boundaries. This 

process forms the climate time series included in CAMELS-DK.  200 

 

Table 1. Dynamic variables in CAMELS-DK. The time series are in daily scale, and spatially aggregated with the mean function.  

Time series class Time series name  Description Unit Data source 

Climate variables 

precipitation Daily accumulated precipitation mm·d-1 
Danish Meteorological 

Institute (Frie Data) 
temperature Daily mean temperature °C 

pet Daily potential evapotranspiration (Makkink) mm·d-1 

Hydrological 

variables 

Qobs Observed streamflow m3·s-1 

(overfladevandsdatabasen 

ODA, 

2020)(overfladevandsdatab

asen ODA, 2020) 

Qdkm Simulated streamflow m3·s-1 DK-model (Stisen et al., 

2020) DKM_wcr average water content in root zone - 
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DKM_dtp phreatic depth to surface layer m 

DKM_eta actual evapotranspiration mm·d-1 

DKM_ rec Total recharge to saturated zone mm·d-1 

DKM_sdr saturated zone drainage flow from point  m3·s-1 

DKM_sre saturated zone exchange flow with river m3·s-1 

DKM_gwh groundwater head in major deeper aquifer layers m 

DKM_irr Irrigation m3·s-1 

Groundwater 

abstraction 
abstraction Annual abstractions from groundwater m3·s-1  (National well database) 

 

3.2 Observed streamflow 

Streamflow is provided by Aarhus University through the surface water database (overfladevandsdatabasen ODA, 205 

2020)(overfladevandsdatabasen ODA, 2020). Water levels are measured sub-daily by hydraulic sensors at hydrological 

stations and aggregated to daily values.  Daily streamflow is calculated by the sub daily water levels applying these to the 

established dynamic rating curves. The rating curves vary throughout the year due to changes in river cross sections caused by 

erosion and sedimentation or regulation, and by vegetation growth and -cutting. Mean daily water discharges are calculated 

from sub-daily time series and are accessible through overfladevandsdatabasen ODAoverfladevandsdatabasen ODA. Quality 210 

control is performed by the Environmental Protection Agency. Streamflow time series are available for over 1000 hydrological 

stations spread across Denmark. However, many stations are unsuited for use in hydrological modelling. Some stations may 

have limited time series lengths (basin_id 35321223 has the shortest streamflow record of 1,762 days during the period 1989–

2019 in CAMELS-DK), some stations may contain questionable discharge values. Others may show anthropogenic influence 

(e.g. owing to the operation of sluices or pumping stations), which cannot be represented adequately in hydrological models. 215 

This meant that, based on experience with the calibration and validation of the DK-model, the observations dataset was limited 

to 304 stations (Stisen et al., 2020). Additionally, some of the stations (4 stations) were located in the middle of a ID15 

catchment, these stations were excluded from the dataset. The spatial distribution of hydrological stations is displayed in Fig 

2a. Small catchments (area < 20 km2, 37 stations) are located in the upstream of larger river systems and in coastal areas. Large 

catchments (area > 200 km2) are mainly located on the Jutland peninsular. The largest river of Denmark, River Gudenå, in 220 

central Jutland, has a catchment area of 2602 km2 at the most downstream station. 

Data availability for the 304 stations included in CAMELS-DK is illustrated in Fig. 2. Most stations provided continuous 

streamflow observations during the earlier part of the study period, specifically from 1989 to 2005 (Fig. 2b). However, the 

number of active hydrological stations declined sharply between 2005 and 2010, with only about 200 stations continuing to 

provide full observations of streamflow. Fig. 2c provides further insight into data availability based on the fraction of days 225 

with streamflow observations. During 1990–1999, around 280 stations had data for 90% of the period, indicating high data 
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coverage during this decade. However, data availability declined significantly in subsequent years, with only about 200 stations 

retaining 90% data coverage over the entire study period from 1990 to 2019. This decline highlights the challenges of 

maintaining consistent long-term hydrological monitoring. The reduction in available stations and data coverage may be due 

to factors such as station decommissioning, operational challenges, or changes in monitoring priorities. These trends have 230 

important implications for hydrological modelling, as reduced data availability may limit the spatial and temporal robustness 

of hydrological analyses. 

  

Figure 2. Streamflow data availability for all gauges contained in the CAMELS-DK dataset. (a) The distribution of hydrometrical 

stations and adherent catchments, (b) number of stations with full observation time series per year, and (c) the availability of 235 
observed streamflow for different periods shown by the number of stations with percentage of available streamflow. 

3.3 DK-model simulations 

The National Hydrological Model of Denmark (hereafter referred to as DK-model) is an integrated groundwater surface water 

model covering most of the Danish land area of approximately 43,000 km2. It has been continuously developed at the Geologic 

Survey of Denmark and Greenland (GEUS) since the late 1990’s (Henriksen et al., 2019; Højberg et al., 2013; Koch et al., 240 

2021; Schneider et al., 2022; Stisen et al., 2020). It has been used in public consultancy projects, targeting, for example, water 

resource, evaluation of the impact of climate change on the hydrological cycle, or nitrate retention. However, the DK-model 

as a whole or in parts also has been and is being used actively in various national and international research projects, further 

pushing its development (Mahmood et al., 2023; Martinsen et al., 2022; Seidenfaden et al., 2022; Soltani et al., 2021) .. 

