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Abstract. Evapotranspiration (ET) plays a crucial role in the regional water-energy cycle, illustrating intricate interactions 11 

among climate, vegetation and soil. Eddy covariance (EC) technology is a primary method for measuring ET. However, 12 

data gaps commonly result from adverse weather conditions and equipment malfunctions. This study utilizes the full-13 

factorial method to address the ET gaps at 339 sites across multiple global flux networks. The filled ET data are then 14 

compared with three ET products: the Land component of the Fifth Generation of European Reanalysis (EAR5-Land), the 15 

Global Land Evaporation Amsterdam Model (GLEAM), and the Breathing Earth System Simulator (BESS). The results 16 

indicate a high level of consistency between the filled ET data and the three ET products at 264 out of the 339 sites. The 17 

absolute average mean error (|MAE|) is 0.32 mm/d, and the root mean square error (|RMSE|) is 0.92 mm/d. Among the 18 

remaining 75 sites, 49 exhibit better agreement between filled ET and measured ET data than ET products, both in terms 19 

of seasonal variations and numerical ranges. Further verification is required for the reliability of filled ET data at the 20 

remaining 26 sites, due to the limited availability of measured ET data. Overall, the gap-filled ET data from 313 sites (2210 21 

site-years) demonstrate high-quality. These sites exhibit a strong correlation between available energy and turbulent fluxes, 22 

with R2, MAE, and RMSE for different surface types ranging from 0.84 to 0.94, 21.49 to 28.67 W/m², and 28.37 to 36.91 23 

W/m², respectively. The average energy balance closure rate is 0.73, indicating a relatively high degree of closure in the 24 

energy balance. These 313 sites, featuring high-quality filled ET data, can be utilized for ET model validation, ET product 25 

verification, water demand assessment, and other related tasks. The filled ET dataset can be publicly accessed at 26 

https://doi.org/10.57760/sciencedb.11651 (Wang & Jiang, 2024). 27 
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1 Introduction 28 

Evapotranspiration (ET) describes the phase transition of water from liquid to gas at the surface, and plays a central 29 

role in linking the water, energy and carbon cycles (Amani & Shafizadeh-Moghadam, 2023; Zhang et al., 2024). As the 30 

second-largest terrestrial hydrological flux following precipitation, ET returns over 60% of incident precipitation to the 31 

atmosphere and contributes approximately 50% of net surface radiation as latent heat flux (Mu et al., 2011; Rummler et 32 

al., 2019). Tightly integrated with the carbon cycle, ET regulates weather forecasting, agricultural irrigation, and ecosystem 33 

health through the simultaneous control of plant stomatal activities on transpiration and photosynthesis (Aouissi et al., 34 

2016; Graveline et al., 2024; Li et al., 2021). Therefore, long-term and effective observations of ET are crucial for 35 

advancing our understanding of dynamics in water budget, energy balance, and carbon cycle (Valentín et al., 2023; Zheng 36 

et al., 2023).  37 

Although a plethora of ET products has been developed, each is grounded in distinct algorithms that include empirical 38 

formulas (Bhattarai et al., 2019; Wan et al., 2015), physical models (Long et al., 2014; Wang & Dickinson, 2012), or 39 

machine learning-based methods (Amani & Shafizadeh-Moghadam, 2023; Granata, 2019). These products address various 40 

parameterized issues such as vegetation cover, soil moisture, and atmospheric conditions (Drexler et al., 2004; Koppa et 41 

al., 2022; Başakın et al., 2023; Allen et al., 2011). Regional and global assessments have unveiled significant disparities 42 

among these ET products (Xiong et al., 2021; Wu et al., 2023; Kim et al., 2021; Qian et al., 2023), highlighting the absence 43 

of a universally accepted standard for precise in ET estimation (Zhang et al., 2016; Li et al., 2018; Xie et al., 2024; Tang 44 

et al., 2024; Zhu et al., 2022b; Polhamus et al., 2013; Nkiaka et al., 2022). Consequently, the integration and utilization of 45 

reliable measured ET data for comparative validation becomes a pivotal step toward enhancing the accuracy and credibility 46 

of ET data for applications related to water cycle and energy balance. 47 

The eddy covariance (EC) method, which quantifies latent heat flux, the energy expression of ET, by determining the 48 

covariance among vertical wind speed, temperature, and water vapor mixing ratio over a designated averaging period, is 49 

considered one of the most direct and dependable techniques for flux measurement (Chen et al., 2012). Major global EC 50 

flux networks including FLUXNET, AmeriFlux, OzFlux, EuroFlux, AsiaFlux, and ChinaFlux systematically gather latent 51 

heat flux across more than 1,000 sites characterized by diverse land cover types (Helbig et al., 2021). Nevertheless, the 52 

continuity of these observations is frequently interrupted by several factors including instrument malfunctions, severe 53 

meteorological conditions, and maintenance disruptions. As a result, the complete coverage of ET data obtained from most 54 

flux network sites typically ranges between 65% to 75%, and this issue has been extensively documented (Falge et al., 55 

2001b; Majozi et al., 2017). For instance , at an EC site located on the southeastern United States coastal plain, the average 56 

nighttime data gap rate is 60% (Kunwor et al., 2017). At the Walker Branch Watershed AmeriFlux site, approximately 22% 57 

of the half-hour daytime ET measurements exhibit data gaps (Wilson & Baldocchi, 2001), while this figure rises to 35% at 58 
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the Duke site (Katul et al., 2001), and remains 20% at the Niwot Ridge site (Monson et al., 2002). These data gaps hinder 59 

detection of shifts in ET, precipitation, and land water availability (Morton, 1983), significantly affecting the accuracy of 60 

water resource management and hydrological models (Talib et al., 2024; Wu et al., 2021), also pose challenges for scientists 61 

in precisely assessing the impacts of climate change on the water and carbon cycles (Govender et al., 2022; Novick et al., 62 

2022). 63 

Several methods have been developed to fill gaps in EC measured ET, enabling the acquisition of extended and 64 

continuous observational datasets. These methods mainly include the look-up table (Falge et al., 2001b), the statistical filter 65 

(Jarvis et al., 2004), the marginal distribution sampling (Wutzler et al., 2018), the multivariate analysis (Stauch & Jarvis, 66 

2006), the mean diurnal variation (MDV) (Falge et al., 2001a), the marginal distribution sampling (MDS)(Foltýnová et al., 67 

2020; Yeonuk et al., 2020), and the process-based model (Xing et al., 2008). Although exiting methods offer viable 68 

solutions for filling ET gaps, most lack a robust physical foundation and largely rely on the selection of specific inputs or 69 

possess complex model structures. Furthermore, the required input data for these methods are often difficult to obtain, 70 

which compromises their applicability and reduces their spatiotemporal scalability. For instance, Pastorello et al. (2020) 71 

employed the MDS method to fill gaps in the FLUXNET dataset’s ET observations, based on the assumption that ET 72 

remains consistent under similar meteorological conditions over short intervals (El-Madany et al., 2018). Nonetheless, the 73 

validity of this method may be compromised by sudden shifts in soil moisture, even under stable meteorological conditions 74 

(Alavi et al., 2006). Moreover, the MDS method faces significant uncertainties when addressing long ET gaps (Zhu et al., 75 

2022a), which undermines the overall reliability of the FLUXNET dataset. Given the constraints and drawbacks of these 76 

methods, there exists a notable deficiency in the availability of comprehensive gap-filled ET datasets; to our knowledge, 77 

only one such dataset, published by Winck et al. (2023), has been identified. Recently, Jiang et al. (2022) proposed a full-78 

factorial method based on the physical mechanism of the Penman-Monteith equation, incorporating a full range of 79 

influential factors of the overall ET. The full-factorial method has demonstrated superior logicality and reasonableness in 80 

its underlying mechanisms, surpassing various other gap-filling methods that do not fully incorporate influential ET factors. 81 

Additionally, this approach shows enhanced accuracy in filling gaps on both hourly and daily scales, with a bias range 82 

between 1.9 W/m² and 2.9 W/m², and a root mean square error range between 18.8 W/m² and 25.0 W/m² (Jiang et al., 83 

2022).  84 

Aiming to compile a comprehensive gap-filled ET dataset, we address the ET data gaps using the full-factorial method 85 

across global flux networks, thereby facilitating the acquisition of high-frequency EC time series data for ET. This study 86 

encompasses the following primary objectives: (1) processing of site data from multiple source flux networks; (2) gap-87 

filling of ET at each site with the full-factorial method; and (3) verification and comparative analysis of the filled ET data 88 

against three ET products. 89 
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2 Methodology and data 90 

2.1 Full-factorial method and Gap-Filling schedule 91 

2.1.1 Full-factorial method 92 

The Full-factorial gap-filling method, which was physically based, was implemented using the decoupled model from 93 

the Penman-Monteith equation (Jiang et al., 2022). This method synthesizes various factors, including atmospheric, 94 

vegetation, and soil conditions, to proficiently simulate the intricate mechanisms impacting ET. The gap-filled ET with 95 

this scheme is described as follows: 96 
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where the subscript ‘obs’ refers to observed values, and ‘gap’ indicates the missing data; β* represents the decoupling 106 

coefficient when ET equals the equilibrium evaporation; Δ (kPa/K) is the slope of the air temperature–saturation vapor 107 

pressure relation; 𝛾 (kPa/K) is the psychrometric coefficient; 𝑅𝑛 (W/m2) is the net radiation; 𝐺 (W/m2) is the soil heat flux; 108 

