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Response to Reviewer #1 

The reviewer comments are in black, and our answers are in red. 

This paper compiled a comprehensive inventory of rock glaciers across the entire Tibetan plateau 

except Himalaya and Hindu Kush. The inventory of rock glaciers is of significant importance for the 

study of periglacial landforms.  

We thank you for commending our comprehensive inventory for its significance for periglacial studies.  

However, the claim of the article is to compile an inventory of rock glaciers across the entire Qinghai-

Tibet Plateau, yet it lacks a systematic inventory of the Himalayas and the Hindu Kush, where there 

are numerous rock glaciers and the most extensive development of such landforms. The article 

mentions data limitations as the reason for not completing inventories in these two regions. However, 

it is feasible to achieve inventory in these regions through visual interpretation using integrated data 

from ESRI, Bing, Google Earth, etc. Moreover, some researchers have already achieved inventory in 

the Himalayas (Jones). Therefore, the main issue with this inventory is its lack of completeness. If the 

article is to be published, the first step should be to complete the inventories in these two regions.  

In section 2 Study area, lines 105-107, we specify our study area: “We selected all the 13 subregions 

as study areas for this work, thus covering most of the Tibetan Plateau (Fig. 1), as well as the Qaidam 

basin, which was not a subregion in Bolch et al. (2019b)’s study.” The Himalayas and the Hindu Kush 

were not included in this study and this version of inventory. We have changed the phrasing from 

‘entire plateau’ to the ‘the most extensive plateau-wide inventory’ consistently throughout this 

manuscript.  

However, the inclusion of the Himalayas, the Hindu Kush, and the Tien Shan regions will be our next 

goal to compile a rock glacier inventory for High Mountain Asia, as is stated in section 6.3 Significance 

of the inventory and future work, lines 506-507: “We will extend our inventory in the future by 

including the Himalayas, the Hindu Kush, and the Tien Shan regions to compile a comprehensive 

inventory for High Mountain Asia (Figure S6).” 

Other technical issues are as follows: 

To include contextual information around rock glaciers, a buffer zone of 1500 meters was set. How 

the size of this buffer zone is chosen and its impact on model performance? 
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The inclusion of a buffer zone plays a pivotal role in enhancing the performance of our model by 

enabling it to learn contextual information surrounding rock glaciers. This augmentation facilitates 

more accurate boundary delineation and reduces false positives by leveraging the background samples 

present in the surrounding environment (denoted as zero values in the label images). For a more 

comprehensive understanding of this methodology, reviewers and readers are referred to Huang et al. 

(2018, 2020). 

The selection of an appropriate buffer zone size is equally critical. A buffer zone that is too small may 

fail to provide sufficient contextual information, resulting in an increased occurrence of false positives. 

Conversely, an overly large buffer zone risks inundating the model with excessive background 

information, potentially compromising its ability to accurately detect rock glaciers. In previous studies, 

a 300-meter buffer zone was deemed suitable for thaw slumps (Huang et al., 2020). Given the larger 

sizes of rock glaciers, we conducted experiments testing different buffer zone sizes ranging from 500 

meters to 2000 meters. Our findings indicated that a buffer zone of 1500 meters yielded the optimal 

results.  

We have supplemented more information in main text, section 4.1.1 Deep learning mapping, lines 194-

199: “To incorporate context information from the surrounding area of a rock glacier, we established 

a buffer area to extract a subset of Planet images. A too small buffer area may fail to provide sufficient 

contextual information, resulting in an increased occurrence of false positives; while an overly large 

buffer area risks inundating the model with excessive background information, potentially 

compromising its ability to accurately detect rock glaciers (Huang et al., 2018, 2020). We conducted 

experiments with buffer area sizes ranging from 500 meters to 2000 meters. The results showed no 

significant increase in the IoU metric once the buffer area exceeded 1500 meters. Therefore, we 

selected 1500 meters as the buffer area.” 

Huang, L., Liu, L., Jiang, L., and Zhang, T.: Automatic mapping of thermokarst landforms from remote 

sensing images using deep learning: A case study in the Northeastern Tibetan Plateau, Remote Sensing, 

10, 2067, https://doi.org/10.3390/rs10122067, 2018. 

Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map retrogressive thaw slumps 

in the Beiluhe region (Tibetan Plateau) from CubeSat images, Remote Sensing of Environment, 237, 

111 534, https://doi.org/10.1016/j.rse.2019.111534, 2020. 

Rock glaciers are minimally represented in imagery, which theoretically poses a severe issue of data 

imbalance and could result in numerous false positives. This concern was also indicated by validation 

https://doi.org/10.3390/rs10122067


 3 

results. However, upon examining the prediction outcomes, there weren't too many false positives 

among the 48,767 candidate polygons and 44,273 rock glaciers. How was this issue addressed? 

Firstly, to address the false positive issues, we supplemented our training dataset with negative samples, 

incorporating non-rock glacier polygons to address potential misclassifications by the deep learning 

model, particularly when encountering landforms exhibiting similar characteristics to rock glaciers. 

These non-rock glacier polygons encompass diverse features such as debris-covered glaciers, rock 

avalanches, and water bodies. This operation can help significantly reduce the false positives. We have 

added the relevant information in section 4.1.1 Deep learning mapping, lines 191-194: “We 

supplemented our training dataset with negative samples, incorporating non-rock glacier polygons to 

address potential misclassifications by the deep learning model, particularly when encountering 

landforms exhibiting similar characteristics to rock glaciers. These non-rock glacier polygons 

encompass diverse features such as debris-covered glaciers, rock avalanches, and water bodies.” 

Secondly, during the manual improvement phase, we not only addressed false positives through 

removal (the 'Remove' operation), but also rectified false negatives by adding missing detections (the 

'Retrieve' operation). The results are summarized in Table 3, where the final numbers demonstrate 

equilibrium between the two. Hence, the number of rock glaciers predicted by the deep learning model 

does not exceed by far the number of eventually inventoried rock glaciers. 

There are significant differences in F1 scores among different sub-regions, and although some regions 

with fewer rock glaciers also have large areas, how does this result support the earlier conclusion about 

the model having good generalization ability?  

We acknowledge that the predictive performance of the deep learning model varies across different 

subregions, particularly in areas with large extents but few rock glaciers, such as the Tibetan Interior 

Mountains. These regions tend to exhibit a higher ratio of false positives over true positives, thereby 

potentially compromising overall accuracy. However, leveraging data from six local inventories, our 

deep learning model demonstrates good performance across the extensive Tibetan Plateau. Notably, 

in certain subregions such as Hengduan Shan, Karakoram, Nyainqêntanglha, and Western Pamir, our 

model achieves F1 scores of up to 0.6. This level of good performance underscores the model's 

commendable generalization ability, considering the inherent challenges involved in mapping rock 

glaciers. 

In lines 75-77, the authors summarized the inventory of rock glaciers in the Qinghai-Tibet Plateau 

region, which contained a large amount of available inventory data (>20,000 records). However, the 
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authors ultimately selected only a small portion of these as training data (<2,000 records). Why was 

this the case? 

Not all rock glacier inventories are publicly available; detailed information can be found in Table S1. 

While some datasets include links in the 'Source of inventory dataset' column, certain extensive 

inventories, such as those by Zhang et al. (2021, 2023), comprising thousands of rock glaciers, remain 

unpublished. Consequently, our access to rock glacier datasets for training the deep learning model is 

restricted. 

Jones et al.'s rock glacier dataset was not used, because of the incomplete boundaries (only 10% of the 

total 25,000 identified rock glaciers, i.e ~2,070 rock glaciers were manually digitized. This 

incompleteness suggests the high possibility of adjacent rock glaciers not being included in their 

inventory. Therefore, employing this dataset could introduce inaccuracies, as these unaccounted-for 

rock glaciers might be incorrectly treated as negative samples, compromising the performance of the 

deep learning model. 

Additionally, does the training data (4,085 records) mostly consist of rock glaciers from the Alps 

region? Is there evidence to suggest that rock glaciers in the Alps region share similarities with those 

in the Qinghai-Tibet Plateau?  