The DK-model is setup in the MIKE SHE model code (Abbott et al., 1986; DHI, 2020), which is used to fully couple a 3D 245 

description of subsurface flow to 2D overland flow, a simple two-layer description of the unsaturated zone as well as 1D 

kinematic routing of streamflow. It runs as a transient model at a maximum simulation timestep of 24 hours, and, for the 

historic period covered by this dataset, with daily climate forcing of precipitation, potential evapotranspiration and temperature 
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(as described in section 3.1). In its most recent version, which serves as a basis for the data presented here, it exists at horizontal 

resolutions of both 100 m and 500 m (Henriksen et al., 2021),where we are using results from the 500 m version. (input data, 250 

such as the hydrostratigraphic model, remains at 100 m resolution and is resampled internally by the model). Special attention 

has been paid to the representation of surface and surface-near processes (shallow groundwater). The model has been calibrated 

for the period 2000 to 2010 against 304 timeseries of daily streamflow observations (mostly identical to the ones provided in 

this dataset), and against groundwater head observations from roughly 40,000 intakes distributed across the entire country 

accounting for roughly 700,000 individual observations (some intakes provide single measurements, others timeseries of 255 

measurements).. The most significant anthropogenic impacts are accounted for in the model: Groundwater extraction for 

domestic and industrial water use is included, using data on annual average extractions from waterworks in the national well 

database Jupiter (National well database, 2024). Groundwater extraction for irrigation in agriculture, which occurs 

predominantly in the western parts of Denmark, is accounted for based on dynamic calculations of soil water deficit in MIKE 

SHE (Danapour et al., 2021). Where sewage plants streamflowdischarge their outflow into streams, these are included as point 260 

sources in the stream network, based on yearly averages. As roughly half of the agricultural land in Denmark is artificially 

drained, saturated zone drainage is included (Møller et al., 2018).(Møller et al., 2018b). Due to the coarse grid resolution and 

the related inability to represent the drainage infrastructure explicitly as well as the effects of microtopography, and other 

aspects such as urban sewer systems acting as further drainage, the DK-model includes drainage across most of Denmark. It 

is parameterized using drain depths and time constants distributed based on the BASEMAP land use map. Generated drain 265 

flow is routed to the river network. 

Due to its nature, the DK-model simulates the hydrological cycle in an integrated manner, allowing to retrieve information 

about various compartments from its results. With hydrological processes in Denmark in general, and streamflow in particular, 

being strongly groundwater-dependent (Duque et al., 2023), we provide, amongst others, groundwater related variables from 

the DK-model simulations. We could previously show that data-driven methods for streamflow estimation benefit from 270 

information contained in simulated groundwater levels across Denmark (Liu et al., 2023a). Hence, for the CAMELS-DK 

dataset, we provide a set of simulation results from the DK-model at daily timesteps (Table 1). Those include: (1) The simulated 

streamflow at the outlet of each ID15 catchment. (2) The water content in the root zone of the two-layer unsaturated zone 

module of MIKE SHE. Due to the simplified description of the unsaturated zone, this accounts for the average water content 

across the entire root zone, where the root depth in the DK-model is variable in space and time dependent on soil type, 275 

vegetation type and season. (3) The same unsaturated zone module also provides actual evapotranspiration. (4) Recharge from 

the unsaturated to the saturated zone accounts for exchange between unsaturated and saturated zone, including bypass flow, 

and exchange between the saturate zone and overland flow or evaporation (when the saturated zone is at the surface). HereWe 

could previously show that data-driven methods for streamflow estimation benefit from information contained in simulated 

groundwater levels across Denmark (Liu et al., 2024). Hence, as part of the CAMELS-DK dataset, we include various 280 

simulation results from the DK-model at daily timesteps with relevance for streamflow (Table 1). For reference, we also 

include the simulated streamflow at the outlet of each ID15 catchment. The other simulation results are aggregated per ID15 
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catchment. From the two-layer unsaturated zone module of MIKE SHE, the water content in the root zone is provided, together 

with simulated actual evapotranspiration and recharge from the unsaturated to the saturated zone. For recharge, positive values 

indicate flow downwards to the saturated zone, whereas negative values indicate upwards flow from the saturated zone, 285 

occurring for example in areas of upwelling groundwater. (5) The simulated exchange between streamflow in rivers and the 

saturated zone gives an indication of the groundwater baseflow contribution to streamflow. Most Danish rivers can be classified 

as predominantly gaining streams. (6) Another important part of the hydrological cycle in Denmark is artificial drainage, which 

we therefore included in the present dataset. Direct groundwater contribution together with flow from saturated zone drainage 

account for most of the streamflow generated in the DK-model. Finally, the state of the groundwater is included by two 290 

variables: The depth to phreatic, which represents the depth below the surface to (7) the uppermost simulated groundwater 

table (which can be a perched groundwater table), as well as (8) the simulated groundwater head in the main deeper aquifer 

(typically in a few tens of metres depth).Furthermore, the simulated exchange between streamflow in rivers and the saturated 

zone gives is provided, as it gives an indication of the groundwater baseflow contribution to streamflow (most Danish rivers 

can be classified as predominantly gaining streams). Another important part of the hydrological cycle in Denmark is artificial 295 

drainage, because roughly half of the Danish agricultural land is artificially drained (Møller et al., 2018a); therefore simulated 

artificial drain is included in the present dataset. Together, direct groundwater contribution to the streams and artificial drain 

account for most of the streamflow generated in the DK-model (Refsgaard et al., 2022). Finally, groundwater state is included 

by two variables: Depth to phreatic representing the depth below the surface to the uppermost simulated groundwater table 

(which can be a perched groundwater table), as well as the simulated groundwater head in the main deeper aquifer (typically 300 

in a few tens of metres depth). The former gives an indication of surface-near interactions between groundwater and surface 

water, reacting more quickly to precipitation events, whereas the latter typically shows a more delayed response to climate. 