𝑉𝑃𝐷 (kPa) is the vapor pressure deficit of air; 𝑟𝑎 (s/m) is the aerodynamic resistance; 𝑇𝑎 (℃) is the air temperature; 𝑒𝑠  109 

(kPa) is the saturated water vapor pressure; 𝑝 (kg/m3) is the air density; 𝑃 (kPa) is the atmospheric pressure; 𝑅 (kJ/kg·K) 110 

is the ideal gas constant, valued at 0.287; 𝐶𝑝 (kJ/kg·K) is the specific heat capacity of air, valued at 1.004; 𝜀 is the ratio of 111 

the specific heat capacities of moist air to dry air, valued at 0.622; 𝜆 (kJ/kg) is the latent heat of vaporization of water, 112 

valued at 2.45; 𝑘 is the von Kármán constant, valued at 0.41; u (m/s) is the wind speed; 𝑍 (m) is the measurement height 113 

of wind speed (10 m in this study); 𝑑 (m) is the zero-plane displacement height; 𝑧0𝑚 (m) is the roughness length for 114 

momentum transfer; and 𝑧0ℎ (m) is the roughness length for heat transfer. 115 

2.1.2 Gap-Filling schedule 116 

In this study, data on ET and associated meteorological variables from global flux sites are initially reprocessed, 117 

including resampling and quality control, to simultaneously identify the data gaps. Subsequently, reanalysis products are 118 

utilized to fill gaps in the meteorological data from these networks. This step is crucial, as the full-factorial method, which 119 

relies on meteorological variables as input, cannot address ET data gaps when related variables are also incomplete. To 120 

evaluate whether the full-factorial method retains its efficacy in filling ET gaps within datasets that have been filled with 121 

meteorological reanalysis products, specific gaps were randomly created and tested within the measured ET values. Finally, 122 

the full-factorial method was applied to fill these gaps across various sites, and the filled data were compared with three 123 

ET products using diverse evaluation metrics. Sites exhibiting high consistency between the filled data and ET products 124 

were deemed to have high quality filled ET data. For sites with notable discrepancies, the causes were investigated by 125 

analysing the seasonal changes in measured ET, net radiation (Rn), and leaf area index (LAI), alongside the numerical 126 

range of measured ET on a site-specific scale. This analysis aids in further identifying which sites possess high-quality 127 

filled ET data. Additionally, the energy closure ratio and the spatial and temporal distribution of the filled data were  128 

analysed to deepen understanding of their characteristics. Figure 1 illustrates the gap-filling schedule flowchart for this 129 

study. 130 
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 131 

Figure 1: Flowchart of the Gap-Filling schedule. 132 
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2.2 Data 133 

2.2.1 Evapotranspiration observations 134 

ET observations are collected from global flux networks including: AmeriFlux (https://ameriflux.lbl.gov, since 1991, 135 

with 444 sites recording data over periods ranging from 1 to 32 years) (Novick et al., 2018); FLUXNET (https://fluxnet.org, 136 

since 1991, featuring over 1000 active and historical sites with data time series lengths from 1 to 22 years) (Pastorello et 137 

al., 2020); EuroFlux (http://www.europe-fluxdata.eu, since 1996, with 487 sites); OzFlux (https://ozflux.org.au, since 2001, 138 

with 34 sites during from 3 to 22 years) (Beringer et al., 2016); ChinaFlux (http://www.chinaflux.org), National Tibet 139 

Plateau Data Center (TPDC, https://data.tpdc.ac.cn), and the National Cryosphere Desert Data Center (NCDDC, 140 

http://www.ncdc.ac.cn, since 2002, totalling 79 sites with data recording periods from 1 to 23 years) (Pan et al., 2021; Yu 141 

et al., 2006a, b). These networks and data centres constitute a global database that provides high-quality and long-term 142 

observational data. From this resource, we collected half-hourly or daily ET measurements and meteorological data from 143 

212 sites within FLUXNET, 195 sites within AmeriFlux, 172 sites within EuroFlux, 22 sites within OzFlux, and 44 sites 144 

across ChinaFlux, TPDC, and NCDDC. All these details are provided in Supplementary Table 1 (S1).  145 

2.2.2 Meteorological reanalysis data 146 

Meteorological Reanalysis data, including the Land component of the Fifth Generation of European Reanalysis 147 

(ERA5-Land), the Global Land Data Assimilation System (GLDAS), and the Modern-Era Retrospective analysis for 148 

Research and Applications Version 2 (MERRA-2) are utilized for gap filling in meteorological data at various sites.  149 

Meteorological reanalysis data from ERA5-Land, which offers global coverage at an approximately 9-kilometer 150 

resolution with hourly updates, is employed in this study to address missing data in temperature, relative humidity, vapor 151 

pressure deficit, atmospheric pressure, net radiation, and wind speed. Ground heat flux data from the GLDAS are utilized 152 

to address the gaps in ground heat flux data at EC observation sites. The Catchment Land Surface Model (CLSM), a 153 

principal surface models employed by GLDAS, operates with a daily temporal resolution and a spatial resolution of 0.25°. 154 

The GLDAS CLSM V2.0 spans from January 1, 1994, to January 31, 2003, while V2.2 extends from February 1, 2003, to 155 

December 31, 2023, ensuring continuous data coverage from 1994 through 2023. Data from MERRA-2, an advanced 156 

global atmospheric reanalysis project initiated by the National Aeronautics and Space Administration (NASA), includes 157 

the M2T1NXFLX dataset, specifically designed for surface flux data with a spatial resolution of 0.5° × 0.625°. This data 158 

is used to calculate aerodynamic resistance using Z0m data. 159 
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2.2.3 Evapotranspiration products 160 

ET products from the Breathing Earth System Simulator Version 2.0 (BESSv2.0), the Global Land Evaporation 161 

Amsterdam Model (GLEAM), and the ERA5-land are utilized for intercomparison with gap-filled ET. Specially, BESSv2.0 162 

provides ET product with a fine spatial resolution of 0.05° and daily temporal resolution, covering the period from 1982 to 163 

2019. GLEAM v3 consistently maintains high standards in ET flux data accuracy, achieving an average correlation 164 

coefficient ranging between 0.78 and 0.81 against EC measurements. With a spatial resolution of 0.25°, it spans from 1980 165 

to 2022 and provides ET on daily, monthly, and annual time scales. ERA5-Land delivers ET products at a spatial resolution 166 

of 9 kilometres and an hourly temporal resolution. 167 

3 Data preprocessing and gap-filling evaluation 168 

3.1 Data preprocessing 169 

3.1.1 Evapotranspiration observations processing 170 

In this study, the processing of ET observations involves data resampling, data fusion, and quality control. ET data 171 

from the EuroFlux, OzFlux, ChinaFLUX, TPDC and NCDDC sites are initially provided on a half-hourly scale. The same 172 

averaging resampling method is applied to resample these data to a daily scale, contingent upon the availability of all 48 173 

half-hourly records within a day. As some sites appear repeatedly across multiple flux networks with varying data length, 174 

data fusion is performed to consolidate these sites. Ultimately, we compiled data from 339 sites with daily measured ET 175 

and associated meteorological variables. Table S1 in the Supplementary Information details the geographic coordinates, 176 

land-cover types (MODIS IGBP) and temporal coverage of these 339 sites. These sites are categorized into various 177 

vegetation types as follows: 138 forest sites (DBF/DNF/EBF/ENF/MF); 33 shrubland sites (CSH/OSH); 87 grass sites 178 

(GRA/SAV/WSA); 46 crop sites (CRO/CVM); 29 wetland sites (WET); and 6 sites of other types (BAR/SNO/URB/WAT). 179 

Figure 2 illustrates the geographic distribution of these sites. 180 
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 181 

Figure 2: Distribution of global flux sites by IGBP classification and their data time span. 182 

We performed quality control on observation data from 339 sites, ensuring that variable values fell within reasonable 183 

numerical ranges (as detailed in Table 1), and then assessed the extent of data missingness for each variable (as depicted 184 

in Figure 3). The figure reveals that the average gap percentage for air temperature (TA) is the lowest, at approximately 185 

20%, while for vapor pressure deficit (VPD), it is the highest, exceeding 60%. Relative humidity (RH), atmospheric 186 

pressure (PA), and wind speed (WS) have similar average gap percentages of around 30%. The average gap percentage for 187 

ground heat flux (G) is approximately 40%, and for net radiation (Rn), it exceeds 50%. Similarly, the proportion of gaps 188 

in the ET observations is also very high, reaching 50%. These findings underscore the importance of addressing gaps in 189 

ET and other variables in EC measurements. 190 
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Table 1: Standards for data quality control  191 

Variables Min value Max value Unit 

TA -50 50 ℃ 

PA 70 110 kPa 

WS 0 20 m/s 

RH 0 100 % 

VPD 0 5 kPa 

Rn -100 700 W·m-2 

G -100 200 W·m-2 

ET -100 700 W·m-2 

 192 

Figure 3: Average percentage of data gaps for ET and other meteorological variables. 193 

