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Abstract. Long-term time series of transpiration, evaporation, plant net photosynthesis, and soil respiration are essential for

addressing numerous research questions related to ecosystem functioning. However, quantifying these fluxes is challenging

due to the lack of reliable and direct measurement techniques, which has left gaps in the understanding of their temporal cycles

and spatial variability. To help address this open challenge, we generated a dataset of these four components by implementing

five (conventional and novel) approaches to partition total ET and CO2 fluxes into plant and soil fluxes across 47 NEON sites.5

The final dataset (https://doi.org/10.5281/zenodo.12191876) spans a five-year period and covers various ecosystems, including

forests, grasslands, and agricultural terrain. This is the first comprehensive dataset covering such a wide spatial and temporal

distribution. Overall, we observed good agreement across most methods for ET components, increasing the confidence in

these estimates. Partitioning of CO2 components, on the other hand, was found to be less robust and more dependent on prior

knowledge of water-use efficiency. This highlights some limitations of these present methods that we discuss, emphasizing the10

broader challenge posed by the lack of an accurate reference method to validate against. Despite these limitations, this dataset

has several potential applications, especially in addressing critical questions regarding the response of ecosystems to extreme

weather events, which are expected to become more severe and frequent with climate change.

1 Introduction

Plant transpiration and photosynthesis are important components of the global water and CO2 cycles. At the ecosystem level,15

these quantities reflect the complex interactions within the soil-vegetation-atmosphere continuum. Given the complexity of

these interactions and the challenges associated with measuring or modelling leaf-atmosphere exchanges, many open questions

remain. For instance, the competing effects of rising CO2 and temperature on plant water-use efficiency (Mengis et al., 2015;

Kirschbaum and McMillan, 2018; Dusenge et al., 2019; Baslam et al., 2020; Wang et al., 2022) is still under debate, as well

as their response and resilience under more frequent and intense droughts and changes in soil moisture conditions (Maxwell20

and Condon, 2016; Lesk et al., 2021). In addition to the challenges of investigating such non-linear processes, one of the

main barriers to advancing research in this area has been the lack of long-term observations and/or reliable estimates of plant

transpiration and CO2 assimilation over various types of vegetation and soils.
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Eddy-covariance (EC) is a reliable approach to continuously monitor evapotranspiration (ET ) and net CO2 (Fc) fluxes

across ecosystems in a standardized manner. However, the separate measurement of the ecosystem individual components,25

namely plant transpiration (T ) and soil evaporation (E), as well as plant gross primary production (GPP ) and ecosystem res-

piration (Reco), is still difficult. Traditional measurement techniques, such as sap-flow and lysimeters, often lack the temporal

and spatial resolution necessary for capturing ET flux components comprehensively (Kool et al., 2014; Stoy et al., 2019).

Other techniques, such as soil chambers (Kool et al., 2014), stable isotopes (Good et al., 2014), and carbonyl sulfide as a tracer

for plant fluxes (Wohlfahrt et al., 2011), are not yet deployable at large spatial and temporal scales. Additionally, all of these30

methods carry their own uncertainties, can be logistically challenging to implement, and are often costly to scale up. Partition-

ing of CO2 fluxes into GPP and Reco can also be done based on night-time CO2 flux extrapolation (Reichstein et al., 2005)

and light-response curves (Lasslop et al., 2010); this method has been widely implemented and is part of FLUXNET products

(Pastorello et al., 2020). Nonetheless, it cannot partition ET components. As a result, there is a scarcity of datasets representing

temporal and spatial variability of both ET and CO2 flux components across a broad range ecosystems and weather conditions.35

An alternative approach to obtain long-term time series of flux components is through the partitioning of evapotranspiration

and net CO2 exchanges into their respective plant and soil components based strictly on the analysis of their turbulent perturba-

tions signals. This approach is the focus of this paper, which applies five recently developed and tested partitioning methods to

disentangle the contribution of transpiration, evaporation, net photosynthesis and soil respiration to the total ecosystem fluxes

measured across all the EC towers of National Science Foundation’s National Ecological Observatory Network (NEON). The40

methods employed in this study have been rigorously evaluated in previous studies that combined experimental data from EC

sites and virtual EC data from large-eddy simulations. Although as for all partitioning approaches the validation is hindered by

the lack of a universally-accepted accurate standard method, previous research has highlighted conditions under which these

turbulence methods agree and are more reliable, as well as conditions when their partitioning estimates may have larger errors.

In the dataset we produce in this work, we consolidate the results from five partitioning methods and calculate their ensemble45

average, providing a measure of uncertainty for each flux period at each site.

With a total of 47 sites spanning diverse ecosystems in the United States, this dataset can be an invaluable resource for future

investigation of the spatial variability and ecological and meteoclimatic drivers shaping flux dynamics across different land-

scapes. It has the potential to contribute to the advancement of our understanding of ecosystem processes and their responses

to current and future climate, in turn better informing ecosystem management and climate change mitigation and adaptation50

practices.

2 Study area and input data

The National Ecological Observatory Network (NEON) is a comprehensive initiative designed to collect long-term open-

access environmental observations in the continental United States (Metzger et al., 2019). It operates a network of field sites

strategically located to capture the diversity of ecosystems and environmental conditions present in the country. One of the main55

features of NEON is the standardized collection of data across sites, including biological, hydrological and meteorological
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observations. As part of its effort to understand land-atmosphere exchanges of energy, water and CO2, NEON has a total of 47

eddy-covariance towers spread across 24 states (see Table 1), where most sites are located in deciduous and evergreen forests

(Figure 1).