3.4 Groundwater abstraction 

Domestic and industrial water supply in Denmark is almost exclusively covered by groundwater. Data on groundwater 

abstraction from water works are reported to the national well database Jupiter (Hansen and Pjetursson, 2011), as aggregated 305 

yearly values per well or well field. Those data are used as input to the DK-model and are also provided  as part of the 

CAMELS-DK dataset. Due to the close coupling between surface and subsurface processes in Denmark, groundwater 

extraction locally impacts streamflow, as for example acknowledged in national water resources assessments (Henriksen et 

al., 2008, 2023). 

4 Catchment attributes 310 

4.1 Location and topography 

The dataset is organized based on the ID15 catchments (Højberg et al., 2021). All the catchments are identified with an eight-

digit name according to the shapefile. The locations of catchment outlets are provided as longitude and latitude with the 
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projection of WGS 84 / UTM zone 32N (EPSG:32632). Flow direction indicates the downstream catchments, the column was 

filled with –99 for most downstream catchments. The number of upstream catchments and the list of upstream catchment IDs 315 

are also provided. The area of the individual ID15 catchmentscatchment and their entire upstream accumulated area originate 

from the provided shapefile.  Gauge types indicate if the catchment is gauged or ungauged, when ‘True’ indicates that the 

catchment is a gauged catchment, observed and simulated streamflow are available in the dataset and ‘False’ indicates only 

simulated streamflow is available. Details about the observed data, such as the length and the percentage of available observed 

streamflow data during 1989 to 2019, are provided. Catchment topography described using various statistics derived from 320 

elevation and slope are also provided in the attributes table, see Table 2. Please be aware that catchment zonal statistics are 

based on the entire upstream area.  

 

Table 2. Catchment location and topography 

Attribute name  Description type/Unit Data source 

catch_id 
Catchment identifier (eight-digit name of ID15 catchment 

namecatchments) 
 

Højberg et 

al.,(2021) 

catch_outlet_lon Catchment outlet longitude m 

catch_outlet_lat Catchment outlet latitude m 

catch_flow_dir Catchment flow direction  

catch_accum_number 
The total number of upstream accumulated ID15 catchment 

unitscatchments 
 

catch_area Catchment accumulated area m2 

gauged_type 
Boolean values to indicate the catchment is gauged (True) or ungauged 

(False) 
 

 

gauge_record_pct 
If gauged catchment, the time percentage with available observed 

streamflow in the period from 1989-01-02 to 2019-12-31 
% 

elev_min Minimum elevation of the catchment m 

Denmark’s 

Height Model - 

Surface  

elev_median Median elevation of the catchment m 

elev_mean Mean elevation of the catchment m 

elev_max Maximum elevation of the catchment m 

slope_min Minimum slope of the catchment m·km-1 

slope_median Median slope of the catchment m·km-1 

slope_mean Mean slope of the catchment m·km-1 

slope_max Maximum slope of the catchment m·km-1 

pct_flat_area Percentage of catchment area with slope smaller than 3m·km-1 % 

 325 
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4.2 Climate indices  

Climate indices are based on the aforementioned grided datasets of precipitation, temperature, and potential evapotranspiration. 

To provide consistency with previous CAMELS datasets, we compute the same climatic indices for all catchments in 

CAMELS-DK as Addor et al. (2017) based on the script provided by Hao et al.. ( 2021), such as the mean value of daily 

precipitation, seasonality, and frequency. Details of these climate indices are listed in Table 3. Climatic indices in CAMELS-330 

DK are calculated based on the time series from 1989 to 2019, which is consistent with the availability of observed discharge 

.  

 

Table 3. Climate indices 

Attribute Description Unit 

p_mean Mean of daily precipitation mm·d-1 

t_mean Mean of daily temperature ◦C 

pet_mean Mean of daily potential evapotranspiration mm·d-1 

aridity aridity (ratio of mean PET to mean precipitation) - 

p_seasonality 

seasonality and timing of precipitation (estimated using sine curves to represent the 

annual temperature and precipitation cycles; positive (negative) values indicate that 

precipitation peaks in summer (winter); values close to 0 indicate uniform precipitation 

throughout the year) - 

frac_snow fraction of precipitation falling as snow (i.e., on days colder than 0 ◦C) % 

high_prec_freq frequency of high precipitation days (≥5 times mean daily precipitation) d·yr-1 

high_prec_dur 

average duration of high precipitation events (number of consecutive days ≥5 times 

mean daily precipitation) d 

high_prec_timing 

season during which most high precipitation days (≥5 times mean daily precipitation) 

occur season 

low_prec_freq frequency of dry days (< 1 mm·d-1) d·yr-1 

low_prec_dur average duration of dry periods (number of consecutive days < 1 mm·d-1) d 

low_prec_timing season during which most dry days (< 1 mm·d-1) occur season 

 335 

4.3 Streamflow signatures 

Hydrologic signatures are derived from the observed daily streamflow at 304 hydrological stations and the DK-model-

simulated streamflow at the outlets of 2,942 catchments (388 catchments have no simulated river flows) during 1989 to 2019. 

The signatures are calculated using a MATLAB toolbox called TOSSH (A Toolbox for Streamflow Signatures in Hydrology), 

developed by Gnann et al. ( 2021). TOSSH provides basic signatures such as magnitude, frequency, duration, timing, and rate 340 

of change of a natural streamflow regime, as well as signatures from benchmark papers, including those used by Addor et al . 

(2017), and an extended set of process-based signatures.  

We calculated 13 hydrological signatures presented by Addor et al. (2017) using TOSSH, ensuring consistency with other 

CAMELS datasets (e.g., Alvarez-Garreton et al., 2018; Chagas et al., 2020; Höge et al., 2023). These signatures are listed in 
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Table 4. Additionally, we provide process-based signatures calculated with TOSSH, including groundwater and overland flow 345 

signatures defined by McMillan (2020), see Appendix A. The groundwater signatures characterize groundwater storage, 

groundwater dynamics, and baseflow, while the overland flow signatures reflect infiltration excess and saturation excess in 

overland flow.   