3.1.2 Gap-filling of Meteorological data 194 

Table S2 outlines the methods for calculating meteorological variables from reanalysis product data. To verify the 195 

accuracy of the reanalysis products, we randomly sampled 10% of the site's measurement data for comparison, as depicted 196 

in Figure 4. The result indicate a high degree of consistency between the measured data for TA, RH, VPD, PA, and Rn and 197 

the calculations based on reanalysis products, with an average coefficient of determination (R²) of 0.92. The R2 values for 198 

WS, and G are relatively lower, at 0.6 and 0.53 respectively. Nonetheless, the overall accuracy remains relatively high, 199 

with the mean absolute error (MAE) and root mean square error (RMSE) between WS and the measurements being 1.02 200 

m·s⁻¹ and 1.37 m·s⁻¹, respectively, and between G and the measurements being 7.84 W/m² and 11.93 W/m², respectively. 201 

This indicates good accuracy, confirming that and the three reanalysis products were effectively used to fill the gaps in the 202 

meteorological observations at the site scale. 203 
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 204 

Figure 4: Accuracy evaluation of meteorological reanalysis product. 205 

Table 2: Variable information of three meteorological reanalysis products 206 

Products Variables Descriptions 

ERA5-Land 

temperature_2m Temperature of air at 2m  

dewpoint_temperature_2m Dewpoint temperature at 2m  

surface_pressure Pressure of the atmosphere. 

surface_net_solar_radiation_sum Net solar radiation at the surface 

surface_net_thermal_radiation_sum Net thermal radiation at the surface 

u_component_of_wind_10m Eastward component of the 10m wind. 

v_component_of_wind_10m Northward component of the 10m wind. 

GLDAS-CLSM Qg_tavg Ground heat flux 

MERRA-2 M2T1NXFLX Z0m Surface roughness 

3.2 Evaluation of the Gap-filling schedule 207 

3.2.1 Modification of the Gap-filling method 208 

To ensure the accuracy of the filled ET partially supplemented with meteorological reanalysis products, we randomly 209 

retained 10% of the actual ET measurements at each site, and then artificially created a 50% gap within this subset to 210 
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validate the full-factorial method, as depicted in Figure 5. The analysis identified outliers in the filled ET, primarily caused 211 

by instances where the observed net radiation minus ground heat flux corresponding to some of the measured ET are close 212 

to zero. These instances result in abnormal ratios of 
(𝑅𝑛−𝐺)𝑔𝑎𝑝

(𝑅𝑛−𝐺)𝑜𝑏𝑠
, thereby affecting the filled ET. Additionally, Figure 5 213 

illustrates the validation results of the filled ET data within the 5% to 95% range, demonstrating that the full-factorial 214 

method achieves high accuracy in the absence of outliers, with MAE, RMSE, and R² values of 10.95 W/m², 17.36 W/m², 215 

and 0.86, respectively. To mitigate the impact of anomalous data, the gap-filling method was modified to leverage the 216 

median. For each ET gap, all measured ET values and corresponding meteorological variables within the site are considered 217 

in the calculation, and the median of all results is used to fill this gap, as outlined in Equation 10. 218 

 219 
Figure 5: Validation of filled ET using the full-factorial method based on meteorological data gap-filled from reanalysis products. 220 
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where gap ET  is the median of all calculated 𝐸𝑇𝑔𝑎𝑝, 𝐸𝑇𝑜𝑏𝑠𝑖
 is the i-th measurement of ET, and 𝑀𝑒𝑑𝑖𝑎𝑛{. . . } means taking 222 

the median. 223 

ET observations from sites featuring diverse land cover types were filtered before a 50% data gap was randomly 224 

introduced. The comparison of the gap-filled results with corresponding observations is shown in Figure 6. Across diverse 225 

land cover types, the modified method exhibited high precision, with MAE of 6.02~10.87 W/m², RMSE of 13.79~24.60 226 

W/m², and R2 of 0.84~0.96 for the gap-filled ET compared to the observed ET. 227 
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 228 
Figure 6: Validation of the filled ET using the modified full-factorial method at diverse land cover types. 229 

3.2.2 Evaluation of gap-filled evapotranspiration 230 

We selected several metrics for evaluating the gap-filled ET, including Mean Error (ME), Relative Mean Error (RME), 231 

Root Mean Squared Error (RMSE), Relative Root Mean Squared Error (RRMSE), Correlation Coefficient (R), and Taylor 232 

Score (TS). The closer the values of ME, RME, RMSE, and RRMSE are to 0, the smaller the deviation between the ET 233 

product and the filled ET; conversely, higher values of R and TS indicate the greater consistency (Eqs.11-18) (Elnashar et 234 

al., 2021). We ranked and scored the outcomes of these evaluation metrics based on a comparison between the filled ET 235 

and the ET products at each site. The scores for each metric from each site were then aggregated to compute the total score. 236 

Subsequently, the total scores for each site (Z_Score) were normalized to analyse the consistency and deviation between 237 

the filled ET and ET products. Additionally, we assessed the energy closure condition of the filled ET data using the Energy 238 

Balance Ratio (EBR).239 
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where 𝑛 is the number of data; 𝑖 is the 𝑖th filled data; 𝑋 is the filled ET data; 𝑌 is the data from the ET product, and SD is 248 

the standard deviation. 𝑅0 is the maximum theoretical 𝑅 value (0.9976) (Taylor, 2001). 𝑆𝑐𝑜𝑟𝑒 is the sum of the rankings 249 

of all metrics for each site; 𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑛 is the minimum scores; 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 is the maximum scores. LE (W/m²) is the latent 250 

heat flux; and H (W/m²) is the sensible heat flux. 251 

4 Results 252 

4.1 Overall evaluation from comparison between gap-filled ET and ET products 253 

Table 3 presents the evaluation metrics from the overall comparison between filled ET and ET products. 254 

Approximately 80% of sites have total score (Z_Score) values within the range of [0, 0.6). At these sites, the average |ME| 255 
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of the filled ET compared to three ET products is 0.32 mm/d, the average |RMSE| is 0.92 mm/d, and the average R is 0.79. 256 

This indicates a high consistency between the filled ET data and the three ET products at the majority of sites.  257 

For the 75 sites with Z_Score values in the range of [0.6, 1], the differences between the filled ET data and the three 258 

ET products are significant, with an average |ME| of 3.07 mm/d, an average |RMSE| of 5.01 mm/d, and an average R of 259 

0.31. To analyse the discrepancies between the filled ET and the three ET products (ERA5-Land, BESS, and GLEAM) at 260 

these sites, the sites were further categorized based on their performance: sites with filled ET values close to the nearby ET 261 

observations, or exhibiting similar trends in time series trends in ET observations, Leaf Area Index (LAI, from MODIS: 262 

MCD15A3H.061), and Rn, were categorized as Better Performance Sites; others were categorized as Uncertain 263 

Performance Sites. 264 

Table 3: Evaluation metrics from the comparison between filled ET and ET products 265 

Z_Score 
|ME|ave 

(mm/d) 

|RME|ave 

(mm/d) 

|RMSE|ave 

(mm/d) 
|RRMSE|ave Rave TSave Number of sites 

[0-0.1) 0.11 7.02 0.78 47.09 0.92 1.31 12 

[0.1-0.2) 0.17 13.16 0.80 59.11 0.89 1.30 26 

[0.2-0.3) 0.26 31.90 0.79 84.86 0.86 1.41 58 

[0.3-0.4) 0.31 37.65 0.91 92.16 0.76 1.33 56 

[0.4-0.5) 0.41 70.91 0.96 144.37 0.67 1.35 59 

[0.5-0.6) 0.64 86.72 1.25 158.58 0.61 1.25 53 

[0.6-0.7) 0.96 170.21 1.62 305.02 0.58 1.13 41 

[0.7-0.8) 1.90 185.60 3.15 275.13 0.61 0.77 15 

[0.8-0.9) 2.03 250.63 3.29 404.25 0.27 0.45 14 

[0.9-1.0] 7.40 259.15 11.97 326.60 -0.23 0.36 5 

 266 

4.2 Better performance of gap-filled ET 267 

4.2.1 Better performance in temporal variations 268 

Compared to three ET products, the filled ET at six of the 75 sites exhibited distinct seasonal variations, as shown in 269 

Figure 7. The filled ET values are essentially equivalent to the nearby measured ET values, and the differences in temporal 270 

variation trends between the filled ET and the ET products differ across various land surface types.   271 

At crop sites (US-DS3, US-RGB, US-Rgo, and DK-Fou), ET observations clearly demonstrate the significant impact 272 

of the crop growth cycle. The filled ET at each site further mirrors the pattern of ET variations associated with crop growth, 273 
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showing higher ET values during the growth period and lower values during the non-growth period. The filled ET also 274 

align with Rn and LAI in their variation trends. Additionally, as these four sites are situated across different latitudinal 275 

zones, the variation in ET underscores the significant impact from climate. For instance, at the US-DS3 site, the maximum 276 

