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Abstract. The Extended European Alpine Region (EEAR) exhibits a well-established and very high-density network of in-situ

weather stations, hardly attained in other mountainous regions of the world. However, the strong fragmentation into national

and regional administrations and the diversity of data sources have so far hampered full exploitation of the available data

for climate research. Here, we present EEAR-Clim, a new observational dataset gathering in-situ daily measurements of air

temperature and precipitation from a variety of meteorological and hydrological services covering the whole EEAR. Data5

collected include time series from recordings of diverse lengths up to 2020, the longest ones spanning up to 200 years. The

overall observational network encompasses about 9000 in-situ weather stations, significantly enhancing data coverage at high

elevations compared to existing datasets and achieving an average spatial density of one station per 6.8 km2 over the period

1991-2020, the most covered by measurements. Data collected from many sources were tested for quality to ensure internal,

temporal, and spatial consistency of time series, including outliers removal. Data homogeneity was assessed through a cross-10

comparison of the breakpoints detected by three methods well established in the literature, namely Climatol, ACMANT, and

RH Test. Quantile matching was applied to adjust inhomogeneous periods in time series. Overall, about 4% of data were

flagged as non-reliable and about 20% of air temperature time series were corrected for one or more inhomogeneous periods.

In the case of precipitation time series, fewer breakpoints were detected, confirming the well-known challenge of properly

identifying inhomogeneities in noisy data. The high quality, homogeneity, unprecedented spatial density, and completeness of15

data, as well as the inclusion of the most recent records are important add-on improvements compared to other observational

products available for the EEAR. The dataset thus aims to serve as a powerful tool for better understanding climate change and

climatic variability over the European Alps.

1 Introduction

The continuous climate warming is amplified in mountain regions (Hock et al., 2019), and the European Alps have been found20

particularly vulnerable to climatic changes (Cramer et al., 2020). Projected future changes in Alpine climate envisage rising

temperatures, changes in the seasonal cycle of precipitation and runoff, increasing frequency of temperature and precipitation
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extremes, snow cover reduction and glacier shrinking (Gobiet et al., 2014). The assessment of climate change in the Alpine

region relies on the analysis of climate observations (Hartmann et al., 2013) and benefits from a density of weather stations

and length of data series not easily attainable in many other mountain regions of the world (Brunetti et al., 2009). However, the25

fragmentation of their owners and the diversity of data sources make collecting and managing such datasets a rather complex

task (Auer et al., 2007; Andrighetti et al., 2009; Chimani et al., 2023). Indeed, many studies regarding the Alpine region

were hindered by a scarcity of data sharing, harmonized data portals, and joint projects or initiatives fostering such analyses

(Beniston et al., 2018).

To overcome these limitations, several datasets collecting meteorological observations have been developed in recent decades30

in Europe. Among these, one of the most widely used is E-OBS (Klein Tank et al., 2002; Cornes et al., 2018), a daily gridded

observational dataset based on the European Climate Assessment and Dataset (ECA&D) database of meteorological mea-

surements for precipitation, air temperature, relative humidity, sea level pressure, global radiation and wind speed in Europe.

However, E-OBS is known to be affected by significant biases in some areas, such as the Southern part of the Alps, where

the ECA&D database has a lower density of stations compared to other regions (Hofstra et al., 2009; Kyselý and Plavcová,35

2010). For this reason, many efforts have been made in recent versions of the dataset to significantly improve the spatial density

of stations in the Italian Alps and other parts of the Alpine region. Likewise, the dataset HISTALP - Historical Instrumental

Climatological Surface Time Series Of The Greater Alpine Region (Auer et al., 2005) has the advantage of gathering mea-

surements of different climate variables and focusing specifically on the Alpine region. The primary goal of HISTALP was

to achieve long-term temporal consistency. Accordingly, as long-term time series are rare, HISTALP spatial density remains40

quite low compared to what is needed to reproduce the strong spatial variability associated with the complex nature of Alpine

terrain (Eccel et al., 2012). Most of the best spatially resolved datasets are organized on a national basis (Herzog and Müller-

Westermeier, 1996; Brunetti et al., 2001; Lussana et al., 2019), hence they are confined by national borders (Auer et al., 2005).

More recently, the Alpine Precipitation Grid Dataset APGD (APGD: Isotta et al. (2014)), covering up to 2019 in its recently

updated version, was developed for the Alpine region. APGD is based on the extended network of rain-gauges available over45

the Alpine region and significantly improves the spatial density of HISTALP stations, reaching an average density of one

station every 10 km, but it covers only precipitation. The Iberia dataset (Herrera et al., 2019), covering the Iberian Peninsula,

including the Pyrenees, exhibits a spatial density comparable to APGD. For many other regions of the world, datasets including

larger amounts of collected time series can be found, but mostly covering larger areas, and thus attaining lower spatial resolu-

tions, both for national and supranational products (Yatagai et al., 2012; Livneh et al., 2015; Cesar Aybar and Felipe-Obando,50

2020; Tang et al., 2020; Daly et al., 2021; Hatono et al., 2022; Han et al., 2023). Multi-parameter datasets such as E-OBS

and HISTALP are essential because they allow detecting changes in the regimes of the different variables, leading to increased

confidence in the results from climate studies (Brunetti et al., 2009). Indeed, the simultaneous analysis of a wide spectrum of

meteorological variables allows a better understanding of the atmospheric processes that modulate and trigger the variability

and trends shown by the single meteorological parameters, and the mutual interactions linking the different variables (Gaffen55

and Ross, 1999; Kaiser, 2000; Wang and Gaffen, 2001; Huth and Pokorná, 2005; Beniston, 2006). Time resolution is another

important issue when studying climate change. Compared to the past, recent climatological research is even more focused on
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the identification of changes in the frequency and intensity of extreme weather events, which require datasets with at least

daily resolution (Jones et al., 1999; Folland et al., 2000). Furthermore, daily data are mandatory in the model applications for

simulation of bio-ecological, agricultural, and hydro-climate systems (Eccel et al., 2012).60

Hydro-climate modelling, as well as model evaluation, use data from meteorological observations as forcings to provide a

representation as close as possible to real environmental conditions. However, data quality may strongly impact the results of

climate and hydrological studies and predictions in terms of reliability, accuracy and precision (Laiti et al., 2018). For instance,

high-quality observational data are needed to improve the correction of possible biases in the model output. A reliable analysis

of the evolution of key climate variables plays an important role in the current discussion on climate change (Begert et al., 2005).65

Stakeholders also require data of high quality and representativeness (Ha-Duong et al., 2007; Swart et al., 2009) to prevent and

timely plan for disaster management, risk mitigation, and elaborate proper local adaptation strategies. Therefore, there is a

clear need for high-quality observational datasets to deepen and improve our knowledge about climate, and in particular about

its change and variability (Skrynyk et al., 2023).

The steps required for recording, collecting, digitizing, processing, transferring, storing, and transmitting climate data series70

may introduce many errors affecting data quality (Brunetti et al., 2006). A variety of data quality issues, such as shifting in

units and time frequency of measurements, malfunctioning of sensors, erroneous data recording, transcription, or processing,

are addressed by a specific procedure called Quality Control (QC) (Fiebrich and Crawford, 2001; WMO, 2017). In addition,

non-climatic factors may introduce discontinuities in recorded time series, such as changes in measuring methods, units or

instruments, calculation methods, ambient modifications, as well as station relocation or maintenance (Alexandersson and75

Moberg, 1997; Peterson et al., 1998; Aguilar et al., 2003; Auer et al., 2005; Venema et al., 2013; Gubler et al., 2017). Such

discontinuities, or inhomogeneities, give rise to biases in datasets, possibly leading to misinterpretations of the climate patterns

and, thus, inaccurate or even wrong interpretations of trends and climatologies. Therefore, such inhomogeneities have to be

detected and removed by means of suitable homogenization procedures (Peterson et al., 1998; Aguilar et al., 2003; Trewin,

2010; Begert et al., 2005). Quality Control (QC) and homogenization procedures can be applied on time series of various80

climate variables with either monthly or daily or hourly time resolution (Trewin, 2013; Fioravanti et al., 2019; Squintu et al.,

2019; Mateus and Potito, 2021; Dijkstra et al., 2022).