For the purpose of implementing the partitioning methods, we downloaded instantaneous measurements from the eddy-60

covariance towers from 2019 to 2023 for all 47 locations. All sites were equipped with the same gas analyzer (LICOR LI7200)

and sonic anemometers (Campbell Scientific, CSAT-3 3-D) collecting data at a frequency of 20 Hz. These time series were

processed and prepared to be used by the five partitioning methods, as described in the next section. In addition to raw-

data, we also downloaded the processed eddy-covariance data (product level 4) for the same period (National Ecological

Observatory Network (NEON), 2024a, b), which include evapotranspiration and net ecosystem CO2 fluxes as processed by65

eddy4R (Metzger et al., 2017). Fluxes computed by eddy4R include all standard corrections, such as high-frequency spectral

correction, some of which are only applied to the final turbulent fluxes, and not the instantaneous time series. Thus, we use the

total turbulent fluxes as quantified by NEON to rescale all flux components that we computed, T , E, R, and P , ensuring that

they are consistent with the corrected fluxes reported by the network.

Figure 1. Location of the 47 eddy-covariance towers maintained by NEON. Note that Alaska, Hawaii, and Puerto Rico are not scaled

proportionally to the continental US area.
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As the last step of post-processing, a gap-filling algorithm was implemented to maximize the availability of flux partitioning70

estimates. Additional meteorological variables were downloaded using the R package neonUtilities (Lunch et al., 2024) and

used as features to implement an Extreme Gradient Boosting (XGBoost) algorithm. The selected variables (inputs) included

air temperature (National Ecological Observatory Network (NEON), 2024g, h), incoming solar radiation (National Ecological

Observatory Network (NEON), 2024i, j), relative humidity (National Ecological Observatory Network (NEON), 2024e, f),

photosynthetically active radiation (National Ecological Observatory Network (NEON), 2024c, d), and wind speed (National75

Ecological Observatory Network (NEON), 2024k, l). All quantities were measured at the top of the tower. The sensible heat

flux and the friction velocity, included in the bundled data products, were also used. Due to the presence of long gaps and/or

noisy measurements, precipitation and soil moisture were not included as features.

Table 1: Description of the 47 sites included in the present paper. In addition to the NEON site identification (ID) and state,

the table also lists the geographical coordinates, the ratio between the eddy-covariance measurement height to mean canopy

height, z/h, and the predominant vegetation type around the tower following Fiorella et al. (2021). The last two columns

represent the availability of ET fluxes during daytime hours (when solar radiation > 10 Wm2) in the five years of record,

and the availability of transpiration estimates, based on the partitioning approaches used here, in the same period. The range

represents the availability according to the different methods (least available to most available). Availability computed after

gap filling as described in section 3.4.2.

ID state LAT LON z/h Main vegetation type ET availability (%) T availability (%)

ABBY WA 45.76 −122.33 6.0 Evergreen Forest 61.3 58.7–61.2

BARR AK 71.28 −156.62 30.0 Tundra Shrubland 33.7 24.7–33.7

BART NH 44.06 − 71.29 1.8 Mixed Forest 76.2 74.2–76.2

BLAN VA 39.03 − 78.04 2.0 Farm transitioning to forest 64.7 59.6–64.7

BONA AK 65.15 −147.50 3.0 Mixed Forest 56.8 53.5–56.8

CLBJ TX 33.40 − 97.57 1.4 Deciduous Forest 74.3 72.6–74.3

CPER CO 40.82 −104.75 30.0 Grassland 62.4 61.1–62.4

DCFS ND 47.16 − 99.11 8.0 Grassland 72.3 64.3–72.3

DEJU AK 63.88 −145.75 3.6 Evergreen Forest 71.1 66.3–71.1

DELA AL 32.54 − 87.80 1.4 Evergreen Forest 54.1 48.9–54.0

DSNY FL 28.13 − 81.44 4.0 Pasture 69.2 65.7–69.2

GRSM TN 35.69 − 83.50 1.5 Deciduous Forest 65.7 62.9–65.7

GUAN PR 17.97 − 66.87 3.8 Evergreen Forest 50.7 48.2–50.7

HARV MA 42.54 − 72.17 1.7 Deciduous Forest 63.9 58.2–63.9

HEAL AK 63.88 −149.21 30.0 Evergreen Forest 52.5 49.1–52.4

JERC GA 31.19 − 84.47 1.9 Mixed Forest 63.9 61.7–63.8
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JORN NM 32.59 −106.84 8.0 Desert Shrubland 76.9 73.3–76.9

