
The reviewer comments are in black, and our answers are in red. 

This article describes a comprehensive inventory of rock glaciers on the Tibetan Plateau using deep 

learning techniques. The authors also used the recent baseline and guidelines developed by the IPA 

Action Group Rock Glacier Inventories and Kinematics (RGIK). However, they primarily employed 

the geomorphological approach outlined in these guidelines, which requires strong expertise from the 

mappers. 

The authors utilized a large volume of optical images, mainly from Planet images with a resolution of  

4.7 m. The deep learning algorithm processed three bands of these Planet images, which surprisingly 

produced acceptable rock glacier outlines without considering other components (e.g., slope, aspect, 

solar radiation, surface roughness) in the model or the movement of areas (displacement). The 

kinematic approach, also proposed by RGIK, was not considered in delineating the rock glacier areas. 

To validate the deep learning outputs, existing rock glacier inventories were used, which are assumed 

to be of high quality. The manuscript presents very interesting findings; however, this study needs 

some clarification. Therefore, I recommend that this paper undergo major revisions. 

Thank you very much for your constructive comments. We have revised our manuscript accordingly 

and provide our point-to-point response below. 

Specific comments 

It seems that the deep learning algorithm is not the most efficient since it cannot support multiple 

datasets. What is the reason for choosing this method? What is the advantage of using it? 

Deeplabv3+, the architecture adopted in this work, is a powerful and widely used deep learning model 

for semantic segmentation task with the capabilities of capturing multi-scale contextual information 

and sharp object boundaries (Chen et al., 2018). In previous studies, this model has shown good 

performance for mapping periglacial landforms, e.g., thaw slumps (Huang et al., 2020) and rock 

glaciers (Hu et al., 2023), in regional scale. Relevant information can be found in lines 178-180: 

“DeepLabv3+, introduced by Chen et al. (2018), was selected as the neural network architecture for 

the deep learning model, with Xception71 serving as its backbone (Chollet, 2017). DeepLabv3+ is 

specifically designed for semantic segmentation tasks and has been proven to excel in mapping 

permafrost landforms (Huang et al., 2020; Hu et al., 2023).” 
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The authors claim to have used the RGIK baselines. They mainly utilized the geomorphological 

approach, but it is unclear how this approach was applied to the entire inventory of 44,273 rock glaciers. 

Please provide more information in the text.  

In section 4.1.2 Manual improvement and independent validation, lines 213-244, we describe our 

approach of manually compiling this inventory based on deep learning output following the RGIK 

baselines. 

It would be beneficial to incorporate the kinematic approach (e.g., InSAR) in the near future, as both 

approaches are complementary.  

Thanks for your suggestion. In our future work, we will use InSAR data to first validate and refine our 

inventory and second attribute the kinematic information following the RGIK guidelines (RGIK, 2022). 

We have refined the main text in section 6.3 Significance of the inventory and future work, lines 502-

505: “This benchmark dataset will be maintained and updated in the future. We will leverage multi-

source datasets, including InSAR data, elevation change maps from high-resolution DEM differencing, 

high-resolution optical images from Google Earth, ERSI basemaps, and Bing maps to validate and 

refine our inventory. The InSAR data will be used to attribute kinematic information (RGIK, 2022).” 

RGIK: Optional kinematic attribute in standardized rock glacier inventories (version 3.0.1). IPA 

Action Group Rock glacier inventories and kinematics, IPA Action Group Rock glacier inventories 

and kinematics, p. 8 pp, 2022. 

Reinosch et al. (2021) utilized InSAR time series to generate a rock glacier inventory for the western 

Nyainqêntanglha Range. It would be great if you could conduct a thorough comparison with this study 



and others that used InSAR data (kinematic approach). This could help to understand if your results 

are comparable with those using other data and techniques. 

In section 6.2 Comparison with existing local inventories, lines 441-476, we have compared our 

inventory with existing inventories on the Tibetan Plateau (including the ones developed using InSAR 

data (Cai et al., 2021; Reinosch et al., 2021; Hu et al., 2023; Zhang et al., 2023)) and discussed the 

reasons for the discrepancies between different inventories. We found that “The number of inventoried 

rock glaciers in our study is generally comparable to those in Daxue Shan and Hunza Basin. However, 

our inventory has more rock glaciers than the inventories in Gangdise Mountains and West Kunlun 

Shan, and fewer rock glaciers than the inventories in Nyainqêntanglha and Qilian Mountains.” (lines 

445-457). These discrepancies can be explained by varying operator judgement and different image 

sources for inventory compilation (lines 451-476). 

The authors used data from only one year (2021). To me, one year is not enough to characterize such 

a large region. Moreover, some mass movements can be erroneously mapped, especially in areas with 

poor previous rock glacier inventories, making comparisons difficult. Perhaps a comparison with RGI 

V6 (despite its limitations) could shed some light. While including another year of data may require 

substantial effort, it could help remove potential discrepancies 

We use Planet Basemaps images for mapping. This product is a well-processed mosaics with visual 

consistency and cloud mitigation by merging Planet images acquired at multiple dates. See lines 117-

118: “The three-band (red, green, blue) imagery contains well-processed, scientifically accurate, and 

analyses-ready mosaics with a 4.77 m spatial resolution, visual consistency, and cloud mitigation (Nass 

et al., 2019).”.  