Depending on specific goals and approaches, different existing QC methods can be used (Faybishenko et al., 2022). QC

is often performed semi-automatically (Hubbard et al., 2005), or automatically for large amounts of data. However, despite

its practical convenience, automated QC may fail, resulting in erroneously flagging good observations as invalid (Fiebrich85

and Crawford, 2001). The detection of outliers is the phase of the QC most prone to this type of error (Kuhn and Johnson,

2013). Comprehensive reviews of the variety of methods developed over time to detect inhomogeneities can be found in

Peterson et al. (1998); Aguilar et al. (2003); Reeves et al. (2007); Ribeiro et al. (2016). To date, the development and use

of homogenization methods focused mainly on temperature and precipitation time series and monthly rather than daily time-

scale (Thorne et al., 2011; Venema et al., 2012). Inhomogeneities detected during the homogenization process are ideally90

confirmed from the analysis of metadata containing details of the station’s history. However, this is rarely possible because

usually metadata have not been digitized, or they were not recorded at all (Brugnara et al., 2023; Guijarro et al., 2023). A
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highly recommended approach, ensuring higher confidence in breakpoints detection, consists of a combination of different

methods and inter-comparison of their results (Brunetti et al., 2006; Toreti et al., 2012; Kuglitsch et al., 2012; Ribeiro et al.,

2016).95

Given the challenges posed by observational datasets available for the Alpine region, it is evident that overcoming these

limitations is crucial to improve our understanding of how climate change is affecting the area. Hence, the overall objective of

the present study is to develop a new and unprecedented observational dataset for the European Alpine region, addressing key

issues such as data quality, spatial density, time resolution, and completeness. In particular, QC and homogenization procedures

are applied to station time series, both combining already existing methods and developing new ones.100

The paper is structured as follows. In section 2, the study domain is framed from a geographical and climatic point of view,

and the collected data are described in terms of their distribution in space, time, and elevation. Section 3 presents data QC, and

section 4 presents the homogeneity assessment of the time series. The last two sections, 5 and 6, are dedicated to the discussion

of the results and conclusions.

2 Study Area and Data Collection105

2.1 Study Area

The EEAR-Clim dataset includes observations from a very dense network of in-situ weather stations located within the Ex-

tended European Alpine Region (EEAR), i. e. the region lying between 3°E and 18°E in longitude, 43°N and 49°N in latitude

(fig. 1). The domain covers an area of about 800,000 km2, extending over 1100 km from Central France to Western Hungary

in the West-East direction and over 700 km from South Germany to Central Italy in the North-South direction. The domain110

includes the entire territories of Switzerland, Liechtenstein, Austria and Slovenia, as well as parts of France, Italy, Germany,

Croatia, Czech Republic, Slovakia, Hungary, Bosnia and Herzegovina.

The EEAR is predominantly characterized by complex terrain and hence by strong elevation gradients, with terrain heights

ranging from -5 m above sea level (m a.s.l.) at San Giuseppe di Comacchio (Italy), to the top of the Alps, 4807 m a.s.l. at the

Mont Blanc summit (Italy-France). In particular, the EEAR is centered on the European Alps, an arc-shaped mountain range115

stretching for about 1300 km, delimited to the West by the Bocchetta di Altare (459 m a.s.l.), in northern Italy, and to the

East by the Godovič Pass (850 m a.s.l.), in Slovenia. Several sub-alpine mountain ranges surround the Alps, including the Jura

mountains and the Massif Central to the West, the Black Forest and the Bohemian Forest to the North, the Dinaric Alps to

the East and the Apennines to the South. The Alps, one of the major mountain ranges in Europe, are characterized by diverse

climate features influenced by several large-scale weather regimes (Schär et al., 1998; Auer et al., 2005; Panziera et al., 2015).120

Moreover, the complex topography of the Alps and the surrounding mountain chains induce several additional effects on the

local climate. These include orographic lifting and the related rain-shadow effect, air channeling and blocking contributing to

phenomena such as föhn winds or thermally driven orographic winds(Serafin and Zardi, 2011; Laiti et al., 2014; Giovannini

et al., 2017), influence on temperature patterns through elevation gradients (Auer et al., 2007; Marchetti et al., 2017).
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Figure 1. Overview of the Extended European Alpine Region (EEAR). The orography is based on the Copernicus Digital Elevation Model

EEA-10 (https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model).

Also, the southern part of the region stretches into the Mediterranean Sea, another area identified as a climate change125

hotspot (Hartmann et al., 2013). The presence of these two climate change hotspots, namely the Alps and the Mediterranean

Sea, enhances the vulnerability of the region to climate impacts and further motivates the analysis of climatic patterns from

observations.

2.2 Data Collection

EEAR-Clim includes time series of daily mean, maximum and minimum air temperature (indicated respectively as T , Tmax,130

and Tmin) and total precipitation (P ). Data were collected from different global, national, regional and local providers across

the EEAR, also exploiting the availability of newly digitized time series. Table 1 summarizes the data providers and the

number of stations for each country of the region, as well as the amount of time series for each variable and the starting

time of observations. Most of the data are distributed by national providers, except in Italy where meteorological stations are

operated by local and regional institutions. Bosnia-Herzegovina faces challenges in the availability of daily climate series due135

to historical issues related to the dissolution of the former Yugoslavia (Auer et al., 2005). However, a few time series from

that country were obtained through the Global Historical Climatology Network (GHCN) (Vose et al., 1992). Fig. 2a shows

the distribution of station availability as a function of the minimum length of their time series, grouped in 10-year increments,

considering all available data from 1870 to 2020. For a few stations, records extend for almost 150 years and date back to the

mid-18th century. About 50% of the available time series measuring at least one variable cover a 30-year timespan, long enough140

to capture key climatological features. Generally, the availability of time series rapidly decays for periods longer than 60 years

for air temperature, and 90 years for precipitation. Fig. 2b instead shows the overall distribution of available time series during

the entire observation period, highlighting precipitation as the variable with the largest number of available stations. The sudden

increase in station availability from the early 1990s is due to the combined effect of increasing deployment of new automatic
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Table 1. Overview of available stations for each data provider and variable. Column "STARTING YEAR" reports the starting year of the

series. "OPEN DATA" flag shows whether data are freely available, upon provider’s policy.

COUNTRY PROVIDER TOTAL T Tmax Tmin P STARTING YEAR OPEN DATA

Austria Bundesanstalt für Geologie, Geophysik, Klimatologie und Meteorologie (Geosphere) 505 496 495 495 475 1852 yes

Hydrographische Archivdaten Österreichs (eHYD) 1021 607 0 0 881 1969 no

Bosnia Herzegovina Global Historical Climatology Network (GHCN) 2 2 2 2 2 2001 yes

Croatia Državni HidroMeteorološki Zavod (DHMZ) 18 18 18 18 18 1857 yes

Czech Rep. Český HydroMeteorologický Ústav (CHMU) 72 13 11 11 71 1961 yes

France Météo-France 1120 868 888 888 803 1922 yes

Germany Deutscher WetterDienst (DWD) 1074 251 245 245 1056 1781 yes

Hungary Országos Meteorológiai SZolgálat (OMSZ) 199 39 39 39 186 1901 yes

Italy Agenzia Regionale per la Protenzione dell’Ambiente del Friuli Venezia Giulia (ARPA FVG) 188 170 170 171 178 1991 yes

Agenzia Regionale per la Protenzione dell’Ambiente della Lombardia (ARPA Lombardia) 450 332 337 336 438 1763 yes

Agenzia Regionale per la Protezione Ambientale del Piemonte (ARPA Piemonte) 323 303 303 303 314 1913 yes