Referring to Table 1, approximately half of the rock glaciers included as training data analyzed are in 

the European Alps, with the remaining half situated in High Mountain Asia, including one inventory 

in the Tien Shan region. According to the IPA RGIK document, which was developed through 

international communication and cooperation, rock glaciers typically exhibit similar features such as 

front, lateral margins, and ridge-and-furrow topography. This uniformity in characteristics serves as a 

basis for assessing the prediction outputs from our deep learning model across the Tibetan Plateau. 

Given these similarities, our model demonstrates promising predictive capabilities following training 

with data from the Alps, and the good prediction results we have achieved can be the evidence. 

In lines 107-109, please explain the unique characteristics of the Hindu Kush-Himalayas compared to 

other neighboring mountain ranges, as well as the differences between rock glaciers in this region and 

those in other areas.  

The discussion on the difference in characteristics of the Hindu Kush-Himalayas compared to other 

neighbouring mountain ranges is beyond the scope of this study. We have deleted the relevant 

sentences. 
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In line 370, please verify the data on rock glaciers within the Qinghai-Tibet Plateau. As far as I know, 

multiple field expeditions have failed to find rock glaciers near the source of the Yangtze River. 

Our inventory compilation is grounded in remote sensing imagery analysis, leveraging 

geomorphological features such as front, lateral margins, and ridge-and-furrow topography, as outlined 

in the International Permafrost Association (IPA) document (RGIK, 2023). Verifying each of these 

occurrences through fieldwork is impractical given their large number and remote locations. Therefore, 

our approach serves to infer the presence of rock glaciers based on remote sensing methods. 

RGIK: Guidelines for inventorying rock glaciers: baseline and practical concepts (version 1.0), IPA 

Action Group Rock glacier inventories and kinematics, 25 pp, 

https://doi.org/10.51363/unifr.srr.2023.002, 2023. 

In line 80, the authors emphasized the inconvenience of compiling a rock glacier inventory through 

visual interpretation, as it requires strong geomorphological expertise and is labor-intensive and time-

consuming. However, in the end, all data were still inspected and modified through visual 

interpretation, making it inevitable.  

The nature of labor involved in visual interpretation from scratch and our manual refinement process 

based on deep learning output is fundamentally distinct. While we recognize that manual validation 

remains necessary, it's important to highlight that the workload associated with verifying each rock 

glacier identified by the deep learning model is significantly less than visually examining Google Earth 

images across the extensive Tibetan Plateau and mapping them entirely manually. 

Typically, we consider active rock glaciers as evidence of permafrost existence. However, in the 

southeastern part of the Qinghai-Tibet Plateau, a large number of rock glaciers seem to be outside the 

permafrost zone. Please explain the reliability of identifying rock glaciers in these areas.  

We adopt the inventory compilation strategy recommended by the International Permafrost 

Association (IPA) RGIK group (RGIK, 2023), which has formalized a standard document outlining 

the inventorying of rock glaciers based on geomorphological evidence observed in remote sensing 

images, including front, lateral margins, and ridge-and-furrow topography. Additionally, given the 

potential inaccuracies in permafrost data, there is growing interest in utilizing rock glaciers to augment 

permafrost mapping efforts, as highlighted in recent studies (such as the one mentioned in the last 

comment: Hu et al., 2024). 
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RGIK: Guidelines for inventorying rock glaciers: baseline and practical concepts (version 1.0), IPA 

Action Group Rock glacier inventories and kinematics, 25 pp, 

https://doi.org/10.51363/unifr.srr.2023.002, 2023. 

In Figure S4, why did this study not separate multiple rock glaciers based on other datasets?  

For the first version of our inventory, our primary goal is consistency, and as such, we predominantly 

utilized Planet Basemap images for delineating boundaries. We intentionally avoid incorporating other 

datasets to prevent the introduction of inconsistencies. 

The latest research progress in the Qilian Mountains region is missing. Please cite: Hu, Z., Yan, D., 

Feng, M., Xu, J., Liang, S., & Sheng, Y. (2024). Enhancing mountainous permafrost mapping by 

leveraging a rock glacier inventory in northeastern Tibetan Plateau. International Journal of Digital 

Earth, 17(1), 2304077. 