Initially, we mainly rely on Planet Basemaps mosaics from the third quarter (July-September 2021) 

for mapping. However, we found the product at this quarter has low quality for southeastern Tibetan 

Plateau (strong cloud and shadow issues). Therefore, for this region, we also used the product from 

the fourth quarter (October-December 2021) to improve the mapping results. Relevant information can 

be found in lines 120-123: “To train the deep learning model and infer new rock glaciers, we mostly 

utilized the Planet Basemaps mosaics from the third quarter (July-September 2021) supplemented with 

images from the fourth quarter (October-December 2021) when needed to mitigate image quality 

problems in the third-quarter images, such as shadows and image distortion.” 

We agree that some non-rock glacier landforms may be erroneously mapped in this version of 

inventory. Therefore, in our future work, we will leverage multi-source dataset, including InSAR data, 

elevation change maps from high-resolution DEM differencing, high-resolution optical images from 



Google Earth, ERSI basemaps, Bing maps, etc. to refine our inventory. See lines 502-505: “This 

benchmark dataset will be maintained and updated in the future. We will leverage multi-source datasets, 

including InSAR data, elevation change maps from high-resolution DEM differencing, high-resolution 

optical images from Google Earth, ERSI basemaps, and Bing maps to validate and refine our inventory. 

The InSAR data will be used to attribute kinematic information (RGIK, 2022).” 

Overall, no details are mentioned about the uncertainty analysis, what is the uncertainty or error 

estimation of the rock glacier inventory? Is it +/- 10% or >20% of the total area? Is it possible to 

quantify this using your methodology? 

In our study, we included an independent validation (section 5.1.2 Independent validation of the 

inventoried rock glaciers). Based on the validation results from the two independent reviewers, 

approximately 87% of the rock glaciers were assigned as correct identification. Hence, the rock glacier 

number may have an uncertainty of around 13%. 

It would be beneficial to also include other areas (Himalaya and Hindu Kush) in their study. 

The inventory work for Himalaya, Hindu Kush, and Tien Shan are our future effort to create a 

comprehensive rock glacier inventory for High Mountain Asia. See lines 506-507: “We will extend 

our inventory in the future by including the Himalayas, the Hindu Kush, and the Tien Shan regions to 

compile a comprehensive inventory for High Mountain Asia (Figure S6).” 

How did you manage the cloud cover? You mentioned that in some regions, such as Nyainqêntanglha, 

you found that problem 

Even though the Planet Basemaps products have largely mitigated the cloud issue by merging the 

images from multiple dates, we still found strong cloud issues for the southeastern Tibetan Plateau in 

the quarter three images. Therefore, in our manual inventory phase, we also included the Planet 

Basemaps images from quarter four to improve the mapping results (lines 120-123: “To train the deep 

learning model and infer new rock glaciers, we mostly utilized the Planet Basemaps mosaics from the 

third quarter (July-September 2021) supplemented with images from the fourth quarter (October-

December 2021) when needed to mitigate image quality problems in the third-quarter images, such as 

shadows and image distortion.”). 

185-> For the model training 70% and 30%, any specific reason for these values? 

This is a typical slitting convention used in deep learning community to separate the training and 

validation datasets. 



186-> You chose a 1,500 m buffer. Is there any technical reason for this choice? 

The inclusion of a buffer zone plays a pivotal role in enhancing the performance of our model by 

enabling it to learn contextual information surrounding rock glaciers. This augmentation facilitates 

more accurate boundary delineation and reduces false positives by leveraging the background samples 

present in the surrounding environment (denoted as zero values in the label images). For a more 

comprehensive understanding of this methodology, reviewers and readers are referred to Huang et al. 

(2018, 2020). 

The selection of an appropriate buffer zone size is equally critical. A buffer zone that is too small may 

fail to provide sufficient contextual information, resulting in an increased occurrence of false positives. 

Conversely, an overly large buffer zone risks inundating the model with excessive background 

information, potentially compromising its ability to accurately detect rock glaciers. In previous studies, 

a 300-meter buffer zone was deemed suitable for thaw slumps (Huang et al., 2020). Given the larger 

sizes of rock glaciers, we conducted experiments testing different buffer zone sizes ranging from 500 

meters to 2000 meters. Our findings indicated that a buffer zone of 1500 meters yielded the optimal 

results.  

We have supplemented more information in main text, section 4.1.1 Deep learning mapping, lines 194-

199: “To incorporate context information from the surrounding area of a rock glacier, we established 

a buffer area to extract a subset of Planet images. A too small buffer area may fail to provide sufficient 

contextual information, resulting in an increased occurrence of false positives; while an overly large 

buffer area risks inundating the model with excessive background information, potentially 

compromising its ability to accurately detect rock glaciers (Huang et al., 2018, 2020). We conducted 

experiments with buffer area sizes ranging from 500 meters to 2000 meters. The results showed no 

significant increase in the IoU metric once the buffer area exceeded 1500 meters. Therefore, we 

selected 1500 meters as the buffer area.” 
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405-> “However, rock glaciers are frequently found in regions characterized by poor image quality 

due to factors associated with cloud cover, shadows, and distortions, which are common in 
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mountainous areas”. This is why it would be useful to incorporate more than one year of data into your 

dataset 

In our study, we incorporate the Planet Basemaps images from both quarter three (July-September 

2021) and quarter four (October-December 2021) for mapping. Since the Planet Basemaps images are 

processed mosaics by merging many Planets images from different dates for cloud mitigation and 

improvement of other issues, it can be regarded we use many images from different dates for mapping. 