Agenzia Regionale per la Prevenzione, l’Ambiente e l’Energia dell’Emilia-Romagna (ARPAE) 519 367 368 367 467 1961 yes

Agenzia Regionale per la Protezione dell’Ambiente Ligure (ARPAL) 201 186 169 169 193 2002 yes

Agenzia Regionale per la Prevenzione e protezione Ambientale del Veneto (ARPAV) 303 245 245 245 268 1956 no

European Climate Assessment & Climate (ECA&D) 63 10 10 10 62 1813 yes

Fondazione Edmund Mach 9 9 9 9 8 1983 no

Meteo Aeronautica Militare (Meteo AM) 24 20 20 20 20 1813 no

MeteoTrentino 181 176 175 175 159 1920 yes

Provincia Autonoma di Bolzano 218 189 187 187 99 1920 yes

Regione Marche 113 79 79 79 50 1951 yes

Regione Toscana 310 180 180 180 305 1916 yes

Regione Umbria 42 35 35 35 40 1916 yes

Regione Autonoma Valle d’Aosta 78 78 78 78 72 1866 yes

Slovakia Slovenský HydroMeteorologický Ústav (SHMU) 103 17 17 17 98 1991 yes

Slovenia Agencija Republike Slovenije za Okolje (ARSO) 467 167 172 172 457 1960 yes

Switzerland MeteoSwiss 1329 629 586 594 1149 1863 no

EEAR 8932 5486 4838 4845 7869

weather stations (WMO, 2008) and missing digitization of pre-1990 records. Despite plots in fig. 2 might suggest that shorter145

time series cover the most recent period, this is not always true in practice. Indeed, each time series has an independent time

extent, leading to a very complex time structure of the dataset, challenging to show in a clear way given the high amount of

stations.

Fig. 3a depicts the spatial distribution of stations measuring at least one variable, highlighting the amount of nearest neigh-

bors within 10 km radius and their density vs. elevation. The distance between stations is a useful metric to qualitatively150

assess the network density, providing an indication of how the densest areas are spatially distributed. The spatial density of

weather stations is highly variable during the whole period. However, during 1991-2020 the average density is about one station

every 6.8 km2, the highest values ever reached by observational datasets over the Alpine region. Switzerland, the Northern

Apennines, and the main Alpine range are characterized by the highest density of stations, each of them having at least 10

neighboring stations within a 10 km radius. This high density is more appreciable when compared to other areas, such as the155

French pre-Alps or the Po Valley. However, the requirement of a minimum density of 5 neighboring stations within a 10 km
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Figure 2. Distribution of stations by time series length (a) and time (b). Coloured lines identify each variable: mean (in red), maximum and

minimum (in green) air temperature, and precipitation (in light blue). In a) the minimum time series length, grouped into 10-year increments,

up to 2020 is represented. For example, at 30 years, the diagram shows the number of stations with at least 30 years of data, irrespective of

the specific time span covered. In b) the gray shaded area shows the total number of stations with at least one measured variable in the year.

radius is met by 70% of the stations across the whole EEAR. The southeastern part of the domain (Croatia) is the area char-

acterized by the lowest density of stations. This is due to restrictions on local data providers and missing daily measurements.

Fig. 3b shows the number of stations by elevation and the respective covered area, considering all stations with at least one

variable measured and 100-m elevation ranges. More than 50% are located below 500 m a.s.l., with a relatively high percentage160

of 40% between 500 and 1000 m a.s.l., and about 10% of them are above 1500 m a.s.l. Despite the varying distribution with

elevation, the density of stations per area in these elevation ranges is comparable, which is in line with the average density over

the EEAR. Fig. 4 shows the spatial distribution of the stations in the EEAR, highlighting for each station the time coverage, in

years, over the measurement period. Clearly, it confirms above considerations in terms of inter-stations distance (fig. 3a), but

it also highlights some aspects typical of each variable. It is evident the higher spatial resolution of the rain-gauge network, as165

well as the longer time extent of precipitation time series. Air temperature stations show a lower density, particularly in the area

surrounding the Alps, such as Germany and Slovenia. Moreover, a different coverage of Austria among the air temperature

variables time series is due to the availability of only mean temperature measurements for eHYD data provider.

3 Methods

The twofold QC-homogenization process adopted here involves several steps, illustrated by the flow-chart in fig. 5 and ex-170

plained in detail in the subsections indicated therein.
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Figure 3. Horizontal and vertical distribution of stations within the EEAR. In a) for each station with at least one measured variable, the

color scale highlights the number of nearest neighbors within a ten km radius. In b) green bars show the number of stations in each 100-m

elevation band, while the blue line represents the respective area covered, based on EU-DEM 1.1.
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Figure 4. Stations distribution for mean, minimum and maximum air temperature, and precipitation. The colorbar indicates the length of the

time series expressed in years. Time series exceeding 30 years are shown with the same color (the darkest blue).

8



Raw Data

Data Processing (3.1)

Internal Consistency (3.2):

-range check

-consistency tests

-outliers detection

Time Consistency (3.2):

-repeated values

-time step

Manual checking (3.2)

Spatial consistency (3.3):

-Isolated wet/dry reports test (3.3.1)

-Anomaly-based reconstruction test (3.3.2)

QC Time Series

Single Monthly QC Time Series

Breakpoint detection (3.4):

-Climatol (v4.0 Guijarro 2017)

-ACMANT (v4.4, Domonkos 2015)

-RH Test (v4, Wang et al. 2007)

Breakpoints Detected?
Homogeneous

Time Series

Breaks Comparison (3.5):

(2 out of 3 methods)

(±2 Years)

Common Breakpoints?

(Daily) Correction

(Quantile Matching) (3.5.1)

Homogenized

Time Series

No

Yes

No

Yes

QUALITY CONTROL HOMOGENIZATION

Figure 5. Flow-chart of QC and homogenization procedures. Numbers in brackets represent the subsections in which the corresponding

method is presented.

3.1 Data Processing

Data collected from different sources undergo preliminary inspection to identify and address potential issues related to mea-

surement, recording, digitization, transmission, and processing. Data from each source are provided with their own format and

peculiarities; hence, initial standardization is essential. Accordingly, data are first converted into a common format, ensuring175

consistency across the dataset. Proper labeling of missing values is verified by comparing them with quality codes in the meta-

data when available. Daily time series provided at hourly to sub-hourly temporal resolutions, were derived by averaging air

temperature data and computing precipitation totals according to the daily period definition adopted by the data provider’s

procedures. Data are subsequently checked for possible duplicate time stamps and missing dates. Time series shorter than one

year or without valid data are removed. This pre-processing phase is useful as a preliminary screening before QC procedures.180
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After this stage, stations metadata are merged into comma-separated value (.csv) files, one for each variable. Each file also

includes information about the station name, latitude, longitude, elevation, data provider, country and a unique alphanumeric

code identifying each station.

3.2 Intra-stations Quality Control

Quality control within time series aims at assessing internal and temporal consistency of time series, following the criteria185

suggested by the World Meteorological Organization (WMO) (WMO, 2017, 2018), and integrating methods proposed by

various authors (Cerlini et al., 2020; Crespi et al., 2018; Curci et al., 2021; Durre et al., 2010; Faybishenko et al., 2022;

Fioravanti et al., 2016, 2019; Isotta et al., 2014; Matiu et al., 2021) with new add-ons. The selection and application of these

methods depend on the specific variable and its statistical distribution. A summary of intra-stations QC tests is reported in

table 2. The selected tests are run independently and automatically, generating flags for each observation to highlight anomalous

Table 2. Resume table of all the main tests applied to check intra-stations consistency.