Thanks for the information. We have added this study in our manuscript. We also update the literature 

review Table S1 in supplementary material and Table 5 in main text. 
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Response to Reviewer #2 

The reviewer comments are in black, and our answers are in red. 

This article describes a comprehensive inventory of rock glaciers on the Tibetan Plateau using deep 

learning techniques. The authors also used the recent baseline and guidelines developed by the IPA 

Action Group Rock Glacier Inventories and Kinematics (RGIK). However, they primarily employed 

the geomorphological approach outlined in these guidelines, which requires strong expertise from the 

mappers. 

The authors utilized a large volume of optical images, mainly from Planet images with a resolution of  

4.7 m. The deep learning algorithm processed three bands of these Planet images, which surprisingly 

produced acceptable rock glacier outlines without considering other components (e.g., slope, aspect, 

solar radiation, surface roughness) in the model or the movement of areas (displacement). The 

kinematic approach, also proposed by RGIK, was not considered in delineating the rock glacier areas. 

To validate the deep learning outputs, existing rock glacier inventories were used, which are assumed 

to be of high quality. The manuscript presents very interesting findings; however, this study needs 

some clarification. Therefore, I recommend that this paper undergo major revisions. 

Thank you very much for your constructive comments. We have revised our manuscript accordingly 

and provide our point-to-point response below. 

Specific comments 

It seems that the deep learning algorithm is not the most efficient since it cannot support multiple 

datasets. What is the reason for choosing this method? What is the advantage of using it? 

Deeplabv3+, the architecture adopted in this work, is a powerful and widely used deep learning model 

for semantic segmentation task with the capabilities of capturing multi-scale contextual information 

and sharp object boundaries (Chen et al., 2018). In previous studies, this model has shown good 

performance for mapping periglacial landforms, e.g., thaw slumps (Huang et al., 2020) and rock 

glaciers (Hu et al., 2023), in regional scale. Relevant information can be found in lines 178-180: 

“DeepLabv3+, introduced by Chen et al. (2018), was selected as the neural network architecture for 

the deep learning model, with Xception71 serving as its backbone (Chollet, 2017). DeepLabv3+ is 

specifically designed for semantic segmentation tasks and has been proven to excel in mapping 

permafrost landforms (Huang et al., 2020; Hu et al., 2023).” 
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Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.: Encoder-decoder with atrous 

separable convolution for semantic image segmentation, in: Proceedings of the European conference 

on computer vision (ECCV), pp. 801–818, https://doi.org/10.48550/arXiv.1802.02611, 2018. 

Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map retrogressive thaw slumps 

in the Beiluhe region (Tibetan Plateau) from CubeSat images, Remote Sensing of Environment, 237, 

111 534, https://doi.org/10.1016/j.rse.2019.111534, 2020. 

Hu, Y., Liu, L., Huang, L., Zhao, L., Wu, T., Wang, X., and Cai, J.: Mapping and Characterizing Rock 

Glaciers in the Arid Western Kunlun Mountains Supported by InSAR and Deep Learning, Journal of 

Geophysical Research: Earth Surface, 128, e2023JF007206, https://doi.org/10.1029/2023JF007206, 

2023. 

The authors claim to have used the RGIK baselines. They mainly utilized the geomorphological 

approach, but it is unclear how this approach was applied to the entire inventory of 44,273 rock glaciers. 

Please provide more information in the text.  

In section 4.1.2 Manual improvement and independent validation, lines 213-244, we describe our 

approach of manually compiling this inventory based on deep learning output following the RGIK 

baselines. 

It would be beneficial to incorporate the kinematic approach (e.g., InSAR) in the near future, as both 

approaches are complementary.  

Thanks for your suggestion. In our future work, we will use InSAR data to first validate and refine our 

inventory and second attribute the kinematic information following the RGIK guidelines (RGIK, 2022). 

We have refined the main text in section 6.3 Significance of the inventory and future work, lines 502-

505: “This benchmark dataset will be maintained and updated in the future. We will leverage multi-

source datasets, including InSAR data, elevation change maps from high-resolution DEM differencing, 

high-resolution optical images from Google Earth, ERSI basemaps, and Bing maps to validate and 

refine our inventory. The InSAR data will be used to attribute kinematic information (RGIK, 2022).” 