KONA KS 39.11 − 96.61 5.3 Cultivated Crops 76.7 70.9–76.7

KONZ KS 39.10 − 96.56 8.0 Grassland 73.8 67.1–73.8

LAJA PR 18.02 − 67.08 8.0 Pasture 46.8 45.6–46.7

LENO AL 31.85 − 88.16 1.2 Deciduous Forest 43.5 37.1–43.4

MLBS VA 37.38 − 80.52 1.5 Deciduous Forest 64.2 50.9–64.2

MOAB UT 38.25 −109.39 40.0 Desert Shrubland 65.8 64.5–65.8

NIWO CO 40.05 −105.58 13.3 Tundra/Alpine Shrubland 52.7 48.5–52.7

NOGP ND 46.77 −100.92 20.0 Grassland 63.4 60.0–63.4

OAES OK 35.41 − 99.06 5.3 Grassland 71.4 65.3–71.4

ONAQ UT 40.18 −112.45 8.0 Sage Shrubland 71.4 67.6–71.3

ORNL TN 35.96 − 84.28 1.4 Deciduous Forest 69.1 64.3–69.1

OSBS FL 29.69 − 81.99 1.8 Evergreen Forest 55.5 51.3–55.5

PUUM HI 19.55 −155.32 1.5 Evergreen Forest 57.5 41.3–57.5

RMNP CO 40.28 −105.55 2.3 Evergreen Forest 78.7 74.4–78.7

SCBI VA 38.89 − 78.14 1.7 Deciduous Forest 52.2 48.3–52.1

SERC MD 38.89 − 76.56 1.7 Deciduous Forest 65.5 63.7–65.5

SJER CA 37.11 −119.73 3.2 Mixed Forest 63.1 62.0–63.1

SOAP CA 37.03 −119.26 2.1 Evergreen Forest 69.3 63.0–69.1

SRER AZ 31.91 −110.84 4.0 Desert Shrubland 73.7 72.6–73.6

STEI WI 45.51 − 89.59 2.3 Deciduous Forest 70.9 68.4–70.9

STER CO 40.46 −103.03 2.7 Cultivated Crops 66.1 59.4–66.1

TALL AL 32.95 − 87.39 1.4 Mixed Forest 63.0 58.5–63.0

TEAK CA 37.01 −119.01 2.2 Evergreen Forest 63.6 61.4–63.5

TOOL AK 68.66 −149.37 45.0 Tundra Shrubland 45.3 35.5–45.2

TREE WI 45.49 − 89.59 1.5 Mixed Forest 76.1 69.8–76.1

UKFS KS 39.04 − 95.19 1.9 Deciduous Forest 73.0 67.9–73.0

UNDE MI 46.23 − 89.54 1.7 Mixed Forest 74.8 72.5–74.8

WOOD ND 47.13 − 99.24 16.0 Grassland 68.9 64.8–68.9

WREF WA 45.82 −121.95 1.4 Evergreen Forest 66.0 63.5–65.9

YELL WY 44.95 −110.54 1.1 Evergreen Forest 57.4 53.2–57.4
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3 Methods

Below, we describe the methods used to partition the data and the processing steps followed to generate the final dataset. A80

diagram summarizing all pre- and post-processing steps is shown in Figure 2. We implemented five methods to partition evap-

otranspiration into soil evaporation and plant transpiration, and net CO2 flux into soil respiration and net plant photosynthesis.

It is important to note that these quantities differ from GPP and ecosystem respiration (see Wohlfahrt and Gu (2015) for

a detailed discussion on the different definitions of CO2 flux components). Since these methods are based on principles of

turbulent transport, they do not provide the information needed to separate soil respiration from plant respiration. Instead, the85

framework effectively partitions below-canopy fluxes, which include respiration and evaporation from soil, roots, and possibly

the lower parts of tree trunks, and above-canopy fluxes, which encompass plant transpiration and net photosynthesis. Thus,

none of these approaches allows for the distinction between above-ground respiration. Another limitation of these models is

that they cannot distinguish between transpiration and evaporation of intercepted water on the leaves. Nonetheless, since EC

data is often lost during and immediately following rainfall periods caused by poor data quality, many such periods are likely90

removed from the time series already. With these definitions in mind, we refer to net photosynthesis simply as photosynthesis

(P ) and plant ET simply at (T ) in the following sections, while evaporation (E) and respiration (R) are considered to originate

solely from the ground/soil level. We advise future users to carefully note the specific definitions of each component, as this is

essential for making meaningful comparisons across different partitioning products.

3.1 Partitioning approaches95

The partitioning methods implemented in this study are based on the idea of transport similarity between CO2 and water vapor.

It assumes that turbulent structures, or “eddies”, simultaneously transport evaporation and respiration from the soil towards

the sensor, where the respective concentrations of these “event samples” are measured. Similarly, turbulence also transports air

parcels from the canopy, where net photosynthesis and plant transpiration take place. By separating the signature of soil versus

canopy events in the time series, these methods try to infer the respective magnitude of each flux component. Note that while100

both evapotranspiration components are source of water vapor (i.e., they are positive fluxes), CO2 fluxes are a combination

of a source (soil respiration) and a sink (photosynthesis). This feature of the CO2 flux is what creates this framework, since

it works as a tracer that identifies the origin of water vapor. However, another consequence of this feature is that, while the

components E and T are bounded by E+T , the magnitudes of R> 0 and P < 0 are not constrained by Fc =R+P . As a

result, partitioning results for CO2 components tend to be more uncertain. Nonetheless, as will be explained in the next section,105

two of the partitioning methods here implemented require the water-use efficiency, W = P/T , as an input. While the need for

a parameterization for W is a disadvantage for the method, the inclusion of W adds a bound to P and R.

In total, five partitioning methods were implemented: the Flux-Variance Similarity (FVS) (Scanlon and Sahu, 2008; Scanlon

and Kustas, 2010; Scanlon et al., 2019), the Modified Relaxed Eddy Accumulation (MREA) (Thomas et al., 2008), the Con-

ditional Eddy Covariance (CEC) (Zahn et al., 2022), a modified CEC that also utilizes the water use efficiency (CECw) (Zahn110

et al., 2024), and the Conditional Eddy Accumulation (CEA) (Zahn et al., 2024). The advantage of these models is that they
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rely mostly on high-frequency eddy-covariance observations, requiring none or few input parameters. While MREA, CEC, and

CEA are based solely on statistics computed from the high-frequency data, FVS and CECw additionally require the water-use

efficiency as an input.