TEST DESCRIPTION PARAMETERS

Time consistency

Repeated values Repeated values for 5 or more consecutive days T,Tmin,Tmax,P

Repeated zeros Repeated zero precipitation values for 6 or more consecutive months P

Time step |Xt −Xt−1| ≤ 20°C T,Tmin,Tmax

Internal consistency

Range check −50°C ≤X ≤ 50°C T,Tmin,Tmax

0mm≤X ≤ 500mm P

First consistency test Tmin ≤ T ≤ Tmax T,Tmin,Tmax

Second consistency test 0°C < (Tmax −Tmin)< 30°C Tmin,Tmax

Outliers detection

MAD method SDO =

∣∣∣∣∣ X −median(X)

median(|X −median(X)|)

∣∣∣∣∣> 3 T,Tmin,Tmax

Percentile-based method P > 9p95 if T ≥ 0 | ∄T P

P > 5p95 if T < 0 P

190

values saved in log files. Abnormal values are manually inspected in a conservative way, i.e. flagging as missing only the

values that are definitely erroneous and avoiding the removal of valid observations. In these cases, the decision is supported

10



by information available from meteorological archives and the agreement among quality flags. The time consistency check

examines the rate of change of data over time through two tests. The repeated values test inspects sequences of identical

readings prolonged for more than five days, which is crucial for identifying data entry errors. In the case of precipitation data,195

extended sequences of 0 mm, possibly due to erroneous transcription of missing data (Peterson et al., 1998), are identified

and replaced with missing value flags if they exceed 180 days. In addition, a step check is applied to air temperature data,

comparing consecutive temporal changes to the step limit value of 20°C, equal to the maximum permitted day-by-day variation.

This ensures that sudden, unrealistic jumps in temperature readings are flagged and reviewed for data quality issues.

The internal consistency tests aim to identify major errors in time series from inspections of data within reasonable ranges.200

In particular, the range check evaluates whether daily measurements fall within physically consistent ranges based on historical

records (WMO, 2017). Air temperature data are validated against extreme values of -50°C, close to the minimum record of

-49.6°C on 10 February 2013 in Busa Fradusta (Pale di San Martino, Italy), and 50°C, which includes the highest record of

45.9°C on 28 June 2019 in Gallargues-le-Montueux (France). Similarly, the highest record of 948.4 mm recorded on 7 October

1970 in Genoa Bolzaneto (Italy), is considered in setting precipitation thresholds. However, because of uncertainties related to205

precipitation measurements, conservative thresholds of 0 and 500 mm are set.

Consistency check tests assess the relationship between two or more parameters, comparing observations to evaluate physical

and climatological consistency (WMO, 2017). Specifically, two consistency checks compare mean, maximum and minimum

air temperature. One evaluates whether the mean temperature falls between its minimum and maximum daily values. The other

method focuses on the difference between minimum and maximum temperatures, evaluating whether it is non-zero and within210

a given threshold, set at 30°C, to capture realistic temperature variations. Data corruption or measurement errors can produce

outliers, i.e. observations that significantly deviate from the others (Aggarwal, 2017; Hawkins, 1980). Outlier detection is

aimed at identifying statistical anomalies within the distribution of time series values, and it is the test that requires the most

careful attention. Thus, an ex-post manual verification is always recommended.

In the literature, mean and standard deviation are indexes conventionally used to detect outliers, assuming a normal distri-215

bution of data. However, the presence of outliers and skewed data distributions can compromise the effectiveness of these two

metrics. A typical solution to address the issue of skewness is data symmetrization, such as the application of a Box-Cox trans-

formation (Rayens and Srinivasan, 1991), although this method may not reliably identify outliers. A more robust alternative

for outliers detection is the use of the median and the median absolute deviation (MAD). Indeed, the median is less sensitive to

the presence of outliers (Leys et al., 2013; Hunziker et al., 2018), and it can be easily adapted to skewed distributions without220

losing robustness (Meropi et al., 2018). In this study, outliers of air temperature data are detected using median and MAD, as

suggested by Leys et al. (2013). The Stahel-Donoho outlyingness SDO (Pavlidou and Zioutas, 2014) is adopted: an outlier is

detected if the SDO value exceeds a predefined threshold of 3, according to a conservative outliers removal (Miller, 1991). In

the case of precipitation data, detection methods often rely on upper percentile-based thresholds (Cerlini et al., 2020). Here,

we consider two different thresholds, respectively 5 and 9 times the 95th percentile, contingent upon the availability and the225

sign of air temperature data for the tested time series.
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3.3 Study of Spatial Consistency

After intra-stations QC, the resulting time series undergo fully automatic spatial consistency tests, and data flagged with

warning flags are automatically replaced with missing values. The spatial consistency tests are crucial as they identify further

inconsistencies that were not detected by previous checks. The tests compare the records of each time series, called target230

stations, with those of nearest neighbours, called reference stations. However, when daily time series of different stations

are compared, the issue of time shifting may arise. Indeed, observational times may differ among different stations and data

providers, especially for precipitation data, hindering the comparability of daily records (Schmidlin et al., 1995; Kunkel et al.,

2005; Reek et al., 1992). The time shifting issue is faced by a three-day moving window comparison, i.e. each daily value

in the target station is compared to those of neighboring stations on the previous, current and next day. Thus, this approach235

effectively addresses potential time shifts in the assignment of 24-hour accumulated rainfall, providing robust results even in

cases of partial overlap between target and reference data.

Table 3. Overview of parameters used to select reference time series for spatial QC and breakpoints detection. Geographic distance, in

km, between station points is computed by the R package geosphere (Hijmans et al., 2021). The elevation difference parameter, expressed

in m, is used to reject candidate stations located at elevations too different from the target station. The number of surrounding reference

stations defines the lower and upper limits of candidate stations that can be selected. Values on parenthesis show specific thresholds used for

precipitation data. Values labelled as "N.A." refer to parameters not considered when selecting reference time series.

PARAMETER QUALITY CONTROL HOMOGENIZATION

Distance [km] 50 100

Elevation difference [m] 100 (N.A.) 300

Pearson’s correlation coefficient 0.8 0.9 (0.8)

Valid data [%] 80 70

Time length [Yr] N.A. 30

Number of surrounding reference stations 3 - 10 4 - 25

Before the application of the tests, candidate reference stations are selected based on specific criteria outlined in table 3.

Only stations within a 50-km radius around the target station are considered. In the case of air temperature time series, stations

with an absolute elevation difference exceeding 100 m are rejected. Further selection criteria include a Pearson’s correlation240

coefficient threshold of 0.8 and a maximum allowable missing data percentage of 20% over the common period with the target

station (Alexander et al., 2006; Toreti and Desiato, 2008). Typically, a set of a minimum number of 3 and a maximum of 10

reference stations is identified for each target station. When a set includes more, only the closest 10 are retained. Conversely,

if fewer than three candidates meet the criteria, no test is applied.

12



3.3.1 Wet and Dry Isolated Reports Test245

This test is applied solely to precipitation time series, following Isotta et al. (2014). The main goal is to assess whether wetness

or dryness daily conditions observed at the target station are corroborated by the reference time series. The distinction between

wetness and dryness depends on whether the total precipitation exceeds a given threshold, defined as in Isotta et al. (2014).

Wetness conditions at the target station are defined when the daily precipitation amount exceeds a threshold depending on the

distance between the target and the closest reference station, as well as the period of the year. The threshold is computed as250

follows:

thp = fwd + fmin
dmin

dth
(1)

where dmin is the distance between the target and reference station, dth is the distance threshold, here set to 15 km (Isotta et al.,

2014), fmin and fwd are constants, both expressed in mm. The test is applied only if dmin does not exceed a tolerance value

equal to dth. However, during the convective season, from May to September, the tolerance value, but not dth, is increased to255

20 km to account for the higher variability associated with that season, although dth remains unchanged. The constants fmin

and fwd are 3.2 mm and 0.3 mm during the convective period and 2.7 mm and 0.3 mm otherwise. The test confirms wetness

conditions at the target station if at least one reference station records a precipitation amount higher than 0.3 mm within a

three-day moving window centered on the tested day.