  

Table 4. Hydrographical signatures based on observed and simulated streamflow.  350 

Attribute Description Unit 

q_mean mean daily streamflow mm·d-1 

TotalRR total runoff ratio (runoff divided by the precipitation)   

QP_elasticity 
streamflow precipitation elasticity (sensitivity of streamflow to changes in precipitation at the 

annual timescale, using the mean daily streamflow as reference) 
  

FDC_slope 
slope of the flow duration curve (between the log- transformed 33rd and 66th streamflow 

percentiles) 
  

BFI 
baseflow index (ratio of mean daily baseflow to mean daily streamflow, hydrograph separation 

performed using the Ladson et al., 2013 digital filter 
  

HFD_mean 
mean half-flow date (date on which the cumulative streamflow since October reaches half of the 

annual streamflow) day of year 

Q5 5% flow quantile (low flow mm·d-1 

Q95 95% flow quantile (high flow mm·d-1 

high_Q_frequency frequency of high-flow days (> 9 times the median daily flow   

high_Q_duration 
average duration of high-flow events (number of con- secutive days > 9 times the median daily 

flow 
d 

low_Q_frequency frequency of low-flow days (< 0.2 times the mean daily flow   

low_Q_duration average duration of low-flow events (number of consec- utive days < 0.2 times the mean daily flow d 

zero_Q_frequency frequency of days with Q=0   

 

4.4 Land use and land cover 

We provide both national and continental data sources for land use and land cover (LULC). The LULC attributes are derived 

from two datasets: the CORINE Land Cover (CLC) from the European Copernicus program (Büttner et al., 2004) and 

Basemap04 developed by Aarhus University (Levin, 2022). CAMELS-DK calculates the catchment-scale percentage of key 355 

LULC classes. The aggregated areal percentages of five land cover types are provided for all catchments, including the 

percentages of forest, crops, water, urban areas, and wetlands (Table 5).  

The CORINE Land Cover (CLC) product offers a pan-European land cover and land use inventory with 44 thematic classes, 

ranging from broad forested areas to individual vineyards (Büttner et al., 2004). The product is updated every six years with 

new status and change layers for 1990, 2000, 2006, 2012, and 2018. The dataset is based on multiple satellite data sources, 360 

such as Landsat, SPOT-4/5, RapidEye, and Sentinel-2. The geometric accuracy of the CLC data is 100 meters for the first 

dataset released in 1990, with accuracy improving to better than 100 meters in subsequent years. Basemap04 provides four 

maps of LULC representing the years 2011, 2016, 2018, and 2021, with a spatial resolution of 10 meters. The dataset combines 
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existing thematic geographic information, such as census mapping of state forests, maps of protected habitats, agricultural 

field parcel maps, and cadastre maps (Levin, 2022).  365 

 

Table 5. Land use attributes. 

Attribute Description Years Unit Data source 

pct_ forest_corine_yyyy Percentage of agricultural area 

1990, 2000, 2006, 2012, 

2018 

% 

 CORINE Land Cover (2024)  

CORINE Land Cover (2024)  

pct_ crop_corine_yyyy Percentage of grass and herb vegetation area % 

pct_ water_corine_yyyy Percentage of medium-scale vegetation area % 

pct_ urban_corine_yyyy Percentage of deciduous forest area % 

pct_ wetlands_corine_yyyy Percentage of mixed forest area % 

pct_forest_levin_yyyy Percentage of forest area 

 2011, 2016, 2018, 2021 

% 

Levin (2022) 

pct_ crop_levin_yyyy Percentage of agricultural area % 

pct_ water_levin_yyyy Percentage of lake and stream area % 

pct_ urban_levin_yyyy Percentage of urban area % 

pct_ naturewet_levin_yyyy 
Percentage of natural area (wet, agriculture, 

extensive) 
% 

pct_ naturedry_levin_yyyy 
Percentage of natural area (dry, agriculture, 

extensive) 
% 

 

4.5 Soil types 

Physical soil properties were derived from national and continental data sources. For the former, catchment average soil texture 370 

was derived for four soil layers, i.e., 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm at ~30 m spatial resolution. The 

Danish dataset by Adhikari et al. (2013) is based on a regression model using field data for 1958 soil profiles and 17 

environmental covariates. In addition, catchment average soil physical properties were derived from the European Soil Data 

Centre (ESDAC) and the dataset of 3D Soil Hydraulic Database of Europe at 1 km and 250 m resolution. (Hiederer, 2013b, a; Tóth et 

al., 2017). A broader set of variables was processed, including rooting depth, saturated hydraulic conductivity, among others. 375 

Soil maps of ESDAC are at 1000 m spatial resolution and are based on data from the European Soil Database in combination 

with data from the Harmonized World Soil Database (HWSD) and Soil-Terrain Database (SOTER). Several hydraulic 

parameters from the 3D Soil Hydraulic Database of Europe, available at 1 km and 250 m resolutions, are included in CAMELS-

DK, such as water content at field capacity and saturated hydraulic conductivity (Table 6).  

 380 

Table 6. Catchment attributes of soil types. 