Three of the methods, FVS, MREA and CEC, have been extensively investigated in previous studies (Thomas et al., 2008;115

Klosterhalfen et al., 2019; Scanlon et al., 2019; Zahn et al., 2022). More recently, these three methods were tested using

large-eddy simulations by Zahn et al. (2024), who also formulated and tested the CECw and CEA approaches, to probe

the assumptions and the performance of all methods. Their simulation-based analyses indicated that all methods result in

reliable results for a range of flux combinations that are expected in real ecosystems. While that study was not able to pinpoint

conditions under which the accuracy of the results in field experiments can be guaranteed, it delineated flux combinations that120

may result in higher uncertainties, it quantified the impact of errors in W on the results of FVS and CECw, and it identified the

most consequential assumptions in the various methods. The broad recommendations of that study are as follows:

1. The measurement height z, i.e., the height where the EC system is placed, should be as close as possible to the mean

canopy height, h, to better distinguish the soil and plant signals. However, while z/h < 3 is a good recommendation,

we note that the performance also depends on other factors such as canopy density and the specific method, as some125

approaches were found to perform well even outside this region.

2. All flux components from the soil (evaporation and respiration) and from the vegetation (transpiration and photosynthe-

sis) should be non-negligible. This criterion arises from the water vapor-CO2 coupling, which needs the CO2 signal to

determine the origin of the water vapor.

3. The (anti-)correlation between CO2 and water vapor, ρc,q , should not be perfect, i.e., |ρc,q|< 1. Perfect correlation or130

anti-correlation indicate that turbulence fully mixed the scalars from the soil and from the canopy. In this case, the

framework of all five partitioning models is no longer valid. Most often, high correlation is seen when measurements are

too far from the canopy top, or when one of the flux components is negligible. Thus, this condition should be satisfied if

points 1 and 2 are first addressed.

Overall, by comparing the outputs of the five models and identifying periods or sites where they consistently agree, we can135

increase our confidence in the results obtained, even without a “true” value for comparison. In addition, the range of predictions

from the various methods can be used to quantify the uncertainty in the overall partitioning.

3.2 Data pre-processing

We downloaded and processed high-frequency eddy covariance turbulent exchange (ECTE) data using our in-house python

routines. The following variables were extracted from the original datasets for each site: the mixing ratio of CO2 and water140

vapor (rc and rq); the three components of the velocity field in the x, y, and z direction (u, v, and w); the sonic temperature

(Ts); and the atmospheric pressure (P ). In addition, sensor flags describing the quality of the measurements and signal were

used for quality control (see Table 2 for a description of the used variables). Our algorithm was implemented following the

pre-processing of daily files as follows:
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1. Instantaneous measurements that were assigned 1 (poor quality) by any of the flags described in Table 2 were discarded;145

2. CO2 and H2O mixing ratio observations were discarded if the signal strength indicator was smaller than 0.7;

3. Air density (kg m−3), as well as mass concentrations of CO2 and H2O in mg m−3 and g m−3, respectively, were

computed;

4. Daily files with less than 50% of raw high-frequency data were discarded, with very few cases falling into this category.

Files that passed this test were split into half-hour blocks of 36000 points each (at 20 Hz measurements);150

5. Instantaneous observations were checked for physical plausibility, such as positive scalar concentrations;

6. Outliers were removed using a de-spike algorithm (Zahn et al., 2016);

7. The velocity field was rotated using double coordinate rotation;

8. CO2 and H2O mass concentrations, c and q, were lag-corrected, since the LI7200 is a close path sensor with tubing,

using cross-correlation technique (Rebmann et al., 2012);155

9. Turbulent fluctuations were computed for all quantities by removing the linear trend for all respective variables.

The outcome of these steps are 30-minute time series comprising cleaned turbulence data. In the next section we describe how

these data were used to partition ET and Fc fluxes following the five methods described in section 3.1.

3.3 Implementation of partitioning methods

Since all partitioning methods are based on turbulence transport and similarity, their implementation require the computation of160

turbulent statistics, such as covariances and correlation coefficients (details of their implementation can be found in Zahn et al.

(2022, 2024)). These statistics are computed for each 30-minute block. Using these turbulence statistics, we first implement the

three methods that do not require extra inputs, namely CEC, CEA and MREA. For each partitioning method, we thus obtain

Tpart, Epart, Ppart, and Rpart, where the subscript “part” represents any of the three methods. For instance, for CEC we have

TCEC, ECEC, PCEC, and RCEC.165

The implementation of FVS and CECw additionally requires an estimate of the water-use efficiency, W . Note that in this

context, W is defined as the ratio between net photosynthesis and transpiration, which again differs from other definitions. This

quantity was also estimated for each 30-minute block by the following expression

W = 0.65
cc − cs
qc − qs

, (1)

where qc and cc are H2O and CO2 atmospheric mean concentrations near the canopy, while qs and cs are the mean intercellular

concentrations. The near-canopy concentrations (qc and cc) are obtained using the logarithmic profile and mean concentrations170

from EC data, while qs is calculated under the assumption of stomatal saturation (at air temperature) and a well-coupled leaf.

cs, on the other hand, is the most challenging variable to obtain. Following previous studies (Wagle et al., 2021; Zahn et al.,
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Table 2. Variables used for data pre-processing.