The procedure for testing dryness conditions mirrors the wetness case but with reversed thresholds. According to Isotta et al.260

(2014), dry conditions at the target station are defined when the daily precipitation amount is below 0.3 mm. For the reference

stations, the threshold is computed using eq. (1), but with fwd increased to 0.8 mm. The test confirms dryness conditions at the

target station if, within the same three-day moving window, at least one reference station records a precipitation amount lower

than 0.3 mm. When isolated dry or wet conditions are detected, the respective values at the target station are flagged as missing

data.265

3.3.2 Anomaly-based Tests

Anomaly-based tests focus on climatological anomalies, i.e. deviations of observed data from their long-term average. These

tests are applied to the time series of all the variables including at least 30 years of data. The selected reference time series

are limited to the time extent of the target station. The resulting set of time series is used to compute a daily climatology by

averaging the values over all years and using a moving window centered on the considered day. The window length depends270

on the variable considered. In the case of air temperature, a 15-day moving window is used, while for precipitation, zero values

are excluded, and the window length is increased to 30 days. The daily climatology is computed using the ts2clm function

from the R package heatwaveR (Schlegel and Smit, 2021). Finally, daily anomalies from climatologies are computed for each

target station.

The first test, known as the corroboration method, follows Durre et al. (2010) and Curci et al. (2021). Anomalies at the275

target station are compared to those at the reference stations using a 3-day moving window centered on each day, assessing
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whether for at least one reference station the discrepancy is below a given threshold. The threshold is determined through

sensitivity tests on raw time series, aimed at finding the optimal value that allows both the successful detection of previously

identified outliers and the reduction of false outliers flagging. The selected value is set at 10◦C for air temperature and 50 mm

for precipitation. If the target station anomaly is not corroborated by any reference time series anomalies, the daily value is280

flagged as an outlier. An additional control for precipitation data consists in computing the relative difference between target

and reference time series anomalies. If the relative error exceeds 50%, the suspicious anomalous values are labeled as outliers.

The second test, based on methods suggested by Matiu et al. (2021) and Crespi et al. (2018), reconstructs target station

values averaging the quantities xr,j computed for each reference station j:

xr,j = x′ + yanom,j −xanom (2)285

where xanom and yanom,j are the anomalies of the target and reference station j, respectively, computed following the same

procedure as the corroboration method. Here, x′ denotes the target station time series with missing values reconstructed from

neighboring stations using a spatial interpolation approach:

x′
i =


∑

j wj(xi,j+·cfj)∑
j wj

if xi =NA

xi otherwise
(3)

where xi,j are the data from reference time series j for day i, and wj are the weights defined as:290

wj = e
− (1−rij

2)
τ2
r

log2 (4)

with rij being the correlation coefficient between the target i and reference station j, and τr a constant equal to 0.3. In eq. 3, cfj

is the correction factor, relating the target and reference series based on their climatological conditions. For precipitation, cfj is

the ratio of the averages of daily data between the target (excluding the daily record under reconstruction) and the jth reference

time series. For air temperature, cfj is the difference between these averages. The correction term xi,j+·cfj means xi,j ·cfj for295

precipitation, and xi,j + cfj for air temperature. Finally, the original x and reconstructed xr,j time series are compared using

the same twofold procedure as the corroboration test. This includes the application of the 3-day moving window comparison,

and, for precipitation data, the assessment of whether the relative difference between x and xr,j is below 50%.

3.4 Break Detection Methods

The high density of the dataset allows for a robust assessment of time series homogeneity. However, dealing with a large number300

of time series, homogenization has to be carried out by selected automatic methods. Although an unsupervised homogenization

procedure is not recommended (Aguilar et al., 2003), its implementation is now quite common (Ribeiro et al., 2016), because

most methods exploit iterative inter-comparisons of several nearby and correlated stations (Curci et al., 2021). The application

and comparison of different algorithms is strongly suggested (Toreti et al., 2011; Kuglitsch et al., 2012; Ribeiro et al., 2016;

Brugnara et al., 2023), particularly if station metadata are not available. This approach reduces false break detection and305
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increases confidence in accepting or rejecting breakpoints. Another issue related to dataset homogenization is the high amount

of computational resources required. In this respect, the best solution is to run break detection methods on single stations to

optimize the process - i.e., to reduce the computational load and increase the reliability of detected inhomogeneities.

The selected methods for break detection have to be accurate and reliable in detecting breakpoints, permit running in auto-

matic mode, given the large amount of stations, tolerate missing values without limitations, and allow homogenization of time310

series without restrictions in time or quantity. After careful comparisons among the various options offered in the literature,

for the purpose of the present work, we adopted three automated methods satisfying the above conditions, namely Climatol,

ACMANT and RH Test.

Climatol is a relative homogenization method based on the Standard Normal Homogeneity Test (SNHT) (Alexandersson,

1986), available as an R package (Guijarro, 2023). In Climatol, a breakpoint is detected if SNHT statistics returns a value over315

a given threshold. Here the default the SNHT threshold of 25 is used for air temperature. For precipitation, following Guijarro

et al. (2023), we set a lower value of 15, given the higher variability of precipitation and the greater difficulty in detecting

inhomogeneities.

ACMANT (Adapted Caussinus-Mestre Algorithm for the homogenization of Networks of climatic Time series: Domonkos,

2015 and Domonkos and Coll, 2017b) is a fully automated method, inheriting the detection process from the PRODIGE method320

(Caussinus and Mestre, 2004). The number of breaks is estimated with the Caussinus-Lyazrhi criterion (Caussinus and Lyazrhi,

1997), and inhomogeneous periods are corrected using the ANalysis Of VAriance (ANOVA) method. When run in automatic

mode, ACMANT requires a set of input parameters and settings concerning outliers filtering, the output format, and the snow

season period for precipitation. Here, the snow season is set from November to May, the output files are kept in the default

format and the program is run ignoring outliers filtering, because outliers are already removed during the QC process described325

in the previous sections.

The third method we adopted is RH Test (Wang, 2008), suggested by the Expert Team on Climate Change Detection and

Indices (ETCCDI, https://etccdi.pacificclimate.org/)Ṫhis method detects breakpoints using a penalized maximal T-test and

requires a reference time series provided by the user, unlike other methods. Here, reference time series xref are computed as

the weighted mean of candidate references x:330

xref =

∑
jwjxj∑
jwj

(5)

where wj are the weights, computed as in eq. (4). Detected breakpoints in a time series have to be all significant. Otherwise, the

program should be rerun after removing non-significant breakpoints, and the procedure has to be repeated until all the detected

breakpoints are labeled as significant.

The above methods are among those ranked best in comparative studies of different homogenization approaches, such as the335

Multi-test project (Domonkos and Coll, 2017a; Guijarro et al., 2023). Their use is documented in several studies concerning

different climate variables (Luna et al., 2012; Mamara et al., 2013; Azorin-Molina et al., 2016; Chimani et al., 2018; Hunziker

et al., 2018; Squintu et al., 2019; Brugnara et al., 2023). Additionally, all three methods have a high tolerance for missing

values.
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3.5 Detection of inhomogeneities340

All the above methods employ a relative breakpoint detection approach, i.e. using information from a set of neighboring

stations. Homogeneity methods are run on single time series, monthly aggregated, with at least 30 years of data and 70% of

valid observations (Wijngaard et al., 2003). These conditions are also adopted when selecting the set of reference stations for the

homogenization process, as reported in table 3. Reference stations are further selected based on horizontal distance, elevation

difference, and time correlation, as reported in table 3. Specifically, reference stations must be located within a horizontal345

radius of 100 km centered on the test station. An elevation difference threshold of 300 m was chosen, a value included within

the range of 200-500 m commonly adopted in the literature (e.g. Buchmann et al. (2022)). Reference time series are further

selected based on the Pearson’s correlation coefficient of first differences, compared to the tested time series. The coefficient

is required to be no smaller than 0.9 (Kunert et al., 2024). If no reference station meets this threshold, a time correlation of at

least 0.8 is accepted. In case of precipitation, the thresholds are 0.8 and 0.7, respectively. Homogeneity is tested if at least four350

reference stations can be found. The maximum number of reference stations is set to 25 as an optimal compromise between

the reliability of the procedure and a reasonable computational time for the homogenization process. When this threshold is

exceeded, only time series with a higher percentage of valid data are retained.