ET approaches 10 mm/d, whereas at the DK-Fou site, it peaks at only 3mm/d. Across all four sites, the three ET products 277 

exhibit similar error characteristics; they estimate ET well during the non-growing season of crops but tend to overlook the 278 

impact of crop growth on ET, particularly at the US-DS3, US-RGB, and US-Rgo sites, where ET is consistently 279 

underestimated during the crop growing season.  280 

Two forest sites, AU-Lox and Collie, labelled as DBF and EBF, respectively, exhibit distinct variations in ET. At Site 281 

AU-Lox, ET data, along with Rn and LAI, demonstrate consistent seasonal fluctuations: ET peaks from December to 282 

February and reaches its lowest from June to August, aligning with the tree growth cycle. The three ET products accurately 283 

estimated ET from June to August at this site but significantly underestimated it during other seasons due to an oversight 284 

of seasonal changes and tree growth dynamics. At Site Collie, which experiences two distinct rainy seasons, ET rates 285 

decrease from May to August, where all three ET products fail to capture the impact of the wet-dry season transition on 286 

ET and consistently overestimate it. 287 

The gap-filled ET data at these six sites effectively captured the intricate relationship between ET, vegetation growth, 288 

and seasonal changes, demonstrating the sensitivity of ET to vegetation status and the impact of seasonal variations. 289 

Compared to the three ET products, the gap-filled ET at these sites exhibited higher accuracy and reliability. 290 
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 291 

Figure 7-1: Sites with temporal variability differences between the filled ET and ET products. 292 
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 293 

Figure 7-2: Sites with temporal variability differences between the filled ET and ET products. 294 
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4.2.2 More consistence with ET observations 295 

Among the 43 out of 75 sites where significant differences exist between the filled ET data and the three ET products, 296 

the filled ET are generally more consistent with the ET observations in their range and seasonal trends (Figure 8 and Figure 297 

1S). Figure 8 highlights some representative sample sites from this group.  298 

At the US-HB3 site, the filled ET demonstrates higher consistency with adjacent ET observations compared to ET 299 

products. While GLEAM effectively simulates the seasonal trends of ET (R=0.96, Table 4), it tends to overestimate ET 300 

(MAE=2.44 mm/d, RMSE=2.70 mm/d) and also records several exceptionally high values. Conversely, although BESS 301 

demonstrates slightly lower accuracy in simulating seasonal trends compared to GLEAM (R=0.88), it exhibits higher 302 

precision, with an MAE of 0.42 mm/d and an RMSE of 0.59 mm/d.  303 

At the US-Tw4 site, the filled ET, when compared with the ET observations from the corresponding years, shows 304 

almost identical extreme values, particularly in maintaining the ET trend through the gap-filling process in 2021. The three 305 

ET products exhibited an underestimation of ET, especially from April to October. Among these, the ERA5-Land product 306 

demonstrates relatively higher accuracy (MAE=-0.72 mm/d, RMSE=1.98 mm/d), while the BESS product more accurately 307 

simulates the ET variation trends with an R of 0.76.  308 

At the CA-Ca1 site, the filled ET continued to accurately simulate the seasonal trends of ET, further demonstrating 309 

that the full-factorial method maintains high gap-filling accuracy, even with extended gaps. Among the three ET products, 310 

the ERA5-Land and BESS products show seasonal variation similar to those observed in the gap-filled ET and actual ET 311 

observations. In contrasts, the GLEAM product not only has large estimation errors (MAE=1.54 mm/d, RMSE=2.18 mm/d) 312 

but also failed to capture the seasonal variation trend of ET with an R of 0.35.  313 

At the CA-DBB site, the filled ET displays a consistent range with the ET observations whereas the three ET products 314 

exhibit significant overestimations. Among these, ERA5-Land exhibits the lowest accuracy, with a MAE of 1.29 mm/d, an 315 

RMSE of 1.67 mm/d, and an R of 0.48. 316 

Overall, the filled ET across these sites demonstrate range and seasonal trends comparable to those observed in ET 317 

observations, whereas as the three ET products exhibits variability across diverse geographic locations and vegetation types. 318 

Consequently, we consider the filled ET at these 43 sites to be highly reliable. 319 
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 320 
Figure 8: Sites with value range differences between the filled ET and ET products.  321 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

Table 4: Statistical items from comparisons between ET products and ET observations. 322 

 Station US-HB3 IT-Cp2 US-Tw4 CA-Ca1 CA-DBB 

MAE 

(mm/d) 

ERA5-Land_ET 1.78 1.22 -0.72 0.59 1.29 

GLEAM_ET 2.44 2.90 -1.50 1.54 0.95 

BESS_ET 0.42 1.41 -0.98 0.49 0.65 

RMSE 

(mm/d) 

ERA5-Land_ET 2.27 1.56 1.98 0.93 1.67 

GLEAM_ET 2.70 3.36 2.47 2.18 1.16 

BESS_ET 0.59 1.68 1.75 0.74 0.86 

R 

ERA5-Land_ET 0.67 0.57 0.46 0.83 0.48 

GLEAM_ET 0.96 0.98 0.32 0.35 0.95 

BESS_ET 0.88 0.95 0.76 0.91 0.95 

4.3 Uncertain performance of gap-filled ET 323 

Uncertainty exists in the gap-filled ET at 22 of the 75 sites, primarily due to the absence of ET observations for 324 

comparison (Figure 9, Figure 2S). Figure 9 presents sample sites and analyses the reasons for their uncertainty. For instance, 325 

at the US-xSJ and ES-LMa, both classified as savannah (SAV), the temporal variation trends of the filled ET are consistent 326 

with those of Rn. However, when examining the temporal variation trends of measured ET and LAI, the three ET products 327 

align more closely to them, particularly noting a sharp decline in May each year. This decline is likely due to frequent fire 328 

events at these sites, as noted by Yang et al. (2023), which cause significant changes in LAI. The sharp decrease in LAI 329 

leads to reduced ET, a change not captured by the input variables of the full-factorial method, thus introducing uncertainty 330 

in the filled ET. 331 

At the GL-ZaF and SJ-Adv sites, the temporal trends of the filled ET and ERA5-Land closely align, yet they diverge 332 

significantly from the other two ET products. Given these sites' high-latitude locations and the limited, and clustered 333 

measurements available, the accuracy of the filled ET remains uncertain. 334 

At the ES-Ln2 site, notable differences are observed between the filled ET and the three ET products in terms of their 335 

temporal trends, which exhibit more volatility and align more closely with changes in Rn. The site's maximum LAI of only 336 

0.6 and its minimal temporal trend suggest sparse surface vegetation and, theoretically, low ET (Khosa et al., 2019). 337 

Nonetheless, the reliability of the filled ET requires further verification due to scarcity of ET observations.  338 

At the DK-Ris site, while the filled ET and the three ET products share similar temporal trends, their ranges vary 339 

significantly. The limited availability of ET observation constrains further analysis of the filled ET's reliability. The factors 340 

contributing to the uncertainty in the filled ET at this site mirror those in Figure 2S. 341 
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 342 
Figure 9-1: Filled ET for uncertain sites.343 
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 344 
Figure 9-2: Filled ET for uncertain sites.345 
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Among these uncertain sites, the CH-BaA and DE-RuW sites feature only a few days with ET observations, 346 

accompanied by corresponding negative net radiation minus ground heat flux (𝑅𝑛 − 𝐺)𝑜𝑏𝑠 values. However, most ET gaps 347 

are associated with positive (𝑅𝑛 − 𝐺)𝑔𝑎𝑝, resulting in predominantly negative values for the filled ET. To mitigate potential 348 

errors in filling ET, we used the absolute values of (𝑅𝑛 − 𝐺)𝑜𝑏𝑠 from measured days to fill the gaps , as depicted in Figure 349 

10. At these two sites, the filled ET consistently matches the seasonal variation trends of the three ET products, Rn, and 350 

LAI, but exhibits a broader numerical range. Given the sparse ET observations, further evaluation is necessary to assess 351 

the reliability of the filled ET at these two sites. 352 

 353 
Figure 10: Sites with special processing to avoid erroneous results. 354 

 355 

By comparing the temporal trends and value ranges of the filled ET and the three ET products against the measured 356 

ET, it is evident that, aside from the 26 sites where the reliability of the filled ET requires further verification, the filled ET 357 

at the remaining 313 sites is of high quality (Wang & Jiang, 2024). 358 

4.4 Energy closure of well-performed gap-filled ET 359 

To further assess the reliability of gap-filled ET, we evaluated the energy closure status at 313 sites, integrating Rn, 360 

H, and G data across various surface types and latitudinal zones. Figure 11 illustrates the energy balance closure of the 361 

gap-filled ET across different surface types. The determination coefficients (R2) indicate a strong correlation between 362 
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turbulent fluxes (LE + H) and available energy (Rn – G), with values ranging from 0.84 to 0.94. However, energy 363 

transformation efficiency varies by sites, depending on the underlying surface types. Site with wetland (WET) surface 364 

exhibit the highest energy transformation efficiency (MAE=21.66 W/m², RMSE=28.37 W/m²), while site with forest 365 