Attribute Description Unit Data source 
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pct_sand Sand content %   

 

 

Hiederer (2013a, b) 

pct_silt Silt content %  

pct_clay Clay content %  

pct_organic Organic carbon content %  

bulk_density Bulk density g·cm-3 

tawc Total available water content (from PTR) mm 

pct_gravel Coarse Fragments % 

root_depth depth available for roots m 

FC water content at field capacity cm3·cm-3 

Tóth et al. (2017) 

HCC hydraulic conductivity curve log10 [cm·d-1] 

KS saturated hydraulic conductivity log10[cm·d-1] 

MRC moisture retention curve cm3·cm-3 

THS Saturated water content cm3·cm-3 

WP water content at wilting point cm3·cm-3 

pct_claynor_30 Clay percentage in layer depth of 0-30cm %   

 

 

Adhikari et al.(2013) 

pct_ claynor_60 Clay percentage in layer depth of 30-60cm %  

pct_ claynor_100 Clay percentage in layer depth of 60-100cm %  

pct_ claynor_200 Clay percentage in layer depth of 100-200cm %  

pct_ fsandno_30 Fine sand percentage in layer depth of 0-30cm %  

pct_ fsandno_60 Fine sand percentage in layer depth of 30-60cm %  

pct_ fsandno_100 Fine sand percentage in layer depth of 60-100cm %  

pct_ fsandno_200 Fine sand percentage in layer depth of 100-200cm %  

pct_ gsandno_30 Coarse sand percentage in layer depth of 0-30cm %  

pct_ gsandno_60 Coarse sand percentage in layer depth of 30-60cm %  

pct_ gsandno_100 Coarse sand percentage in layer depth of 60-100cm %  

pct_ gsandno_200 Coarse sand percentage in layer depth of 100-200cm % 

 

4.6 Hydrogeology and geology 

Hydrogeological features were obtained from the 3D hydrogeological model implemented in the DK-Model (Stisen 2019). 

The model is based on a layer structure, with in total of up to 28 hydrostratigraphical layers that have been modelled based on 385 

borehole data and subsurface geophysics. The layers delineate the occurrence of, i.e., quaternary, pre-quaternary sand and clay 

as well as limestone. The bottom and top of the hydrostratigraphical layers are mapped on a 100 m grid and five key variables 

were compiled for the CAMELS-DK dataset: (1) Depth to chalk specifies the vertical distance from terrain to chalk. (2) 

Thickness of the uppermost aquifer accumulates quaternary sand layers that are not intermittent by clay layers thicker than 1 
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m. (3) Depth to uppermost aquifer specifies the vertical distance from terrain to the top of the uppermost quaternary sand layer 390 

thicker than 1 m. 4) Thickness of uppermost clay specifies the accumulated quaternary clay layers from terrain until a sand 

layer thicker than 1 m is present. 5)  Thickness of uppermost sand specifies the accumulated quaternary sand layers from 

terrain until a clay layer thicker than 1 m is present. All variables are stated in meters and the catchment average has been 

calculated for the CAMELS-DK dataset (Table 7). The hydrostratigraphical model for the island Bornholm is developed 

separately from the rest of Denmark. Bornholm’s geology is significantly different with Pre-Cambrian granite-gneisses and 395 

Cambrian sandstones. Available data are interpreted to build a 3D voxel model for the island. Due to these differences, the 

five hydrogeological features are not available for Bornholm. Moreover, the 14 classes of the surface geology map of Denmark 

(Pedersen et al., 2011a) were processed as catchment percentages.      

 

Table 7. Catchment attributes of hydrogeologic and geologic features. 400 

Attribute Description Unit Data source 

chalk_d Depth to chalk  m 

Stisen et al. (2020) 

and Ondracek 

(2023) 

uaquifer_t Thickness of uppermost aquifer  m 

uaquifer_d Depth to uppermost aquifer m 

uclay_t Thickness of uppermost clay m 

usand_t Thickness of uppermost sand m 

pct_aeolain_sand Percentage of aeolian sand, including dunes and cover sands % 

Pedersen et al. (2011a, 

b) 

pct_water_deposit Percentage of freshwater deposits % 

pct_marsh Percentage of marsh, alternating tin  % 

pct_marine_sand Percentage of Marine sand and clay % 

pct_beach Percentage of Beach ridges % 

pct_sandy_till Percentage of Sandy and gravelly till % 

pct_till Percentage of till, clay and fine-sandy % 

pct_glaf_sand Percentage of glaciofluvial sand and gravel % 

pct_glal_clay Percentage of glaciolacustrine laminated clay, silt and fine sand % 

pct_down_sand Percentage of downwash sandy deposits % 

pct_glam_clay Percentage of glaciomarine clay, silt and sand % 

 

5 Data Discussion 

5.1 Regional variability in catchment attributes 

Denmark has a gentle topography with many regions at a mean elevation lower than 50 m and low slopes (Fig. 3a, b). Across 

central Jutland, a ridge is located with elevations reaching up to about 170 m.  This ridge, together with the prevailing westerly 405 

Field Code Changed

Formatted: Danish

Formatted: Danish

Field Code Changed

Formatted: Danish

Formatted: Danish

Formatted: Danish

Field Code Changed



 

18 

 

winds, is responsible for the regional precipitation patterns with higher precipitation in western Jutland, and lower precipitation 

in the more eastern parts of the country (Fig. 3c).  Another important factor controlling hydrology across Denmark is the soil 

type: soils are most clayey in eastern Denmark, central and northwestern Jutland (Fig. 3d), and least clayey (mostly sandy) in 

western Jutland. Higher percentage of clay soil generally relates to lower hydraulic conductivities in the topsoil, leading to 

higher groundwater levels and more artificial drainage. It also leads to larger amount of water available for evapotranspiration 410 

and lower runoff. In contrast, the thickness of uppermost sand is high in West Jutland, north Jutland, and Himmerland (Fig. 