Homogenization results obtained by the three methods are analyzed to identify time series requiring corrections as affected

by one or more breakpoints (fig. 5). The assessment of breakpoint significance is based on cross-comparison among candidates355

identified by more than one method to minimize false positives. Hence, following Buchmann et al. (2022), a breakpoint is

considered significant if at least two methods detect it within the same time window, with a tolerance of ±2 years. However,

breakpoints in the first and last two years of the series are rejected because all methods typically struggle with interpreting

changes occurring either at the beginning or the end of time series (Ducré-Robitaille et al., 2003; Resch et al., 2023). In

addition, if multiple breakpoints are detected in the same time series within a two-year period, only the most significant is360

retained based on SNHT and RH Test results.

In view of determining the minimum number of methods required to identify a break as valid, a sensitivity study was

performed. Two configurations were considered: one with all three methods detecting a given breakpoint (named Exp 1) and

another with two out of three methods detecting it (Exp 2). Exp 1 is more restrictive than Exp 2, requiring an agreement

among all methods, which is more difficult to attain given the different performances of each algorithm (Guijarro et al., 2023).365

Note that the Exp 2 configuration closely follows the procedure applied by Brugnara et al. (2023). The results were then

compared with a composite set of homogenized time series provided by MeteoFrance, MeteoSwiss and Histalp (Auer et al.,

2007; Chimani et al., 2023). Exp 1 turned out to be too restrictive, identifying only a low percentage of inhomogeneous time

series (about 10% for precipitation and 26% for temperature). Exp 2 showed an agreement three times higher than Exp 1, and

is therefore adopted here to identify inhomogeneous series.370
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3.5.1 Homogenization

Inhomogeneity in time series related to non-climatic factors generally gives rise to unrealistic oscillations that lead to underes-

timation and reduced spatial coherence of long-term trends, as well as erroneous high variability in climate anomalies (Begert

et al., 2005; Curci et al., 2021; Brugnara et al., 2023; Guijarro et al., 2023). The adjustment of inhomogeneous time series

before their use is then mandatory to provide reliable results of climate analyses.375

Here, time series affected by significant breakpoints are corrected by applying adjustments to each daily value, calculated

from monthly corrections. Inhomogeneous data are corrected conservatively, i.e., data are adjusted only for periods of evi-

dent inhomogeneity. The method used to correct inhomogeneous time series is the quantile-matching technique proposed by

Squintu et al. (2020). This method applies adjustments of different sizes depending on the magnitude of the value to correct.

Thus, as noted by Brugnara et al. (2023), this approach allows for a more robust correction of extreme records compared to380

methods applying the same adjustment to all dates regardless of the recorded intensity. Our approach differs from the original

method suggested by Squintu et al. (2020) in the selection of reference stations and applies only one iteration of the original

algorithm, in agreement with the conservative approach adopted for breakpoint detection. The selection of the reference sta-

tions follows the procedure already used for the detection of breakpoints, but here no limitation is set on the maximum number

of candidate stations. However, the method was designed mainly for temperature data. For precipitation, suitable modifications385

were introduced (see Appendix B for further details). After making corrections, quality control is carried out by applying the

range test to evaluate if adjusted data were still physically consistent. If the corrected values did not pass the test, the correc-

tion is rejected, and the original values are kept. Consistency tests were also applied to temperature data. First, minimum and

maximum temperatures were compared to evaluate if Tmin ≤ Tmax and, if not, they were set as equal. Then, the relationship

Tmin ≤ T ≤ Tmax was assessed. If mean temperature data did not satisfy this condition and both minimum and maximum390

temperature time series are available, T data for the whole time series were computed as the average of Tmin and Tmax. Oth-

erwise, when only minimum or maximum temperature data were available, T data that did not pass the test were set equal to

Tmin or Tmax.

4 Results and Discussion

4.1 Quality Control395

The results of the QC procedure for mean air temperature and precipitation are summarized in table 4 by data provider. Results

are shown in terms of the percentage of missing values before QC, flagged values after the two steps of QC, interquartile

range (IQR) of flagged values, and valid data after QC procedure. On average, the percentage of flagged values is below

1% for mean temperature data. For precipitation, the average value is higher, more than 3%, largely due to the very high

percentage of flagged values for ECA&D data, with percentages still exceeding 1% in a few other cases, such as data from400

Lombardy (ARPA Lombardia) and South Tyrol (Provincia Autonoma di Bolzano). Air temperature time series are affected

by non-negligible quality issues, concerning stations mainly located in Emilia-Romagna (ARPAE), for mean temperature, and
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Table 4. Summary of results after QC process for air temperature and precipitation. Each column shows for each data provider the percentage

of missing data in the raw time series (MISS), flagged values in time, internal and outliers detection phase of quality control (BASE QC),

flagged values during application of spatial tests (SPACE QC), inter-quartile range (IQR) of total flagged values (QC IQR) and valid data at

the end of the process (VALID).

AIR TEMPERATURE PRECIPITATION

PROVIDER MISS BASE QC SPACE QC QC IQR VALID MISS BASE QC SPACE QC QC IQR VALID

ARPA FVG 1.38 0.01 0.01 0.00 98.60 1.79 0.46 0.11 0.20 97.64

ARPA Lombardia 12.26 0.25 0.01 0.20 87.48 9.43 3.14 0.04 0.70 87.39

ARPA Piemonte 0.80 0.01 0.00 0.00 99.19 3.63 0.04 0.05 0.10 96.28

ARPAE 7.54 6.30 0.01 1.90 86.15 13.93 0.20 0.02 0.30 85.85

ARPAL 4.06 0.03 0.00 0.00 95.91 6.13 0.17 0.06 0.20 93.64

ARPAV 1.45 0.65 0.00 0.10 97.90 1.47 0.64 0.03 0.30 97.86

ARSO 2.63 0.60 0.00 0.35 96.77 2.55 0.98 0.04 0.10 96.43

CHMU 86.46 4.06 0.00 0.00 9.48 39.75 0.00 0.00 0.00 60.25

DHMZ 3.42 0.00 0.00 0.00 96.58 27.33 0.06 0.00 0.00 72.61

DWD 2.76 0.01 0.00 0.00 97.23 7.93 0.01 0.01 0.00 92.05

ECA&D 4.31 0.66 0.00 0.85 95.03 0.67 65.10 0.00 61.42 34.23

Fondazione Edmund Mach 6.38 0.11 0.04 0.20 93.47 4.99 0.27 0.19 0.10 94.55

GHCN 9.35 0.35 0.00 0.05 90.30 27.35 0.00 0.00 0.00 72.65

Meteo AM 12.99 0.85 0.00 0.48 86.16 30.01 8.55 0.00 0.03 61.44

MeteoFrance 6.97 0.37 0.00 0.20 92.66 4.66 0.14 0.01 0.10 95.19

MeteoSwiss 3.45 0.05 0.01 0.00 96.49 4.69 0.11 0.04 0.10 95.16

MeteoTrentino 8.79 0.46 0.03 0.30 90.72 8.48 0.46 0.08 0.20 90.98

OMSZ 0.86 0.00 0.00 0.00 99.14 1.40 0.00 0.02 0.00 98.58

Provincia Autonoma di Bolzano 9.60 0.14 0.00 0.20 90.26 20.21 4.88 0.01 0.00 74.90

Regione Marche 3.02 0.62 0.02 0.10 96.34 2.90 0.25 0.01 0.10 96.84

Regione Toscana 3.05 0.32 0.01 0.40 96.62 2.77 0.49 0.05 0.20 96.69

Regione Umbria 16.80 0.15 0.01 0.10 83.04

Regione Valle D’Aosta 1.50 0.03 0.00 0.10 98.47 17.18 0.07 0.05 0.10 82.70

SHMU 2.05 0.01 0.00 0.00 97.94 59.77 0.35 1.13 0.40 38.75

GeoSphere 5.01 0.00 0.00 0.00 94.99 3.96 0.00 0.01 0.00 96.03

eHYD 2.32 0.01 0.00 0.00 97.67 0.73 0.01 0.02 0.00 99.24

EEAR 8.33 0.61 0.01 0.21 91.05 12.33 3.33 0.08 2.49 84.26
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Lombardy, for minimum and maximum temperatures. Data providers with high percentages of flagged values also exhibit high

IQR, suggesting that average statistics for these providers are affected by poor quality of isolated time series.