(DBF/DNF/EBF/ENF/MF) show the lowest (MAE=28.67 W/m², RMSE=36.91 W/m²). Due to the scarcity of sites 366 

categorized as barren (BAR), snow (SNO), urban (URB), and water (WAT), the Energy Balance Ratio (EBR) was not 367 

calculated for these types. overall, the energy balance closure ratios for different land cover types are satisfactory, with an 368 

average EBR of 0.79. In grassy sites (GRA/SAV/WSA), the energy balance closure is optimal, with averaged EBR of 0.84; 369 

conversely, in wetland (WET) sites, it is least effective, with averaged EBR of 0.64.  370 

 371 

Figure 11: Energy balance closure of gap-filled ET across different surface types. 372 

 373 

Figure 12 illustrates the energy balance closure of gap-filled ET across different latitude zones. Overall, the EBR 374 

tends to decrease as latitude increases. The correlation between latent and sensible heat fluxes (LE + H) and available 375 

energy (Rn – G) is notably lower in the latitude zones (10,20] and (20,30], with R2 of 0.74 and 0.78, respectively. Sites 376 

within the latitude zone (70,80] display relatively high energy transformation efficiency (MAE=19.15 W/m², RMSE=26.12 377 
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W/m²). In contrast, sites in other zones show comparable efficiencies, with MAE ranging from 24.34 W/m² to 29.11 W/m² 378 

and RMSE ranging from 31.31 W/m² to 37.38 W/m². 379 

 380 

Figure 12: Energy balance closure of gap-filled ET across different latitudinal zones. 381 

4.5 Temporal distribution of continuous ET after gap-filling 382 

The gap-filled ET at each site has been aggregated to annual value to analyse their spatiotemporal coverage. The 383 

dataset encompasses 313 sites, categorized as follows: 131 forest sites, 80 grass sites, 42 crop sites, 32 shrub sites, 25 384 

wetland sites, and 3 sites of other cover types (Figure 13). The duration of data at these sites ranges from 1 to 27 years. For 385 

instance, among forest sites, 41 sites have ET data spanning 1 to 4 years, 35 sites range from 5 to 8 years; 21 sites from 9 386 

to 12 years; 19 sites from 13 to 17 years; and 15 sites have records from18 to 27 years. Similar diversity in the data record 387 

durations is observed across other land cover types. 388 

The spatial distribution of sites across various land cover types reveals notable differences in annual average ET. 389 

Among them, annual average ET at forest sites ranges from 145 to 1259 mm, at grass sites from 143 to 1208 mm, at crop 390 

sites from 71 to 1466 mm, at shrub sites from 88 to 852 mm, and at wetland sites from 53 to 1508 mm. The magnitude of 391 

annual average ET is strongly influenced by climatic zones.  392 
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Figure 13f highlights the variations in annual ET at specific sites. Specifically, in Australia, a site with water (WAT) 393 

has an annual average ET of 1241mm, with data recorded over 22 years. In the USA, a snow (SNO) site reports an annual 394 

average ET of 113mm, with data spanning 8 years. In China, a bare soil (BAR) site features an annual average ET of 395 

231mm, with records covering 5 years. 396 

397 

398 

 399 
Figure 13: Spatial distribution of continuous ET over different land cover types. 400 
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5 Discussion 401 

Gaps in ET data obstruct the training and validation of ET models, as well as the accurate analysis of drivers behind 402 

ET changes (Jiang et al., 2024; Niu et al., 2024). Our statistics (Figure 3) indicate that the average gap rate of ET data from 403 

the multi-source flux network exceeds 50%, underscoring the urgency of performing gap filling to compile a continuous 404 

ET dataset. Utilizing site-measured ET and meteorological variables, along with meteorological reanalysis products, we 405 

employed a full-factorial method to fill these gaps, creating a comprehensive gap-filled ET dataset. In our evaluation, we 406 

compare the gap-filled ET with three well-known ET products and find a high degree of consistency at 80% of the sites. 407 

Significant discrepancies were also noted at some sites. Specifically, Section 4.2.1 details how the gap-filled ET data 408 

accurately continued the seasonal variations observed in the measured ET, which the three ET products failed to capture. 409 

In Section 4.2.2, the range of the gap-filled ET data closely matched the observed data, while the three ET products showed 410 

various degrees of overestimation or underestimation. These findings suggest that the full-factorial method effectively 411 

simulate the actual ET process, yielding data that closely align with actual observations. 412 

The full-factorial method utilizes a physics-based model that comprehensively considers factors influencing ET, 413 

including meteorological conditions, vegetation characteristics, and soil state. This method simulates the actual physical 414 

process of ET through an integrated framework. By using the site-measured ET and corresponding meteorological variable 415 

data, along with meteorological data at the time of the ET gap, the filled ET were more accurately estimated. This 416 

integration is key to the method's effectiveness in filling ET gaps. 417 

For some uncertainty noted at some sites, they are stemming from meteorological reanalysis products used to fill gaps 418 

in meteorological data. Although these products generally show good accuracy, as indicated in Figure 4, anomalies persist 419 

at individual sites, leading to reduced reliability of the filled ET at these sites in sections 4.3. Future research should aim 420 

to evaluate the performance accuracy of the meteorological reanalysis products across various sites. Additionally, 421 

comparative analyses of different products may also be necessary to further refine and validate the gap-filling process. 422 

Another source of uncertainty arises from the failure to capture sudden changes in Leaf Area Index (LAI). Although 423 

the full-factorial method incorporates nearly all meteorological variables and uses aerodynamic resistance to reflect 424 

vegetation characteristics, it may not effectively detect rapid LAI declines caused by extreme events such as fires, especially 425 

in areas with sparse vegetation. This insensitivity can lead to significant uncertainties in ET estimates (Hu et al., 2023; 426 

Trebs et al., 2021). For instance, the sudden changes in LAI at the US-xSJ site, as depicted in Figure 9, are likely triggered 427 

by fire events. To enhance the accuracy of ET data filling, incorporating LAI data as an additional input variable will be 428 

considered to better account for the impact of such extreme events. 429 
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When assessing the energy closure for ET data filling, we noted that wetland sites exhibit a relatively lower energy 430 

closure ratio due to their high moisture content, unique vegetation, and complex hydrological characteristics, creating 431 

distinctive environmental conditions that affect ET accuracy (Eichelmann et al., 2018; Wondim & Melese, 2023). 432 

Traditional ET estimation models such as the Penman-Monteith, Penman combinations, and the Priestley-Taylor often 433 

yield unsatisfactory results for wetland (Abtew, 1996; Jacobs et al., 2002). Furthermore, variances in drainage have been 434 

shown to significantly affect ET in wetlands (Wu et al., 2016). Eichelmann et al. (2018) also highlight how land cover 435 

types and structures influence ET in California wetlands. To address these challenges, the full-factorial method will be 436 

refined to include specific environmental variables for wetlands, such as water body coverage and adjusted vegetation 437 

parameters.  438 

The energy closure ratio also exhibits a discernible correlation with latitude, showing a decreasing trend as latitude 439 

increases. This trend may attributed to the heightened complexity of climatic conditions and vegetation responses in higher 440 

latitude regions (Ma et al., 2024; Tang et al., 2024). For instance, despite numerical values of turbulent fluxes closely 441 

resembling available energy at sites within the (70, 80] latitude zone, the average Energy Balance Ratio (EBR) is only 0.2. 442 

This underscores the challenge posed by energy non-closure in high-latitude areas, which is influenced by seasonal 443 

variations, micro-meteorological diversity, radiation transmission uncertainties, and ecosystem adaptability and feedback 444 

mechanisms (Simpson et al., 2019). Therefore, future data-filling strategies should consider latitude influence, particular 445 

in polar or high-latitude areas, by employing different parameters or methods to enhance filling accuracy. 446 

6 Conclusion 447 

In this study, we utilized the full-factorial method to fill ET gaps from 339 sites from multiple flux networks, and 448 

subsequently compared the filled ET at each site with three ET products. Among these sites, 264 demonstrated high 449 

consistency between the filled ET and the ET products, with average absolute mean error (|ME|) of 0.32 mm/d, root mean 450 

square error (|RMSE|) of 0.92 mm/d, and a correlation coefficient (R) of 0.79. For the remaining 75 sites, we conducted 451 

further analysis using adjacent ET observations and the temporal trends of net radiation (Rn) and Leaf Area Index (LAI): 452 

49 sites showed closer alignment or consistent temporal trends with nearby ET observations, while the remaining 26 sites 453 

require further verification due to issues such as insufficient input data or limited ET observations.  454 

As a result, 313 sites exhibited relatively high-quality filled ET data, categorized as follows: 131 forest sites, 80 grass 455 

sites, 42 crop sites, 32 shrub sites, 25 wetland sites, and 3 sites of other cover types. Additionally, an energy balance closure 456 

analysis was performed, revealing an average Energy Balance Ratio (EBR) of 0.73 across these sites, indicating satisfactory 457 

energy closure.  458 
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In summary, these 313 sites with high-quality ET data filling offer robust support for ET model developments, ET 459 

product comparisons, climate change research, and other related tasks that require reliable site-specific ET data. 460 

Data availability 461 

Daily evapotranspiration data for 339 global FLUXNET sites, filled with the full-factorial method, are saved in Excel 462 

files named according to the site names. In each Excel file, the column "TIMESTAMP" indicates time, while the columns 463 