3e). The depth to chalk aquifers is high (> 250 m) in northwestern Jutland, central and western Jutland, but lower in North 

Zealand and Djursland with typical depths of around 60 m (Fig. 3f). The temperate climate with precipitation clearly exceeding 

evapotranspiration, low-lying topography, and geology dominated by clay till or sandy meltwater deposits result in high 

groundwater levels and abundant groundwater resources in Denmark.  415 

 

Figure 3. Regional distributions of (a) mean elevation, (b) slope, (c) mean daily precipitation, (d) Clay percentage in layer depth of 

0-30cm, (e) depth of chalk, and (f) Thickness of uppermost sand in geo-regions (NJ: North Jutland, NwJ: northwestern Jutland, HL: 

Himmerland, DL: Djursland, NZ: North Zealand, CJ: Central Jutland, WJ: Western Jutland, and ED: East Denmark).  

 420 

5.2 Surface water dynamics 

CAMELS-DK provides observed streamflow data from 304 hydrological stations and simulated streamflow data for 2,942 

catchments. However, 388 catchments lack observed or simulated streamflow data because they are located upstream or in 

coastal areas without distinct land surface river channels. The simulated streamflow is based on the DK-model, which was 

calibrated using observed streamflow data from the period 2000-2010, see section 3.3. Fig. 4 shows the Sutcliffe and Kling-425 
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Gupta efficiency (KGE) and Nash–Sutcliffe model efficiency coefficient (NSE) for the DK-model's simulated hydrography, 

referenced against observations from 1990-1999. The mean NSE is 0.46, and the median value is 0.64. The mean KGE is 0.64, 

and the median value is 0.69, indicating that the simulated streamflow is satisfactory at many stations, with the simulations 

and observations showing temporal coherence and consistency.  

The DK-Model performs well at the national scale but has challenges in central and northern regions. These challenges arise 430 

from factors such as geological complexity, insufficient regional parameterization, and limitations in data quality and station 

coverage over time. Simulations show reduced performance under high-flow and low-flow conditions, as evidenced by lower 

NSE values in northern Zealand and central and northern Jutland (Fig. 4). The deteriorated performance in regions like central 

and northern Jutland is attributed to significant geological variability and limited experience with newer parameterization 

approaches. Smaller stations also tend to exhibit lower performance compared to larger ones, likely due to their sensitivity to 435 

geological complexity and inadequate parameter regionalization for drainage flows. More details on the DK-Model's 

performance, including its strengths and limitations, can be found in Stisen et al. (2020). To address these limitations, recent 

advancements such as deep learning methods and hybrid modeling schemes have been explored to enhance streamflow 

forecasting (Liu et al., 2023a).To address these limitations, recent advancements such as deep learning methods and hybrid 

modelling schemes have been explored to enhance streamflow forecasting (Liu et al., 2024). Furthermore, the DK-Model's 440 

performance in ungauged catchments remains insufficiently validated, largely due to the computational demands of model 

calibration. 

 

 

 445 

Figure 4. The performance of DK-model simulated streamflow at 304 hydrological stations. (a) spatial distribution of Nash–Sutcliffe 

model efficiency coefficient, (b) spatial distribution of the Kling–Gupta efficiency (KGE), and (c) histogram of NSE and KGE.  
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 450 

Figure 5. Spatial distribution of (a) Baseflow index, (b) Streamflow-precipitation elasticity, and (c) Slope of the flow duration curve. 

 

Groundwater and surface water are closely linked in Denmark (Duque et al., 2023). Fig. 5 presents three hydrographic 

signatures derived from DK-model simulations: Baseflow Index (BFI), Streamflow-Precipitation Elasticity (QP-elasticity), 

and the Slope of the Flow Duration Curve (FDC_slope). BFI represents the proportion of streamflow that occurs as baseflow. 455 

The value is higher in Himmerland, Djursland, and central Jutland, indicating that a significant portion of the streamflow 

comes from groundwater seepage (Fig. 5a). The groundwater levels are lower in these areas, resulting in the slow and steady 

release of groundwater into the streams, thereby exhibiting more stable flow conditions throughout the year. Groundwater 

buffers against short-term variations in precipitation in these areas. QP-elasticity indicates the sensitivity of streamflow to 

changes in precipitation, which is low in central Jutland and high in eastern Denmark. This suggests significant regulation of  460 
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streamflow by groundwater. The FDC_slope also shows higher values in eastern Denmark, indicating a highly variable stream 

flow that is largely due to the quick runoff of rainfall into the stream (Fig. 5c). 

  

Figure 6. Climatology of precipitation, observed streamflow, and DK-model simulated shallow groundwater levels in (a) Storå 

River (the largest river in West Jutland), and (b) Suså River (the largest in East Denmark).  465 

Groundwater – surface water interaction is significant at temporal scales as well. Fig. 6 shows the climatology (1990 - 2019) 

of precipitation, observed streamflow and depth to phreatic layers in Storå River (largest river in Western Jutland) and Suså 

River (largest river in East Denmark), close to each of their outlets. Climatology is calculated by averaging time series values 

for the same day of the year across 1990-2019. The spatial variability of precipitation is relatively small, and the seasonality 

is similar across Denmark. The two examples shown in Fig.6 have a comparable amplitude of precipitation during the year 470 

with highest precipitation occurring during the fall and winter months, and lowest precipitation during spring. Streamflow, 

though, has a more pronounced seasonality, due to higher evapotranspiration during summer, leading to lower runoff 

coefficients. Even in the climatology, the peaky streamflow response of the sandier Storå catchment becomes apparent, 

compared to the more clayey Suså catchment. Moreover, summer baseflow in the Storå catchment is higher than in the Suså 

catchment (see also BFI in Fig. 5a, and clay percentage in Fig. 3d), which again is due to the better connectivity between 475 

(shallow and deep) groundwater and rivers due to the more sandy/higher conductivity subsurface conditions in large parts of 