Variable Name in NEON dataset Description

rc rtioMoleDryCo2 mixing ratio molCO2 /moldryair

rq rtioMoleDryH2o mixing ratio molH2O/moldryair

u veloXaxs velocity in x direction (m/s)

v veloYaxs velocity in y direction (m/s)

w veloZaxs velocity in z direction (m/s)

Ts tempSoni sonic temperature (K)

P presAtm Atmospheric pressure (Pa)

- ssiCo2 signal strength indicator for CO2

- ssiH2o signal strength indicator for H2O

- qfSoniCode Sensor error flag (Wrong embedded sensor code)

- qfSoniComm Sensor error flag (SDM communications error)

- qfSoniData Sensor error flag (No data available)

- qfSoniSgnlHigh Sensor signal flag (High signal amplitude)

- qfSoniSgnlLow Sensor signal flag (Low signal amplitude)

- qfSoniSgnlPoor Sensor signal flag (Poor signal lock)

- qfSoniTemp Sensor signal flag (Axes TSONIC difference >4K)

- qfSoniTrig Sensor error flag (Sensor trigger source lost)

- qfSoniUnrs Sensor error flag (Sensor unresponsive)

2022), we implemented five models for cs, rendering a total of five estimates of W . These parameterizations are summarized

in Table 3. For each 30-minute period, FVS and CECw were thus implemented five times, one for each parameterization of

W . As a result, each flux component is estimated five times; for instance, following the nomenclature presented in Table 3,175

after implementing FVS we obtain TFVSCC
, TFVSCR

, TFVSlD
, TFVSsD

, and TFVSOPT
. These five estimates are then averaged

to TFVSMEAN when at least one of the five outputs is available. The same averaging is done to obtain EFVSMEAN , PFVSMEAN ,

and RFVSMEAN . Likewise, the same procedure is applied to CECw, which also takes W as an input. Our final dataset includes

the outputs from all five models as well as the averaged values, as described in the next section.

3.4 Data post-processing180

3.4.1 Data cleaning and flux rescaling

The last section described how all five partitioning methods were implemented to obtain estimates of soil and canopy fluxes at

30-minutes time interval. In post-processing, we first eliminated unrealistic high flux magnitudes, as well as counter-gradient

fluxes, by discarding periods when any of the following conditions were identified:
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Table 3. Description of all five parameterizations adopted for W . More details can be found in Wagle et al. (2021) and Zahn et al. (2022).

All five parameterizations were used to partition fluxes by FVS and CECw, thus resulting in five partitioning results for each partitioning

approach.

Method Description Variable name

Constant concentration cs is assumed a constant value WCC

Constant ratio A constant ratio k = cs/cc is assumed WCR

Linear The ratio k = cs/cc is a linear function of the vapor pressure deficit (VPD) WlD

Square root The ratio k = cs/cc is a square root function of VPD WsD

Optimum W is calculated based on the optimization algorithm developed by Scanlon et al. (2019) WOPT

Apply partitioning methods
CEC, MREA, CEA

Parameterize WUE: apply FVS and CECw

Post-processing
Filter outliers and implausible values

Rescale flux components to match the total 
EC fluxes from NEON

Final Dataset Available on Zenodo

Download from NEON 
Bundled data products

ET and Fc fluxes at 30-min frequency
Quality flags for ET and Fc fluxesPre-processing

Corrections to high-frequency data
Double rotation and detrending

Obtain time series of velocity, CO2 and H2O

Download from NEON
High-frequency EC data

Instantaneous measurements at 20 Hz

Gap filling
Fill missing periods using an Extreme 

Gradient Boosting (XGBoost) algorithm

Download from NEON 
Auxiliar variables for gap filling:

Air temperature, photosynthetically active 
radiation, relative humidity, wind speed

Figure 2. Diagram representing all steps of data processing used to generate the final dataset.
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◦ Tpart < 0 Wm−2 or Epart < 0 Wm−2;185

◦ Ppart > 0 mgm−2s−1 or Rpart < 0 mgm−2s−1;

◦ Tpart +Epart > 1000 Wm−2;

◦ |Ppart +Rpart|> 10 mgm−2s−1;

As previously described, all partitioning methods relied on high-frequency time series for turbulent statistics and flux com-

putation. Consequently, the resulting flux components lacked certain eddy-covariance corrections commonly applied to the190

final fluxes, including high-frequency spectral adjustments. To address this, we rescaled our fluxes based on those obtained

from the NEON bundled data processed via eddy4R. We first computed correction factors for ET and Fc fluxes as

corET =
ETNEON

ETpart
(2)

corFc =
FcNEON

Fcpart
, (3)

where ETNEON and FcNEON are evapotranspiration and net CO2 fluxes downloaded directly from NEON, while ETpart195

and Fcpart are the fluxes computed by our routines using the high-frequency data following the pre-processing described in

section 3.2. Note that the total fluxes, ETpart = Tpart+Epart and Fcpart = Ppart+Rpart, are the same for all five partitioning

methods. The corrections were then applied as

Tpart,cor = corETTpart and Epart,cor = corETEpart, (4)

Ppart,cor = corFcPpart and Rpart,cor = corFcRpart. (5)200

By rescaling our fluxes based on this comparison, we ensure that our fluxes are consistent with NEON products, mitigating

potential discrepancies arising from variations in data processing methodologies. For simplicity, we drop the subscript ‘cor’ in

the remainder of the text and in the data files.

Additionally, we utilized NEON’s bundled eddy-covariance products to assess the quality of both evapotranspiration and

CO2 flux data. Although our initial data preprocessing removed numerous periods with poor quality, we refrained from con-205

ducting further tests, such as assessing data stationarity, integral turbulence characteristics, and spectral analysis. Consequently,

we integrated the flags as outlined in Metzger et al. (2022) into our final dataset. These flags are classified into two categories:

0, indicating compliance with all quality criteria, rendering the data valid and reliable for analysis, and 1, indicating failure to

meet one or more quality tests, requiring cautious utilization or possible exclusion. Retaining the original flags in our dataset

facilitates the identification of periods characterized by high-quality data. Nonetheless, we opted not to automatically discard210

data solely based on these flags, leaving such decisions to the discretion of subsequent users.