RGIK: Optional kinematic attribute in standardized rock glacier inventories (version 3.0.1). IPA 

Action Group Rock glacier inventories and kinematics, IPA Action Group Rock glacier inventories 

and kinematics, p. 8 pp, 2022. 

Reinosch et al. (2021) utilized InSAR time series to generate a rock glacier inventory for the western 

Nyainqêntanglha Range. It would be great if you could conduct a thorough comparison with this study 
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and others that used InSAR data (kinematic approach). This could help to understand if your results 

are comparable with those using other data and techniques. 

In section 6.2 Comparison with existing local inventories, lines 441-476, we have compared our 

inventory with existing inventories on the Tibetan Plateau (including the ones developed using InSAR 

data (Cai et al., 2021; Reinosch et al., 2021; Hu et al., 2023; Zhang et al., 2023)) and discussed the 

reasons for the discrepancies between different inventories. We found that “The number of inventoried 

rock glaciers in our study is generally comparable to those in Daxue Shan and Hunza Basin. However, 

our inventory has more rock glaciers than the inventories in Gangdise Mountains and West Kunlun 

Shan, and fewer rock glaciers than the inventories in Nyainqêntanglha and Qilian Mountains.” (lines 

445-457). These discrepancies can be explained by varying operator judgement and different image 

sources for inventory compilation (lines 451-476). 

The authors used data from only one year (2021). To me, one year is not enough to characterize such 

a large region. Moreover, some mass movements can be erroneously mapped, especially in areas with 

poor previous rock glacier inventories, making comparisons difficult. Perhaps a comparison with RGI 

V6 (despite its limitations) could shed some light. While including another year of data may require 

substantial effort, it could help remove potential discrepancies 

We use Planet Basemaps images for mapping. This product is a well-processed mosaics with visual 

consistency and cloud mitigation by merging Planet images acquired at multiple dates. See lines 117-

118: “The three-band (red, green, blue) imagery contains well-processed, scientifically accurate, and 

analyses-ready mosaics with a 4.77 m spatial resolution, visual consistency, and cloud mitigation (Nass 

et al., 2019).”.  

Initially, we mainly rely on Planet Basemaps mosaics from the third quarter (July-September 2021) 

for mapping. However, we found the product at this quarter has low quality for southeastern Tibetan 

Plateau (strong cloud and shadow issues). Therefore, for this region, we also used the product from 

the fourth quarter (October-December 2021) to improve the mapping results. Relevant information can 

be found in lines 120-123: “To train the deep learning model and infer new rock glaciers, we mostly 

utilized the Planet Basemaps mosaics from the third quarter (July-September 2021) supplemented with 

images from the fourth quarter (October-December 2021) when needed to mitigate image quality 

problems in the third-quarter images, such as shadows and image distortion.” 

We agree that some non-rock glacier landforms may be erroneously mapped in this version of 

inventory. Therefore, in our future work, we will leverage multi-source dataset, including InSAR data, 

elevation change maps from high-resolution DEM differencing, high-resolution optical images from 
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Google Earth, ERSI basemaps, Bing maps, etc. to refine our inventory. See lines 502-505: “This 

benchmark dataset will be maintained and updated in the future. We will leverage multi-source datasets, 

including InSAR data, elevation change maps from high-resolution DEM differencing, high-resolution 

optical images from Google Earth, ERSI basemaps, and Bing maps to validate and refine our inventory. 

The InSAR data will be used to attribute kinematic information (RGIK, 2022).” 

Overall, no details are mentioned about the uncertainty analysis, what is the uncertainty or error 

estimation of the rock glacier inventory? Is it +/- 10% or >20% of the total area? Is it possible to 

quantify this using your methodology? 

In our study, we included an independent validation (section 5.1.2 Independent validation of the 

inventoried rock glaciers). Based on the validation results from the two independent reviewers, 

approximately 87% of the rock glaciers were assigned as correct identification. Hence, the rock glacier 

number may have an uncertainty of around 13%. 

It would be beneficial to also include other areas (Himalaya and Hindu Kush) in their study. 