The final percentage of valid data after QC is, on average, above 90% for mean temperature and 80% for precipitation,405

indicating an overall good quality for most of the periods included in the dataset. Indeed, 90% and 75% of the total missing

data at the end of the QC process, respectively, for air temperature and precipitation, were already missing in the raw time series.

Data providers exhibiting the lowest percentages of valid measurements are primarily located near the domain borders, such as

Czech Republic (CHMU) and Umbria (Regione Umbria, Italy). However, a larger number and extended length of precipitation

series increase the likelihood of detecting missing or no valid data. This observation is supported by two statistical insights: a)410

the amount of valid data in precipitation time series is twice as large as that of air temperature, and b) the density of time series

with minimal or no missing data is higher for precipitation than for temperature (fig. A1). Thus, the removal of about 0.62%

air temperature and 3.41% precipitation issues, on average, and the marginal influence of data removal on the amount of valid

observations, demonstrate that the QC process clearly improved the overall accuracy of the dataset.

4.2 Homogenization415

Fig. 6 shows the distribution of breakpoints from 1961 to 2020 for precipitation, and minimum, mean, and maximum tempera-

ture. Each series cannot include more than one breakpoint per year, allowing us to express the incidence of inhomogeneities as a

percentage of the total number of series available each year. The most prominent peak, observed around the early 1990s, is con-

sistent across all temperature variables and reflects the transition from mechanical to automatic weather stations. A smaller peak

in the mid-2000s corresponds to the installation of technologically advanced automatic stations, i.e. newer stations equipped420

with improved shielding and ventilation systems designed to overcome the issue of temperature overestimation caused by ra-

diation effects (Böhm et al., 2001; Aguilar et al., 2003; Venema et al., 2013). Another notable peak, more pronounced in mean

and minimum temperatures, occurs in the early 1980s. In contrast, the distribution of precipitation breakpoints does not clearly

indicate periods of measurement changes, likely due to fewer detected breakpoints.

Inhomogeneous time series account for about 20% for air temperature records (18.3%, 21.6% and 20.6% for mean, mini-425

mum and maximum temperature respectively), whereas they are fewer for precipitation, i.e. 12% (see Appendix A). The lower

incidence in precipitation series may be attributed to the greater difficulty in detecting breakpoints in these time series, which

are well known to typically suffer from higher noise levels (Gubler et al., 2017), stemming from spatial and temporal vari-

ability in precipitation measurements, as well as from the complexity of accurately measuring precipitation under different

environmental conditions (Peterson et al., 1998). Although the overall number of breakpoints detected in air temperature time430

series is similar, their distribution among data providers, shown in fig. 7, is more variable. Stations located above 2000 m

a.s.l. generally exhibit higher homogeneity (see Appendix A), likely due to fewer time series that are either too short or lack

sufficient references for homogeneity testing. The percentage of time series that cannot be tested due to inadequate reference

stations is negligible, typically ranging from 0.1 to 0.2%. These situations are primarily associated with very-high elevation

sites or regions near domain borders with lower station density.435
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Figure 6. Histogram showing the time distribution of detected breakpoints for the period 1961-2020, expressed as a percentage of stations

with respect to their total amount. The black line represents the 5-year moving-window average.
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Figure 7. Distribution of homogeneous (green), inhomogeneous (red), insufficiently long (blue) and lacking of reference stations (yellow)

time series by data provider for mean, minimum and maximum air temperature, and precipitation. The y-axis indicates the percentage of

stations in each category, while labels within bars show the absolute amounts.
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Fig. 8 shows boxplots of mean daily adjustments applied to each inhomogeneous time series for temperature (mean, maxi-

mum and minimum) and precipitation by the data provider. Providers whose time series are not affected by inhomogeneities, or

require minimal corrections, are omitted. Average daily adjustments generally center around zero, and fall within ±2°C range

for air temperature and ±10mm for precipitation. However, corrections exceeding these ranges are present, albeit infrequently,

as outliers in boxplots for some data providers. France (MeteoFrance), Lombardy (ARPA Lombardia) and Slovenia (ARSO)440

show a higher prevalence of time series requiring nonnegligible corrections for both air temperature and precipitation.
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Figure 8. Boxplots of mean daily adjustments for each inhomogeneous time series by data provider. Each box includes data within quartiles,

and the central line shows the median. Data outside the box, but within 1.5IQR, are represented by upper and lower whiskers. Data exceeding

these thresholds, i.e. outliers, are shown as points. A black line indicates the situation when no correction is required.
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4.3 Dataset Features and User Guide

The new and unprecedented EEAR-Clim dataset developed in this study features key properties that are different from the

state-of-the-art for similar station-based observational products in terms of quality, space-time resolution, and completeness.

Quality improvements, attained through the application of an extensive and accurate procedure, and the increased resolution445

in time and space are expected to provide a more realistic representation of environmental conditions. This has the potential

to positively affect the accuracy of hydro-climate predictions and enhance the reliability of bias-corrected model data (Laiti

et al., 2018). Moreover, a more realistic understanding of climate variables plays a key role in improving our knowledge of the

Alpine climate state and its variability (Hartmann et al., 2013; Begert et al., 2005; Skrynyk et al., 2023).

A quantitative comparison of EEAR-Clim with other existing observational products covering the Alpine region, such as450

APGD (Isotta et al., 2014), E-OBS (Cornes et al., 2018), and HISTALP (Auer et al., 2007), is challenging due to the different

types (e.g., station archives and gridded datasets) and purpose of the datasets. However, a qualitative assessment of strengths

and weaknesses can provide valuable guidance for potential dataset users. The EEAR-Clim dataset significantly increases the

spatial coverage in terms of available time series by more than 30%, compared to those used in the interpolation of gridded

datasets like APGD and E-OBS, allowing for an improved representation of the orographic effects. The higher spatial density455

also allows for an enhanced representation of climate variability with elevation. Indeed, comparing density of stations in

different altitudinal ranges, we found similar values converging to an average density of about 1.5 stations every 10 km2,

implying a rather homogeneous distribution of observations across elevation ranges. A reliable comparison in terms of elevation

distribution with other products cannot be easily achieved: the strong decay of available observations at higher elevations is

widely known (de Jong, 2015).460

The multi-parameter feature of our dataset is rare to find in high-resolution observational products. Though E-OBS and

HISTALP already include meteorological data of several variables, the collection of such a high amount of multi-parameter

observations at daily resolution is really unprecedented and can enhance an integrated assessment of Alpine climate changes

based on a better understanding of interactions between the different variables (Brunetti et al., 2009; Gaffen and Ross, 1999;

Kaiser, 2000; Wang and Gaffen, 2001; Huth and Pokorná, 2005; Beniston, 2006). Another key strength point of EEAR-465

Clim is its rigorous approach to addressing data quality issues. Indeed, despite a quality check is commonly performed in

other observational datasets, the level of detail applied in EEAR-Clim is notably higher. Furthermore, homogenization of high

amounts of time series over large domains as the EEAR is a task rarely performed with the high degree of robustness provided

here. Among other datasets considered, E-OBS and APGD miss to homogenize time series. Overall, our efforts aimed to

homogenize two thirds of air temperature and one fourth of precipitation time series, strongly reducing the heterogeneity of470

the dataset. The exclusion of time series shorter than 30 years from the homogenization procedure, in line with the standard

practices (Wijngaard et al., 2003), prevents the introduction of further uncertainties or algorithm artifacts, and thus enhances

the dataset accuracy.