3.4.2 Gap filling

As a consequence of the inherent challenges associated with eddy-covariance measurements — such as sensor malfunction,

data transmission, or even external factors such as rain and dust collection — flux time series are often incomplete. For our
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Table 4. Success rate of each partitioning approach in finding a solution, expressed as a percentage of the available half-hour periods (i.e.,

only considering cases when the time series was available and the partitioning methods were implemented). The table shows the average

and standard deviation across all sites before and after gap filling. For FVS and CECw, the convergence using each water-use efficiency

parameterization is also shown.

Method
% periods with solution

before gap filling (mean± std)

% periods with solution

after gap filling (mean± std)

CEC 99.9 ± 0.1 100.0 ± 0.0

MREA 80.3 ± 7.6 91.4 ± 4.0

CEA 81.0 ± 8.6 97.8 ± 2.4

FVS-WCC 51.9 ± 10.3 80.8 ± 21.6

FVS-WCR 52.4 ± 10.3 80.0 ± 22.7

FVS-WlD 48.8 ± 10.9 89.1 ± 6.8

FVS-WOPT 50.9 ± 9.9 90.2 ± 10.8

FVS-WsD 52.1 ± 10.4 86.5 ± 15.0

CECw-WCC 86.2 ± 7.8 96.9 ± 3.6

CECw-WCR 87.1 ± 7.5 96.9 ± 3.4

CECw-WlD 72.0 ± 12.0 93.5 ± 5.2

CECw-WOPT 49.5 ± 9.1 91.9 ± 5.8

CECw-WsD 84.3 ± 8.0 96.1 ± 3.7

dataset, Table 1 shows the availability of ET fluxes during the five-year period for each site. Considering only daytime periods215

(selected based on incoming solar radiation greater than 10 Wm2), it reveals that some sites have available fluxes only 34% of

the time (BARR), while others have daytime ET estimates up to 77% of the five-year record (KONA).

Due to mathematical constraints and/or invalidity of physical assumptions, partitioning methods are not guaranteed to con-

verge to a solution for every 30-minute time series, leading to further gaps in the record of flux components. As a consequence,

the dataset generated as described in the previous sections contains missing periods, with the length of these gaps depending on220

the site and method. Table 4 illustrates that the methods with the lowest convergence rates—defined as the fraction of solutions

found per available period—range from least to most solutions found as follows: FVS, CECw, MREA, CEA, and CEC. The

lowest rate of convergence for the FVS method (on average 50%) is not surprising, and has been discussed in previous studies

(Wagle et al., 2021; Zahn et al., 2022, 2024). Additionally, the low rate of solutions for FVS and CECw when combined with

WOPT is due to the model for this water-use efficiency itself not always converging (i.e., WOPT was not available).225

To increase the availability of periods with valid partitioning estimates for each method, we implemented Extreme Gradient

Boosting (XGBoost) (Chen and Guestrin, 2016) for regression to predict transpiration. By training the algorithm to partition

ET into E and T based on selected environmental features, the goal is to apply the trained algorithm to estimate T only when

ET is available but a given partitioning method did not yield a valid estimate. That is, an XGBoost model is developed for each
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partitioning approach independently and then applied to fill the gaps in the time series of that approach. Additional machine230

learning algorithms, including neural networks and k-means clustering, were investigated but yielded similar or inferior results

compared to XGBoost. Previous studies focusing on gap filling eddy-covariance data also observed superior performance by

XGBoost (Huang and Hsieh, 2020; Irvin et al., 2021). These findings are corroborated by research indicating that tree-based

models outperform deep learning for tabular data used in regression tasks (Grinsztajn et al., 2022). Thus, the selected algorithm

is robust and a very suitable choice for the problem at hand.235

Only daytime conditions were considered, a constraint imposed by selecting periods when the incoming solar radiation was

> 10 Wm2. In addition, we also ensured that only cases with positive ET were included. For regression purposes, we further

filtered out periods where one or more input features were unavailable. As a result of these criteria, not every segment of

the time series was suitable for gap filling. Nevertheless, this approach maximizes data availability of T and E, in particular

during daytime, expanding the use of this dataset in future studies. Note that gap filling was not applied to Fc components.240

This decision was made due to the noisier nature of CO2 fluxes. Furthermore, as discussed later, estimates for respiration and

photosynthesis are less reliable across methods (larger variance between methods), and thus gap filling for these components

was not deemed as robust as with ET components.

To maximize the periods with available data features, we only selected meteorological variables with small periods of

missing data and high quality. Following tests on different meteorological variables, the following features were retained: ET ,245

air temperature (TAIR), photosynthetically active radiation (PAR), relative humidity (RH), vapor pressure deficit (VPD), mean

wind speed (U ), sensible heat flux (H), and friction velocity (u⋆). In addition, daily and seasonal cycles were represented as

Xdiurnal =
1

2
sin

(
2π

24
hour− π

2

)
+

1

2
, (6)

Xyearly =
1

2
sin

(
2π

365
julian− π

2

)
+

1

2
, (7)

where Xdiurnal and Xyearly represent the diurnal and yearly cycles corresponding to the hour of the day (in local time) and Julian250

day, respectively. While there are other variables that could be relevant for this problem, they were excluded due to poor data

quality or availability. Nonetheless, using only the listed variables resulted in excellent performance metrics.