Western Jutland. Linked to similar processes, differences in groundwater dynamics can be seen, with the Storå catchment 

exhibiting lower groundwater tables, but higher seasonal amplitudes of the two example catchments. The steady decline of 

groundwater levels during the summer months is due to elevated levels of evapotranspiration, limiting groundwater recharge 

during that time. Groundwater recharge typically starts again around the beginning of September, and streamflow levels follow 480 

closely and begin to rise from summer baseflow conditions around the same time. 
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5.3 Groundwater dynamics 

Groundwater supplies nearly 100 percent of Danish domestic and industrial water use. Groundwater monitoring and modelling 

are thus important for sustainable water management in Denmark. Fig.7 shows catchment-aggregated variables from DK-485 

model simulations, such as depth to phreatic layers (Fig. 7a), groundwater extraction for irrigation (Fig. 7b), and reported 

groundwater abstractions (Fig. 7c) from waterworks. The spatial pattern of phreatic depth shows the groundwater level is 

highest in eastern and southern Denmark, and lowest in northern Denmark. In some catchments located in Himmerland and 

central Jutland, the average phreatic depth is around 15 meters below land surface (Fig. 7a). An example of the time series of 

phreatic depth in a catchment in Himmerland shows an annual amplitude of approximately 5 meters. The groundwater table is 490 

higher in winter and lower in summer, which aligns with the seasonal variations in precipitation and evapotranspiration. 

Precipitation deficits can reduce the amplitude of phreatic depth, especially during winter months such as in 1996. Catchments 

with more shallow groundwater depths show typically smaller yearly amplitudes. Groundwater extraction for domestic and 

industrial water supply is based on yearly data from the national well database Jupiter (National well database, 2024). 

Groundwater abstraction for irrigation is only available in Jutland since there is no significant irrigation activity in the other 495 

parts of Denmark. Irrigation is provided as determined dynamically, demand-based by the DK-model. 

  

Figure 7. Groundwater dynamics, abstraction, and groundwater abstraction for irrigation based on CAMELS-DK. The left 

column illustrates example time series data from a catchment in North Jutland (catch_id = 37220013), while the right column 
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presents a map of time-averaged values for all basins. From top to bottom, the rows represent: (a) depth to the phreatic surface, 500 
(b) catchment-wide groundwater abstraction with corresponding annual time series, and (c) catchment-wide groundwater 

abstraction specifically for irrigation purposes.  

6 Dataset structure 

The CAMELS-DK dataset is available at https://doi.org/10.22008/FK2/AZXSYP (Koch et al., 2024)., data description in file 

‘Data_description.pdf’ details the structure of the dataset. There are four folders after download and unzipping the dataset. 505 

Landscape attributes including climate indices, topography, hydrological signatures, land use, soil characteristics, and 

hydrogeological features are saved in a folder named ‘Attributes’. These static attributes are saved in CSV files, where the 

index is the 8-digital identifier, and the columns are the names of variables (see TableTables 2-5). Timeseries of climate data, 

observed streamflow, DK-model simulated variables, such as depth to phreatic layers, average soil water content, and actual 

evapotranspiration, and observed yearly groundwater abstractions are available in the folder ‘Dynamics’. The timeseries data 510 

is saved separately for gauged and ungauged catchments. The shapefileshapefiles of catchmentscatchment boundaries, location 

and the geo-regions of Denmark are provided in a folder named ‘Shapefile’. The Python script of processing the time series 

and landscape attributes based on original datasets are provided in a folder named ‘Python’.  

7 Conclusion 

We providedpresent an updated version of CAMELS-DK, which involves variousincludes extensive hydrometeorological 515 

variables and landscape features for 3330 catchments that covers(304 gauged catchments) covering the entirety of Denmark. 

Time series This dataset is designed to support large-scale, data-driven studies, aligning with the research topics addressed by 

other CAMELS-style and LSH datasets. Its development follows established conventions, including daily time series of 

hydrometeorological variables are at daily scale and span over the period from spanning 1989 to 2023. Land , as well as 

catchment landscape attributes such as climate, soil type, land use/cover/use are from two datasets, and are availablegeology. 520 

This ensures seamless integration with other CAMELS-style datasets for a few years (1990, 2000, 2016, 2011, 2012, 2016, 

2018, 2021), yearlylarge-sample studies.  

What sets CAMELS-DK apart is the inclusion of observed annual groundwater irrigation abstraction data are available in 

Jutland. Shallow and deep groundwater levels are derived from and simulated variables from a process-based hydrological 

model (PBM)—the National HydrologicHydrological Model of Denmark, which plays an important role in hydrological 525 

systems for low-laying catchments.   

The dataset is developed to assist machine learning studies which require large samples for training, testing and validation. 

The dataset includes observed streamflow for 304 catchments. Other observed variables include information on, e.g, 

precipitation and —including simulated discharge, soil water content, and groundwater head. These additional dynamic 

variables, particularly the groundwater abstractions. The simulated variables, such as streamflow,-relevant variables, provide 530 
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valuable insights for surface water modelling, despite being based on simulations, as they reflect the close interactions between 

groundwater levels, and irrigation have high accuracy in many regions of and surface water in many Danish catchments. We 

anticipate that this addition of PBM simulations will not only enhance data-driven model performance for surface water 

modelling in Denmark, which will benefitbut also benchmark and facilitate the development of physicalphysics-informed 

machine learningML algorithms., transfer learning approaches, and hybrid modelling frameworks. We provide detailed 535 

instructions on how to access the source data, as we are not allowedpermitted to share themit directly with CAMELS-DK. In 

caseFor users wantwho wish to calculate the catchment -aggregated variables, Python scripts are included for data processing 

are provided, based on, which can be used to derive spatially aggregated time series and attributes were calculated for 3330 

catchments. The dataset follows the FAIR rule and is convenient to use with other CAMELS-like datasets. 