"Longitude" and "Latitude" capture the geographical coordinates. The column "IGBP" details the vegetation type at the 464 

site, according to the International Geosphere-Biosphere Programme classification (Abelson, 1986), and the column "LE" 465 

indicates evapotranspiration amount (W/m²). The column "LE_QC" indicates data quality (0 = measured; 1 = filled). Data 466 

from 313 sites with high-quality filled data is stored in the "Filled Data with High Quality" folder, while data from the 467 

remaining 26 sites is stored in the "Filled Data with Uncertainty" folder. The data are available for download at 468 

https://doi.org/10.57760/sciencedb.11651 (Wang & Jiang, 2024). 469 

Author contributions 470 

All authors discussed the results and contributed to the paper. 471 

Acknowledgements 472 

We express our gratitude to the staff at AmeriFlux, FLUXNET, EuroFlux, OzFlux, ChinaFlux, TPDC, and NCDDC 473 

for providing datasets from numerous land-cover type sites. Additionally, we thank the teams responsible for the 474 

meteorological reanalysis data from ERA5-Land (the Land component of the Fifth Generation of European Reanalysis), 475 

GLDAS (Global Land Data Assimilation System), and MERRA-2 (Modern-Era Retrospective analysis for Research and 476 

Applications, Version 2). We also appreciate the provision of three evapotranspiration products from BESSv2.0 (Breathing 477 

Earth System Simulator Version 2.0), GLEAM (Global Land Evaporation Amsterdam Model), and ERA5-Land. 478 

Competing interests 479 

The authors declare that they have no conflict. 480 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



31 

 

Financial support 481 

This work was supported by the National Natural Science Foundation of China [42371368] and the Postgraduate 482 

Research & Practice Innovation Program of Jiangsu Province [KYCX24_1449]. 483 

References 484 

Abelson, P. H.: The international geosphere-biosphere program., Science, 234, 657, 485 

https://doi.org/10.1126/science.234.4777.657, 1986. 486 

Abtew, W.: Evapotranspiration Measurements and Modeling for Three Wetland Systems in South Florida1, JAWRA 487 

Journal of the American Water Resources Association, 32, 465–473, https://doi.org/10.1111/j.1752-1688.1996.tb04044.x, 488 

1996. 489 

Alavi, N., Warland, J. S., and Berg, A. A.: Filling gaps in evapotranspiration measurements for water budget studies: 490 

Evaluation of a Kalman filtering approach, Agricultural and Forest Meteorology, 141, 57–66, 491 

https://doi.org/10.1016/j.agrformet.2006.09.011, 2006. 492 

Allen, R. G., Pereira, L. S., Howell, T. A., and Jensen, M. E.: Evapotranspiration information reporting: I. Factors 493 

governing measurement accuracy, Agricultural Water Management, 98, 899–920, 494 

https://doi.org/10.1016/j.agwat.2010.12.015, 2011. 495 

Amani, S. and Shafizadeh-Moghadam, H.: A review of machine learning models and influential factors for estimating 496 

evapotranspiration using remote sensing and ground-based data, Agricultural Water Management, 284, 108324, 497 

https://doi.org/10.1016/j.agwat.2023.108324, 2023. 498 

Aouissi, J., Benabdallah, S., Lili Chabaâne, Z., and Cudennec, C.: Evaluation of potential evapotranspiration assessment 499 

methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia, Agricultural Water 500 

Management, 174, 39–51, https://doi.org/10.1016/j.agwat.2016.03.004, 2016. 501 

Başakın, E. E., Ekmekcioğlu, Ö., and Özger, M.: Providing a comprehensive understanding of missing data imputation 502 

processes in evapotranspiration-related research: a systematic literature review, Hydrological Sciences Journal, 68, 2089–503 

2104, https://doi.org/10.1080/02626667.2023.2249456, 2023. 504 

Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, 505 

D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, 506 

R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-507 

Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., 508 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



32 

 

Walker, J., and Wardlaw, T.: An introduction to the Australian and New Zealand flux tower network – OzFlux, 509 

Biogeosciences, 13, 5895–5916, https://doi.org/10.5194/bg-13-5895-2016, 2016. 510 

Bhattarai, N., Mallick, K., Stuart, J., Vishwakarma, B. D., Niraula, R., Sen, S., and Jain, M.: An automated multi-model 511 

evapotranspiration mapping framework using remotely sensed and reanalysis data, Remote Sensing of Environment, 229, 512 

69–92, https://doi.org/10.1016/j.rse.2019.04.026, 2019. 513 

Chen, Y.-Y., Chu, C.-R., and Li, M.-H.: A gap-filling model for eddy covariance latent heat flux: Estimating 514 

evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example, Journal of Hydrology, 468–469, 515 

101–110, https://doi.org/10.1016/j.jhydrol.2012.08.026, 2012. 516 

Drexler, J. Z., Snyder, R. L., Spano, D., and Paw U, K. T.: A review of models and micrometeorological methods used to 517 

estimate wetland evapotranspiration, Hydrological Processes, 18, 2071–2101, https://doi.org/10.1002/hyp.1462, 2004. 518 

Eichelmann, E., Hemes, K. S., Knox, S. H., Oikawa, P. Y., Chamberlain, S. D., Sturtevant, C., Verfaillie, J., and Baldocchi, 519 

D. D.: The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the 520 

Sacramento–San Joaquin River Delta, California, Agricultural and Forest Meteorology, 256–257, 179–195, 521 

https://doi.org/10.1016/j.agrformet.2018.03.007, 2018. 522 

El-Madany, T. S., Reichstein, M., Perez-Priego, O., Carrara, A., Moreno, G., Pilar Martín, M., Pacheco-Labrador, J., 523 

Wohlfahrt, G., Nieto, H., Weber, U., Kolle, O., Luo, Y.-P., Carvalhais, N., and Migliavacca, M.: Drivers of spatio-temporal 524 

variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem, Agricultural and Forest 525 

Meteorology, 262, 258–278, https://doi.org/10.1016/j.agrformet.2018.07.010, 2018. 526 

Elnashar, A., Wang, L., Wu, B., Zhu, W., and Zeng, H.: Synthesis of global actual evapotranspiration from 1982 to 2019, 527 

Earth Syst. Sci. Data, 13, 447–480, https://doi.org/10.5194/essd-13-447-2021, 2021. 528 

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., 529 

Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Lai, 530 

C. T., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., Munger, J. W., Pilegaard, K., Rannik, Ü., Rebmann, C., Suyker, 531 

A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for defensible annual 532 

sums of net ecosystem exchange, Agricultural and Forest Meteorology, 107, 43–69, https://doi.org/10.1016/S0168-533 

1923(00)00225-2, 2001a. 534 

Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., 535 

Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta 536 

Lai, C., Law, B. E., Meyers, T., Moncrieff, J., Moors, E., William Munger, J., Pilegaard, K., Rannik, Ü., Rebmann, C., 537 

Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: Gap filling strategies for long term 538 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



33 

 

energy flux data sets, Agricultural and Forest Meteorology, 107, 71–77, https://doi.org/10.1016/S0168-1923(00)00235-5, 539 

2001b. 540 

Foltýnová, L., Fischer, M., and McGloin, R. P.: Recommendations for gap-filling eddy covariance latent heat flux 541 

measurements using marginal distribution sampling, Theor Appl Climatol, 139, 677–688, https://doi.org/10.1007/s00704-542 

019-02975-w, 2020. 543 

Govender, T., Dube, T., and Shoko, C.: Remote sensing of land use-land cover change and climate variability on 544 

hydrological processes in Sub-Saharan Africa: key scientific strides and challenges, Geocarto International, 37, 10925–545 

10949, https://doi.org/10.1080/10106049.2022.2043451, 2022. 546 

Granata, F.: Evapotranspiration evaluation models based on machine learning algorithms—A comparative study, 547 

Agricultural Water Management, 217, 303–315, https://doi.org/10.1016/j.agwat.2019.03.015, 2019. 548 

Graveline, V., Helbig, M., Gosselin, G. H., Alcock, H., Detto, M., Walker, B., Marsh, P., and Sonnentag, O.: Surface-549 

atmosphere energy exchanges and their effects on surface climate and atmospheric boundary layer characteristics in the 550 

forest-tundra ecotone in northwestern Canada, Agricultural and Forest Meteorology, 350, 109996, 551 

https://doi.org/10.1016/j.agrformet.2024.109996, 2024. 552 

Helbig, M., Gerken, T., Beamesderfer, E. R., Baldocchi, D. D., Banerjee, T., Biraud, S. C., Brown, W. O. J., Brunsell, N. 553 

A., Burakowski, E. A., Burns, S. P., Butterworth, B. J., Chan, W. S., Davis, K. J., Desai, A. R., Fuentes, J. D., Hollinger, 554 

D. Y., Kljun, N., Mauder, M., Novick, K. A., Perkins, J. M., Rahn, D. A., Rey-Sanchez, C., Santanello, J. A., Scott, R. L., 555 

Seyednasrollah, B., Stoy, P. C., Sullivan, R. C., De Arellano, J. V.-G., Wharton, S., Yi, C., and Richardson, A. D.: 556 

Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-557 

atmosphere interactions, Agricultural and Forest Meteorology, 307, 108509, 558 

https://doi.org/10.1016/j.agrformet.2021.108509, 2021. 559 

Hu, X., Shi, L., Lian, X., and Bian, J.: Parameter variability across different timescales in the energy balance-based model 560 

and its effect on evapotranspiration estimation, Science of The Total Environment, 871, 161919, 561 

https://doi.org/10.1016/j.scitotenv.2023.161919, 2023. 562 

Jacobs, J. M., Myers, D. A., Anderson, M. C., and Diak, G. R.: GOES surface insolation to estimate wetlands 563 

evapotranspiration, Journal of Hydrology, 266, 53–65, https://doi.org/10.1016/S0022-1694(02)00117-8, 2002. 564 

Jarvis, A. J., Stauch, V. J., Schulz, K., and Young, P. C.: The seasonal temperature dependency of photosynthesis and 565 

respiration in two deciduous forests, Global Change Biology, 10, 939–950, https://doi.org/10.1111/j.1529-566 

8817.2003.00743.x, 2004. 567 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



34 

 

Jiang, X., Wang, Y., A., Y., Wang, G., Zhang, X., Ma, G., Duan, L., and Liu, K.: Optimizing actual evapotranspiration 568 

simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning 569 

techniques, Agricultural Water Management, 295, 108755, https://doi.org/10.1016/j.agwat.2024.108755, 2024. 570 

Jiang, Y., Tang, R., and Li, Z.-L.: A physical full-factorial scheme for gap-filling of eddy covariance measurements of 571 

daytime evapotranspiration, Agricultural and Forest Meteorology, 323, 109087, 572 

https://doi.org/10.1016/j.agrformet.2022.109087, 2022. 573 

Katul, G., Lai, C.-T., Schäfer, K., Vidakovic, B., Albertson, J., Ellsworth, D., and Oren, R.: Multiscale analysis of 574 

vegetation surface fluxes: from seconds to years, Advances in Water Resources, 24, 1119–1132, 575 

https://doi.org/10.1016/S0309-1708(01)00029-X, 2001. 576 

Khosa, F. V., Feig, G. T., van der Merwe, M. R., Mateyisi, M. J., Mudau, A. E., and Savage, M. J.: Evaluation of modeled 577 

actual evapotranspiration estimates from a land surface, empirical and satellite-based models using in situ observations 578 

from a South African semi-arid savanna ecosystem, Agricultural and Forest Meteorology, 279, 107706, 579 

https://doi.org/10.1016/j.agrformet.2019.107706, 2019. 580 

Kim, S., Anabalón, A., and Sharma, A.: An Assessment of Concurrency in Evapotranspiration Trends across Multiple 581 

Global Datasets, Journal of Hydrometeorology, 22, 231–244, https://doi.org/10.1175/JHM-D-20-0059.1, 2021. 582 

Koppa, A., Rains, D., Hulsman, P., Poyatos, R., and Miralles, D. G.: A deep learning-based hybrid model of global 583 

terrestrial evaporation, Nat Commun, 13, 1912, https://doi.org/10.1038/s41467-022-29543-7, 2022. 584 

Kunwor, S., Starr, G., Loescher, H. W., and Staudhammer, C. L.: Preserving the variance in imputed eddy-covariance 585 

measurements: Alternative methods for defensible gap filling, Agricultural and Forest Meteorology, 232, 635–649, 586 

https://doi.org/10.1016/j.agrformet.2016.10.018, 2017. 587 

Li, H., Zhang, F., Zhu, J., Guo, X., Li, Y., Lin, L., Zhang, L., Yang, Y., Li, Y., Cao, G., Zhou, H., and Du, M.: Precipitation 588 

rather than evapotranspiration determines the warm-season water supply in an alpine shrub and an alpine meadow, 589 

Agricultural and Forest Meteorology, 300, 108318, https://doi.org/10.1016/j.agrformet.2021.108318, 2021. 590 

Li, S., Wang, G., Sun, S., Chen, H., Bai, P., Zhou, S., Huang, Y., Wang, J., and Deng, P.: Assessment of Multi-Source 591 

Evapotranspiration Products over China Using Eddy Covariance Observations, Remote Sensing, 10, 1692, 592 

https://doi.org/10.3390/rs10111692, 2018. 593 

Long, D., Longuevergne, L., and Scanlon, B. R.: Uncertainty in evapotranspiration from land surface modeling, remote 594 

sensing, and GRACE satellites, Water Resources Research, 50, 1131–1151, https://doi.org/10.1002/2013WR014581, 2014. 595 

Ma, L., Yu, G., Chen, Z., Yang, M., Hao, T., Zhu, X., Zhang, W., Lin, Q., Liu, Z., Han, L., Dou, X., Sun, M., Lin, Y., Luo, 596 

W., and Zhou, W.: Cascade effects of climate and vegetation influencing the spatial variation of evapotranspiration in 597 

China, Agricultural and Forest Meteorology, 344, 109826, https://doi.org/10.1016/j.agrformet.2023.109826, 2024. 598 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



35 

 

Majozi, N. P., Mannaerts, C. M., Ramoelo, A., Mathieu, R., Mudau, A. E., and Verhoef, W.: An Intercomparison of 599 

Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa, Remote 600 

Sensing, 9, 307, https://doi.org/10.3390/rs9040307, 2017. 601 

Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E.: Carbon 602 

sequestration in a high-elevation, subalpine forest, Global Change Biology, 8, 459–478, https://doi.org/10.1046/j.1365-603 

2486.2002.00480.x, 2002. 604 

Morton, F. I.: Operational estimates of areal evapotranspiration and their significance to the science and practice of 605 

hydrology, Journal of Hydrology, 66, 1–76, https://doi.org/10.1016/0022-1694(83)90177-4, 1983. 606 

Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote 607 

Sensing of Environment, 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011. 608 

Niu, X., Chen, Z., Pang, Y., Niu, B., Yan, C., and Liu, S.: Environmental and biological controls on the interannual 609 

variations of evapotranspiration in a natural oak forest, Agricultural and Forest Meteorology, 349, 109969, 610 

https://doi.org/10.1016/j.agrformet.2024.109969, 2024. 611 

Nkiaka, E., Bryant, R. G., Ntajal, J., and Biao, E. I.: Evaluating the accuracy of gridded water resources reanalysis and 612 

evapotranspiration products for assessing water security in poorly gauged basins, Hydrology and Earth System Sciences, 613 

26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, 2022. 614 

Novick, K. A., Biederman, J. A., Desai, A. R., Litvak, M. E., Moore, D. J. P., Scott, R. L., and Torn, M. S.: The AmeriFlux 615 

network: A coalition of the willing, Agricultural and Forest Meteorology, 249, 444–456, 616 

https://doi.org/10.1016/j.agrformet.2017.10.009, 2018. 617 

Novick, K. A., Metzger, S., Anderegg, W. R. L., Barnes, M., Cala, D. S., Guan, K., Hemes, K. S., Hollinger, D. Y., Kumar, 618 

J., Litvak, M., Lombardozzi, D., Normile, C. P., Oikawa, P., Runkle, B. R. K., Torn, M., and Wiesner, S.: Informing 619 

Nature-based Climate Solutions for the United States with the best-available science, Global Change Biology, 28, 3778–620 

3794, https://doi.org/10.1111/gcb.16156, 2022. 621 

Pan, X., Guo, X., Li, X., Niu, X., Yang, X., Feng, M., Che, T., Jin, R., Ran, Y., Guo, J., Hu, X., and Wu, A.: National 622 

Tibetan Plateau Data Center: Promoting Earth System Science on the Third Pole, Bulletin of the American Meteorological 623 

Society, 102, E2062–E2078, https://doi.org/10.1175/BAMS-D-21-0004.1, 2021. 624 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., 625 

Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., 626 

Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, 627 

A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. 628 

A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, 629 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



36 

 

J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, 630 

I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, 631 

P. S., D’Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. de, Ligne, A. D., De Oliveira, R. C., 632 

Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. di, Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., 633 

Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., 634 

Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., et al.: 635 

The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci Data, 7, 225, 636 

https://doi.org/10.1038/s41597-020-0534-3, 2020. 637 

Peerbhai, T., Chetty, K. T., Clark, D. J., and Gokool, S.: Estimating evapotranspiration using earth observation data: A 638 

comparison between hydrological and energy balance modelling approaches, Journal of Hydrology, 613, 128347, 639 

https://doi.org/10.1016/j.jhydrol.2022.128347, 2022. 640 

Polhamus, A., Fisher, J. B., and Tu, K. P.: What controls the error structure in evapotranspiration models?, Agricultural 641 

and Forest Meteorology, 169, 12–24, https://doi.org/10.1016/j.agrformet.2012.10.002, 2013. 642 

Qian, L., Zhang, Z., Wu, L., Fan, S., Yu, X., Liu, X., Ba, Y., Ma, H., and Wang, Y.: High uncertainty of evapotranspiration 643 

products under extreme climatic conditions, Journal of Hydrology, 626, 130332, 644 

https://doi.org/10.1016/j.jhydrol.2023.130332, 2023. 645 

Rummler, T., Arnault, J., Gochis, D., and Kunstmann, H.: Role of Lateral Terrestrial Water Flow on the Regional Water 646 