For each site and partitioning method — including the different combinations of FVS, CECw and water-use efficiency

models taken individually— the dataset was divided into training (60%), validation (20%), and testing (20%) sets. Across

different cases, the size of the training set varied between 1700 to 12000 points. To monitor the performance of the algorithm,255

we used the coefficient of determination, R2, defined as

R2 = 1−
∑

(y− ŷ)2∑
(y− y)2

, (8)

where y are the observed values with average y, while ŷ are the predictions. This metric indicates how well the independent

variables explain the variance in the dependent variable. Thus, the upper bound R2 =+1 is expected only if the selected

features explain 100% of the variance.260

After experimenting with different hyperparameters, the same values for learning rate (0.01), maximum depth of a tree (5),

and number of trees (1000) were used to train all sites and methods individually. Finally, gap filling was only performed for a
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particular case when its respective R2 on the test set was greater than 0.7. Few cases had an R2 below this threshold, which was

found to correspond most often to datasets combining FVS and WCC or WCR over shrublands or tundra sites, combinations

which resulted in the least amount of valid partitioning estimates (smallest training sets). Excluding these few exceptions, the265

majority of the cases featured R2 > 0.8 (and bias < 1 Wm−2) and were deemed reliable for gap filling. The final metrics for

all models and sites can be found in the supplementary material. All auxiliary data used to implement the gap-filling algorithm

is also available included in the final dataset.

As expected, the algorithm identified ET as the most relevant variable across all cases (approximately 80%). Note that in this

context, we do not use ET to explain the variability in E or T in the sense of an environmental forcing. Instead, ET is used to270

teach the model how to partition the fluxes, effectively functioning as a machine-learning-based partitioning method. In section

6, we briefly explore feature importance for T and T/ET in the context of environmental forcings, where only environmental

variables are included as features (excluding ET ), and we investigate how much of these fluxes they can explain.

While the variability in feature importance was small across vegetation types, a larger variability was observed between

methods. Notably, FVS combined with the water-use efficiency models WCC and WCR often attributed a lower importance275

to ET (as low as 27%) and higher importance to VPD (as high as 25%). Previous work (Wagle et al., 2023) has shown that

these two water-use efficiency models are very sensitive to the choice of parameters, and greatly overestimate W compared to

other models, particularly early in the morning. While investigating the possible causes of this discrepancy across water-use

efficiency models is beyond the scope of this paper, deeper analyses will be enabled by this dataset.

Following the algorithm evaluation, transpiration was then estimated for missing data periods and defined as T xgb
part, where280

the superscript ‘xgb’ refers to the the gap-filled variable using XGBoost. Only half-hour periods when 0< T xgb
part <ET were

gap filled. Evaporation was then estimated as Exgb
part = ET −T xgb

part. For FVS and CECw, we also computed the average across

their different water-use efficiency outputs, corresponding to T xgb
FVSMEAN

and T xgb
CECwMEAN

.

The convergence rate to valid solutions after gap filling is shown in the last column of Table 4. Most notably, gap filling

increased the presence of estimates from the FVS method for 80 to 90% of the periods when partitioning was applied. To285

further illustrate the completeness of the flux-partitioning record in the five-year dataset, Table 1 shows the availability of flux

components as a fraction of the total number of half-hour periods in the record. Overall, all methods cover a similar temporal

distribution of flux partitioning and are potential candidates for ensemble averaging.

4 Description of the final dataset

The final dataset is available for download at https://doi.org/10.5281/zenodo.12191876. It is organized in different folders for290

each site, with each site containing a CSV file for each method. This format is selected to be user-friendly and accessible in

various programming languages and software. For FVS and CECw, in addition to their ensemble averages for different water-

use efficiency parameterizations, we also include each individual output. This allows future users to compare the impact of

water-use efficiency on the partitioning output.
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All results are in UTC time, where it represents the start time of measurements for a half-hour period (i.e., starting at minute295

‘00’ or ‘30’). Each file contains all fluxes in continuous timestamps of 30 minutes. In cases where a specific variable was

unavailable, the corresponding cell in the CSV file was left blank. A python script showing how to read the final data files is

included with the dataset.

In each file, the following variables are included

– Tpart: transpiration [W m−2]300

– Tpart_xgb: transpiration after gap filling [W m−2]

– Ppart: plant net photosynthesis [mgCO2m−2s−1]

– Epart: below canopy evaporation [W m−2]

– Epart_xgb: below canopy evaporation after gap filling [W m−2]

– Rpart: below canopy respiration [mgCO2m−2s−1]305

– Fc: net CO2 flux [mgCO2/m2/s]

– ET: evapotranspiration [W/m2]

– qfFinalCO2: NEON final quality flag for CO2 flux (0: Fc passed all quality assurance tests, 1: Fc flagged by one or

more test)

– qfFinalH2O: NEON final quality flag for ET flux (0: ET passed all QA tests, 1: ET flagged by one or more quality310

assurance tests)

For flux components, “part” represents any of the methods. In addition, a separate file, WUEinput.csv, contains the water-use

efficiency values from all five parameterizations, defined as follows

– const_ppm [kgCO2 (kgH2O)−1]

– const_ratio [kgCO2
(kgH2O)−1]315

– linear [kgCO2
(kgH2O)−1]

– sqrt [kgCO2 (kgH2O)−1]

– opt [kgCO2
(kgH2O)−1]

Finally, a file named MeteorologicalVariables.csv is also included, which contains all the auxiliary meteorological variables

used for gap filling and feature importance analysis. This file is synchronized with the partitioning data file to contain the same320

records. The following variables are available
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– SoilMoisture: soil moisture measured at the second level below the surface (depth varies by site) [m3m−3]

– AirTemperature: air temperature [◦C]