The inventory work for Himalaya, Hindu Kush, and Tien Shan are our future effort to create a 

comprehensive rock glacier inventory for High Mountain Asia. See lines 506-507: “We will extend 

our inventory in the future by including the Himalayas, the Hindu Kush, and the Tien Shan regions to 

compile a comprehensive inventory for High Mountain Asia (Figure S6).” 

How did you manage the cloud cover? You mentioned that in some regions, such as Nyainqêntanglha, 

you found that problem 

Even though the Planet Basemaps products have largely mitigated the cloud issue by merging the 

images from multiple dates, we still found strong cloud issues for the southeastern Tibetan Plateau in 

the quarter three images. Therefore, in our manual inventory phase, we also included the Planet 

Basemaps images from quarter four to improve the mapping results (lines 120-123: “To train the deep 

learning model and infer new rock glaciers, we mostly utilized the Planet Basemaps mosaics from the 

third quarter (July-September 2021) supplemented with images from the fourth quarter (October-

December 2021) when needed to mitigate image quality problems in the third-quarter images, such as 

shadows and image distortion.”). 

185-> For the model training 70% and 30%, any specific reason for these values? 

This is a typical slitting convention used in deep learning community to separate the training and 

validation datasets. 
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186-> You chose a 1,500 m buffer. Is there any technical reason for this choice? 

The inclusion of a buffer zone plays a pivotal role in enhancing the performance of our model by 

enabling it to learn contextual information surrounding rock glaciers. This augmentation facilitates 

more accurate boundary delineation and reduces false positives by leveraging the background samples 

present in the surrounding environment (denoted as zero values in the label images). For a more 

comprehensive understanding of this methodology, reviewers and readers are referred to Huang et al. 

(2018, 2020). 

The selection of an appropriate buffer zone size is equally critical. A buffer zone that is too small may 

fail to provide sufficient contextual information, resulting in an increased occurrence of false positives. 

Conversely, an overly large buffer zone risks inundating the model with excessive background 

information, potentially compromising its ability to accurately detect rock glaciers. In previous studies, 

a 300-meter buffer zone was deemed suitable for thaw slumps (Huang et al., 2020). Given the larger 

sizes of rock glaciers, we conducted experiments testing different buffer zone sizes ranging from 500 

meters to 2000 meters. Our findings indicated that a buffer zone of 1500 meters yielded the optimal 

results.  

We have supplemented more information in main text, section 4.1.1 Deep learning mapping, lines 194-

199: “To incorporate context information from the surrounding area of a rock glacier, we established 

a buffer area to extract a subset of Planet images. A too small buffer area may fail to provide sufficient 

contextual information, resulting in an increased occurrence of false positives; while an overly large 

buffer area risks inundating the model with excessive background information, potentially 

compromising its ability to accurately detect rock glaciers (Huang et al., 2018, 2020). We conducted 

experiments with buffer area sizes ranging from 500 meters to 2000 meters. The results showed no 

significant increase in the IoU metric once the buffer area exceeded 1500 meters. Therefore, we 

selected 1500 meters as the buffer area.” 

Huang, L., Liu, L., Jiang, L., and Zhang, T.: Automatic mapping of thermokarst landforms from remote 

sensing images using deep learning: A case study in the Northeastern Tibetan Plateau, Remote Sensing, 

10, 2067, https://doi.org/10.3390/rs10122067, 2018. 

Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to map retrogressive thaw slumps 

in the Beiluhe region (Tibetan Plateau) from CubeSat images, Remote Sensing of Environment, 237, 

111 534, https://doi.org/10.1016/j.rse.2019.111534, 2020. 

405-> “However, rock glaciers are frequently found in regions characterized by poor image quality 

due to factors associated with cloud cover, shadows, and distortions, which are common in 

https://doi.org/10.3390/rs10122067
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mountainous areas”. This is why it would be useful to incorporate more than one year of data into your 

dataset 

In our study, we incorporate the Planet Basemaps images from both quarter three (July-September 

2021) and quarter four (October-December 2021) for mapping. Since the Planet Basemaps images are 

processed mosaics by merging many Planets images from different dates for cloud mitigation and 

improvement of other issues, it can be regarded we use many images from different dates for mapping. 

 