Cycle in a Complex Terrain Region: Investigation With a Fully Coupled Model System, Journal of Geophysical Research: 647 

Atmospheres, 124, 507–529, https://doi.org/10.1029/2018JD029004, 2019. 648 

Simpson, G., Runkle, B. R. K., Eckhardt, T., and Kutzbach, L.: Evaluating closed chamber evapotranspiration estimates 649 

against eddy covariance measurements in an arctic wetland, Journal of Hydrology, 578, 124030, 650 

https://doi.org/10.1016/j.jhydrol.2019.124030, 2019. 651 

Stauch, V. J. and Jarvis, A. J.: A semi-parametric gap-filling model for eddy covariance CO2 flux time series data, Global 652 

Change Biology, 12, 1707–1716, https://doi.org/10.1111/j.1365-2486.2006.01227.x, 2006. 653 

Talib, A., Desai, A. R., Huang, J., Thom, J., Panuska, J. C., and Stoy, Paul. C.: Improving parameterization of an 654 

evapotranspiration estimation model with eddy covariance measurements for a regional irrigation scheduling program, 655 

Agricultural and Forest Meteorology, 350, 109967, https://doi.org/10.1016/j.agrformet.2024.109967, 2024. 656 

Tang, R., Peng, Z., Liu, M., Li, Z.-L., Jiang, Y., Hu, Y., Huang, L., Wang, Y., Wang, J., Jia, L., Zheng, C., Zhang, Y., 657 

Zhang, K., Yao, Y., Chen, X., Xiong, Y., Zeng, Z., and Fisher, J. B.: Spatial-temporal patterns of land surface 658 

evapotranspiration from global products, Remote Sensing of Environment, 304, 114066, 659 

https://doi.org/10.1016/j.rse.2024.114066, 2024. 660 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



37 

 

Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research: 661 

Atmospheres, 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001. 662 

Trebs, I., Mallick, K., Bhattarai, N., Sulis, M., Cleverly, J., Woodgate, W., Silberstein, R., Hinko-Najera, N., Beringer, J., 663 

Meyer, W. S., Su, Z., and Boulet, G.: The role of aerodynamic resistance in thermal remote sensing-based 664 

evapotranspiration models, Remote Sensing of Environment, 264, 112602, https://doi.org/10.1016/j.rse.2021.112602, 665 

2021. 666 

Valentín, F., Sánchez, J. M., Martínez-Moreno, A., Intrigliolo, D. S., Buesa, I., and López-Urrea, R.: Using on-the-ground 667 

surface energy balance to monitor vine water status and evapotranspiration under deficit irrigation and rainfed conditions, 668 

Agricultural Water Management, 281, 108240, https://doi.org/10.1016/j.agwat.2023.108240, 2023. 669 

Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley, J. J.: Water balance-based actual evapotranspiration 670 

reconstruction from ground and satellite observations over the conterminous United States, Water Resources Research, 51, 671 

6485–6499, https://doi.org/10.1002/2015WR017311, 2015. 672 

Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and 673 

climatic variability, Reviews of Geophysics, 50, https://doi.org/10.1029/2011RG000373, 2012. 674 

Wang, X. and Jiang, Y.: Gap-Filling for Daily Evapotranspiration Observations with full-factorial method at Global Flux 675 

Sites, https://doi.org/10.57760/sciencedb.11651, 2024. 676 

Wilson, K. B. and Baldocchi, D. D.: Comparing independent estimates of carbon dioxide exchange over 5 years at a 677 

deciduous forest in the southeastern United States, Journal of Geophysical Research: Atmospheres, 106, 34167–34178, 678 

https://doi.org/10.1029/2001JD000624, 2001. 679 

Winck, B. R., Bloor, J. M. G., and Klumpp, K.: Eighteen years of upland grassland carbon flux data: reference datasets, 680 

processing, and gap-filling procedure, Sci Data, 10, 311, https://doi.org/10.1038/s41597-023-02221-z, 2023. 681 

Wondim, Y. K. and Melese, A. W.: Evaluation of the evapotranspiration rate of lacustrine wetland macrophytes in Lake 682 

Tana, Ethiopia, Ecohydrology & Hydrobiology, 23, 623–634, https://doi.org/10.1016/j.ecohyd.2023.05.003, 2023. 683 

Wu, C.-L., Shukla, S., and Shrestha, N. K.: Evapotranspiration from drained wetlands with different hydrologic regimes: 684 

Drivers, modeling, and storage functions, Journal of Hydrology, 538, 416–428, 685 

https://doi.org/10.1016/j.jhydrol.2016.04.027, 2016. 686 

Wu, J., Feng, Y., Zheng, C., and Zeng, Z.: Dense flux observations reveal the incapability of evapotranspiration products 687 

to capture the heterogeneity of evapotranspiration, Journal of Hydrology, 622, 129743, 688 

https://doi.org/10.1016/j.jhydrol.2023.129743, 2023. 689 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



38 

 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic 690 

and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, 691 

https://doi.org/10.5194/bg-15-5015-2018, 2018. 692 

Xie, Z., Yao, Y., Tang, Q., Liu, M., Fisher, J. B., Chen, J., Zhang, X., Jia, K., Li, Y., Shang, K., Jiang, B., Yang, J., Yu, R., 693 

Zhang, X., Guo, X., Liu, L., Ning, J., Fan, J., and Zhang, L.: Evaluation of seven satellite-based and two reanalysis global 694 

terrestrial evapotranspiration products, Journal of Hydrology, 630, 130649, https://doi.org/10.1016/j.jhydrol.2024.130649, 695 

2024. 696 

Xing, Z., Bourque, C. P.-A., Meng, F.-R., Cox, R. M., Swift, D. E., Zha, T., and Chow, L.: A process-based model designed 697 

for filling of large data gaps in tower-based measurements of net ecosystem productivity, Ecological Modelling, 213, 165–698 

179, https://doi.org/10.1016/j.ecolmodel.2007.11.018, 2008. 699 

Xiong, Y., Feng, F., Fang, Y., Qiu, G., Zhao, S., and Yao, Y.: Critical Problems When Applying Remotely Sensed 700 

Evapotranspiration Products, Remote Sensing Technology and Application, 36, 121–131, 701 

https://doi.org/10.11873/j.issn.1004-0323.2021.1.0121, 2021. 702 

Yang, X., Zhao, C., Zhao, W., Fan, H., and Yang, Y.: Characterization of global fire activity and its spatiotemporal patterns 703 

for different land cover types from 2001 to 2020, Environmental Research, 227, 115746, 704 

https://doi.org/10.1016/j.envres.2023.115746, 2023. 705 

Yeonuk, K., S, J. M., H, K. S., Andrew, B. T., J, D. H., Minseok, K., Joon, K., and Dennis, B.: Gap-filling approaches for 706 

eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with 707 

principal component analysis, Global change biology, 26, 2020. 708 

Yu, G., Fu, Y., Sun, **aomin, Wen, X., and Zhang, L.: Recent progress and future directions of ChinaFLUX, SCI CHINA 709 

SER D, 49, 1–23, https://doi.org/10.1007/s11430-006-8001-3, 2006a. 710 

Yu, G.-R., Wen, X.-F., Sun, X.-M., Tanner, B. D., Lee, X., and Chen, J.-Y.: Overview of ChinaFLUX and evaluation of 711 

its eddy covariance measurement, Agricultural and Forest Meteorology, 137, 125–137, 712 

https://doi.org/10.1016/j.agrformet.2006.02.011, 2006b. 713 

Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing based actual evapotranspiration estimation, 714 

WIREs Water, 3, 834–853, https://doi.org/10.1002/wat2.1168, 2016. 715 

Zhang, Q., Liu, X., Zhou, K., Zhou, Y., Gentine, P., Pan, M., and Katul, G. G.: Solar-induced chlorophyll fluorescence 716 

sheds light on global evapotranspiration, Remote Sensing of Environment, 305, 114061, 717 

https://doi.org/10.1016/j.rse.2024.114061, 2024. 718 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.



39 

 

Zheng, M., Chen, X., Ruan, W., Yao, H., Gu, Z., Geng, K., Li, X., Deng, H., Chen, Y., and Liu, M.: Spatiotemporal 719 

variation of water cycle components in Minjiang River Basin based on a correction method for evapotranspiration products, 720 

Journal of Hydrology: Regional Studies, 50, 101575, https://doi.org/10.1016/j.ejrh.2023.101575, 2023. 721 

Zhu, S., Clement, R., McCalmont, J., Davies, C. A., and Hill, T.: Stable gap-filling for longer eddy covariance data gaps: 722 

A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes, Agricultural and Forest 723 

Meteorology, 314, 108777, https://doi.org/10.1016/j.agrformet.2021.108777, 2022a. 724 

Zhu, W., Tian, S., Wei, J., Jia, S., and Song, Z.: Multi-scale evaluation of global evapotranspiration products derived from 725 

remote sensing images: Accuracy and uncertainty, Journal of Hydrology, 611, 127982, 726 

https://doi.org/10.1016/j.jhydrol.2022.127982, 2022b. 727 

 728 

https://doi.org/10.5194/essd-2024-291
Preprint. Discussion started: 9 August 2024
c© Author(s) 2024. CC BY 4.0 License.