Our collection efforts also resulted in gathering observations with enough time coverage. About 30% and 47% of air tem-

perature and precipitation time series, respectively, consist of at least 30 years of data. A considerable amount of time series,475
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15-25%, ∼1500-2000 depending on the variable, covers a period of 60 years or more, with about 5% (∼600) of observa-

tions extending up to a century, despite many historical records are unavailable in digital form yet. Though most time series

are relatively shorter compared to historical products such as HISTALP, EEAR-Clim provides a unique station-level detail

without sacrificing temporal extent. Other products show a comparable time extent, such as E-OBS or shorter, APGD, with

EEAR-CLIM, but lack the finer spatial detail preserved here.480

All time series of the dataset can be used to study climate variability, keeping in mind that time series shorter than 30 years

may include potential inhomogeneities. However, the inclusion of about 1600 temperature and 4000 precipitation homogenized

series longer than 30 years, provides a robust foundation for assessing climate trends, representing a significant enhancement

in data availability compared to earlier studies. Users should also pay attention when time series in different areas or eleva-

tions are compared, due to the different techniques and procedures adopted by data providers. This especially involves mean485

temperature, which might be derived by employing different approaches (Baker, 1975; Weber, 1993; Weiss and Hays, 2005;

Villarini et al., 2017), and high-elevation precipitation measurements, whose reliability depends on the availability of heated

rain gauges. The limited access to metadata of all stations of the dataset makes it impossible to identify all these differences

systematically. However, the computation of daily mean temperature from hourly values, when possible, and the robust quality

control procedure applied reduced these discrepancies among data providers, enhancing data confidence.490

Different initiatives of historical data digitization are underway, thus the dataset can be further expanded in terms of data

coverage also beyond the last 60 years. Future research activities could be dedicated to improving the EEAR-Clim dataset

including measurements of other essential climate variables, further enriching its utility for integrated climate assessments.

Despite these possible further updates, making the dataset operational requires funded and permanent projects, open data

access frameworks, as well as supportive European policies. Given the resources and coordination required, a similar initiative,495

typically undertaken by climate services, is out of the scope of our current academic framework.

5 Conclusions

A new observational dataset of air temperature and precipitation at daily resolution for the Extended European Alpine Region

(EEAR), covering the whole available period of measurements, has been presented. The data collection effort resulted in a very

high spatial density and led to a homogeneous regional coverage. This achievement was favored by newly digitized data and500

the collection of datasets from national, regional and local institutions. The EEAR-Clim dataset includes most of the available

stations in the EEAR, managing to increase the density even at higher elevations, which is a typical issue of observational

datasets in topographically complex regions. Furthermore, collecting data from multi-variable measurements and including the

most recent records (updated to the year 2020) are important add-on improvements compared to other available products for

the area. Here, the dataset consists of air temperature and precipitation data, but an updated version also including additional505

variables is planned to be released. Substantial efforts were made to ensure the consistency and quality of the different data

contributions. A deep and extensive quality control was carried out, following WMO criteria in terms of data quality (WMO,

2017), merging different approaches and integrating new techniques aimed at facing all critical issues of rescued data. The QC
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procedure flagged about 5% of total observations, of which 80% are precipitation data. While QC did not significantly affect

the amount of valid data, that is about 90% on average, it improved the overall accuracy. A tailored homogenization procedure510

was performed on quality checked data. The break detection stage was based on three automatic methods: Climatol, ACMANT

and RH Test. The comparison of results provided by these independent procedures ensures reliable identification of significant

change-points, especially when metadata are not available (Fioravanti et al., 2019). Inhomogeneous time series with identified

breakpoints were homogenized using the quantile-matching algorithm, applying adjustments depending on percentiles of the

empirical distribution. The inhomogeneities detected in precipitation time series are fewer than those identified in temperature515

time series, as also reported in other studies (Gubler et al., 2017; Skrynyk et al., 2023). The increased homogeneity at elevations

above 2000 m a.s.l. could be explained by external factors (e.g. a reduced sample of stations) rather than specific accuracy of

high-elevation time series. Breakpoints detection results and adjustments magnitudes were in agreement with other existing

studies focused on areas including the EEAR or its sub-portions (Brugnara et al., 2023; Squintu et al., 2020; Mamara et al.,

2013; Coll et al., 2020). A subset of the time series covering the 1961-2020 period was used as a basis to carry out an extended520

analysis of trends and climate features of both average values and extremes (Bongiovanni et al., in preparation). Additionally, a

high-resolution gridded version of the EEAR-Clim dataset is planned for release. These subsequent analyses and applications

highlight the relevance of the new observational dataset developed in this work as a tool for better understanding Alpine

climate changes over recent decades and improving the reliability of model simulations and future scenarios. The procedure

developed within this work can be readily implemented over other areas or time periods, adapted to time series at different525

time frequencies and extended to other variables, such as relative humidity, wind speed, solar radiation or snow depth.

6 Code and data availability

All computations were performed with the statistical software R version 4.2.1 (R Core Team, 2022). The code is available from

a repository, including the main scripts to read and process data, perform quality control and the main tasks of homogenization.

Most of the contributing institutions agreed to share their data (see table 1). Hence the open data are available from Zenodo530

repository (https://doi.org/10.5281/zenodo.10951609, Bongiovanni et al., 2024) as raw, quality checked and homogenized time

series. For the full dataset, including undisclosed data, please contact the corresponding author.

Appendix A: Additional Material
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Table A1. Summary table of break detection results based on the multi-methods comparison. Amount and related percentages of homoge-

neous, inhomogeneous and not tested time series are reported. Not tested time series are grouped in those with an extent below 30 years and

without enough reference stations.

T Tmin Tmax P

Homogeneous 462 (8.4%) 404 (8.4%) 444 (9.2%) 2710 (34.5%)

Inhomogeneous 1005 (18.3%) 1046 (21.6%) 997 (20.6%) 945 (12.0%)

Length<30yr 4016 (73.2%) 3392 (69.9%) 3391 (70.1%) 4201 (53.3%)

No References 3 (0.1%) 3 (0.1%) 6 (0.1%) 13 (0.2%)

Total 5486 (100%) 4845 (100%) 4838 (100%) 7869 (100%)
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Figure A1. Distribution of time series over valid data percentage for mean, minimum and maximum air temperature, and precipitation.
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Figure A2. Distribution of homogeneous (green), inhomogeneous (red), insufficiently long (blue) and without references (yellow) time series

over elevation for mean, minimum and maximum air temperature, and precipitation. The y-axis indicates the percentage of stations in each

category, while numbers within bars report the absolute amounts.

Appendix B: Correction of Inhomogeneous Precipitation Data

The calculation of adjustments for precipitation time series affected by identified inhomogeneities follows the quantile-based535

procedure suggested by Squintu et al. (2019), but adapted for precipitation data. Daily values below 0.1 mm are not corrected

to ensure consistency and avoid unrealistic results, such as negative precipitation amounts or dry days being converted into wet

days. The computation of the adjustment factor ai,j,q,m (eq. 2 in Squintu et al. (2019)) and the final adjusted value v̄ (eq. 4 and

5 Squintu et al. (2019)) have been modified accordingly. In particular, the adjustment factor ai,j,q,m is computed as follow:

ai,j,q,m =

bq,m

raft
j,q,m

si,q,m

rbefj,q,m

(B1)540

Instead, the final adjustments are computed as the median over j values:

ṽj = v ∗ a ˜j,q,m (B2)

thus simply converting the temperature formula from additive to multiplicative, making it suitable for precipitation data.
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Auer, I., Böhm, R., Jurković, A., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K.,

Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J.-M., Begert, M., Brazdil, R., Bochnicek, O., Cegnar, T., Gajić-Čapka, M., Zaninović,
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