 540 

Appendix 

Appendix A: Additional hydrological signatures  

Attribute Description Unit Reference 

SnowDayRatio Snow day ratio – Euser et al.,  

(2013) RLD Rising limb density 1·d-1 

AC1 Lag-1 autocorrelation – McMillan, (2020) 

for groundwater RR_Seasonality Runoff ratio seasonality – 

EventRR Event runoff ratio – 

StorageFraction Ratio between active and total storage – 

Recession_a_Seasonality Seasonal variations in recession parameters – 
AverageStorage Average storage from average baseflow and storage-discharge relationship – 

Spearmans_rho Non-uniqueness in the storage-discharge relationship – 

EventRR_TotalRR_ratio Ratio between event and total runoff ratio – 
VariabilityIndex Variability index of flow – 

IE_effect Infiltration excess importance – McMillan, (2020) for 

surface water 
IE_thresh 

Infiltration excess threshold location (in a plot of quickflow volume vs. maximum 

intensity) mm·d-1 

IE_thresh_signif 
Infiltration excess threshold significance (in a plot of quickflow volume vs. maximum 

intensity) 
– 

SE_effect Saturation excess importance – 

SE_thresh_signif 
Saturation excess threshold significance (in a plot of quickflow volume vs. total 

precipitation) 
– 

SE_thresh 
Saturation excess threshold location (in a plot of quickflow volume vs. total 

precipitation) 
mm 

SE_slope 
Saturation excess threshold above-threshold slope (in a plot of quickflow volume vs. 

total precipitation) 
– 

Storage_thresh 
Storage/saturation excess threshold location (in a plot of quickflow volume vs. 

antecedent precipitation index + total precipitation) 
mm 

Storage_thresh_signif 
Storage/saturation excess threshold significance (in a plot of quickflow volume vs. 
antecedent precipitation index + total precipitation) 

– 

BaseflowMagnitude Difference between maximum and minimum of annual baseflow regime mm Gnann et al., 

(2021) 
ResponseTime Catchment response time d 

FlashinessIndex Richards-Baker flashiness idex – 

PQ_Curve Slopes and breakpoints in cumulative P-Q regime curve – 
Q_n_day_max n-day maximum streamflow mm·d-1 

Q_skew Skewness of streamflow mm3· d-3 

Q_var Variance of streamflow mm2· d-2 
RecessionK_part Recession constant of early/late (exponential) recessions 1·d-1 

SeasonalTranslation Amplitude ratio and phase shift between seasonal forcing and flow cycles – 

SnowStorage Snow storage derived from cumulative P-Q regime curve mm 

zero_Q_duration Zero flow duration d 
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Q_7_day_min 7-day minimum streamflow mm·d-1 

CoV Coefficient of variation – 

HFI_mean Half flow interval d 

BaseflowRecessionK Exponential recession constant 1·d-1 

 

Appendix B. Comparison of simulated and observed signatures. 

The DK-model has been calibrated jointly against observed streamflow at around 300 hydrological stations; the performance 545 

of DK-model simulated streamflow is satisfactory at many stations (Stisen et al., 2020). Here, we displayed some comparison 

results of signatures derived from DK-model simulated streamflow and the observations. The magnitude of streamflow, such 

as the mean streamflow, between simulated streamflow is aligned with the observations (Fig. B1a). The mean streamflow is 

lower than 5 m3·s-1 at many stations (96%) and 18 stations are in large rivers with a daily average streamflow higher than 5 

m3·s-1. DK-model tends to overestimate the BFI (Fig.B1b), indicating a slightly smoother streamflow hydrograph simulated 550 

by the DK-model. The precipitation elasticity of streamflow, which indicates the sensitivity of streamflow to precipitation, is 

still challenged to be captured accurately by the model (Fig. B1c). The slope of flow duration curves (FDC_slope) quantifies 

the variability of hydrographs. A steep slope indicates a highly variable stream, where flow is primarily driven by the quick 

runoff of rainfall to the stream. The simulated hydrography tends to overestimate the FDC_slope for highly variable s treams 

but underestimate it for less variable streams (Fig. B1d).  555 
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Figure B1. Comparison of observed signatures and DK-model simulated signatures. 

 

Data availability 

All the data provided in this study are freely accessible. The CAMELS-DK dataset is available at GESUthe GEUS Dataverse 560 

under a Creative Commons Zero license at https://doi.org/10.22008/FK2/AZXSYP (Koch et al., 2024). The previous version 

ID15v2.5Since all data is continuously updated by the respective providers, we list the respective sources of the their free 

availability: ID15 catchment shapefile is provided with this dataset, theupdated. The newest version of the shapefile can be 

requested by writing to id15@ecos.au.dk. High resolution DEM data is available here https://dataforsyningen.dk/data/928. The 

gridded climate data is created by the Danish Meteorological Institute (DMI) and downloaded fromthrough DMI Data API 565 

(https://opendatadocs.dmi.govcloud.dk/DMIOpenData). Precipitation has been corrected based on the approach described by 

Stisen et al. (2011), original data without correction or DMI corrections of precipitation are unavailable in this dataset. The 

observed streamflow data can be downloaded from the Danish Environmental Protection Agency (https://mst.dk/erhverv). 

Users should contact for streamflow data from additional stations.overfladevandsdatabasen ODA (https://odaforalle.au.dk/). 
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Simulation results of surface water and groundwater dynamics from Thethe National Hydrological model of Denmark are 570 

available at (https://dennationalehydrologiskemodel.dk/)..  
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