– SolarRadIn: incoming solar radiation measured at the top of the tower [Wm−2]

– RH: relative humidity in %325

– Rain: accumulated precipitation at the top of the tower during that 30 min period [mm]

– PAR: photosynthetically active radiation measured at the top of the tower [µmolesm−2s−1]

– fluxTemp: sensible heat flux at the top of the tower [Wm−2]

– ustar: friction velocity at the top of the tower [ms−1]

– WindSpeed: mean wind speed at the top of the tower [ms−1]330

– vpd: vapor pressure deficit [kPa]

5 Comparison of partitioning approaches

A comparison of T/ET across all seasons for different types of vegetation is presented in Figure 3. The averages were

computed over half-hour periods obtained between 6 am and 6 pm local time. For all vegetation types, the average T/ET

ratios range from 0.5 in winter to 0.7 in summer. Except for the results over tundra locations, there is a notable similarity across335

the five methods, particularly during spring and fall. In contrast, the dissimilarity across methods for tundra is possibly linked

to the heterogeneity of these sites, which breaks down the assumptions of the partitioning methods more often. A surprising

result is that good agreement across methods was observed regardless of measurement height. Even above agricultural sites,

where the ratio of z/h can be as large as 30, good agreement was observed for many locations.

Given the underlying uncertainties with partitioning algorithms, one route for verifying the reliability of partitioning esti-340

mates is to compare different methods. In Table 5, we compare the different transpiration estimates obtained by CEC, FVS,

CEA, and CECw, where the slope α of the linear regression is shown. Results for MREA were similar to those for CEC and are

not shown. To help interpret these results, they were separated into four groups: agreement in the 10% range, i.e., 0.9< α < 1.1;

slopes in the range 0.8< α < 1.2; slopes in the range 0.7< α < 1.3; disagreement greater than 30%, i.e., α < 0.7 or α > 1.3.

Overall, TFVS and TCEA are in very good agreement, with differences often within the 10% range across various sites. Only345

at two sites (PUUM and BARR) were the slopes found to be greater than 1.3 (1.55 and 1.39, respectively). A similar good

agreement is seen for the pair TFVS and TCECw, as well as TCEA and TCECw. The close agreement for these three methods was

also observed in their average diurnal cycles, in particular between 9 and 15 local time (Figure A1) and even under conditions

when z/h≫ 3. Nonetheless, note that the diurnal cycles for the FVS exhibit higher values early in the morning and late in the

afternoon. Previous studies have highlighted significant variability among the five W options, with differences that can span350
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Figure 3. T/ET ratios averaged over all the half-hour periods across seasons and for sites with similar vegetation types. Only half-hour

periods during the day (local 6 am and 6 pm) were included, and only when solutions for all methods were available. For FVS and CECw, the

ensemble average of outputs with different water-use efficiencies were used. For each season/vegetation type, the black dashed line indicates

the average across all methods.
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two orders of magnitude during the early hours (Wagle et al., 2023), which inevitably influence the output of the FVS method.

Therefore, without additional information on actual water-use efficiency, we cannot explain this behavior with certainty.

The good agreement between FVS and CEA is particularly encouraging given that the CEA method does not require water-

use efficiency as an input, using only turbulence information. Moreover, we identified that the outputs of FVS using WCR and

WCR were the ones that differed the most from CEA, the remaining three FVS outputs being more similar; WOPT produced355

the estimates closest to CEA (see Figure A2). Finally, transpiration estimates obtained by CEC tend to disagree more often

with other methods (similar trends were observed for MREA, data not shown). Nonetheless, increased agreement is observed

when the data are separated by seasons, as shown in Figures 3 and A1.

The main challenge of flux partitioning is verifying the accuracy of these results, so we cannot initially assume that CEC’s

results are inherently inaccurate or incorrect. However, previous numerical experiments (Zahn et al., 2024) identified that CEC360

and MREA are more restrictive than the other approaches, being stricter in terms of measurement height and canopy density.

Thus, it is possible that the denser canopy during summer directly affect these assumptions, decreasing these two method’s

performance. They were also more prone to larger errors when the ratios T/E and P/R were more dissimilar. Unfortunately,

a metric to determine the “goodness” of partitioning is not feasible since in experiments the true answer is never known. Only

estimates of these partitioned fluxes are available since even sap flow, isotope, and flux chamber methods have their limitations.365

Given this uncertainty, a prudent recommendation is to implement the ensemble average of T and E of all methods in

future studies. Ideally, the results should converge regardless of the partitioning methods used. However, depending on the

specific NEON site or analyses of interest, it may be advantageous to prioritize FVS, CEA, and CECw methods under certain

circumstances given their close agreement, potentially adding either CEC or MREA since these two methods give similar

results and should thus be treated as one member of the ensemble. To this end, the slopes shown in Table 5 offer a reference.370

Table 5: Slopes of the linear regression for transpiration for all methods across all sites. Only half-hour periods between

6am and 6pm, without gap filling, were included. For FVS and CECw, their ensemble average across water-use efficiency

options was used. Sites were grouped according to the dominant vegetation type representing the tower footprint. To facilitate

visual inspection of results, slopes α in the 10% range (0.9< α < 1.1) are shown in bold, while slopes in the 20% range

(0.8< α < 1.2) appear in italic.

site TFVS,TCEC TFVS,TCEA TFVS,TCECw TCECw,TCEA TCECw,TCEC TCEC,TCEA

Evergreen Forest

ABBY 1.20 0.85 0.87 1.01 1.43 0.70

DEJU 1.16 0.86 0.82 1.07 1.49 0.72

DELA 1.37 0.94 1.01 0.97 1.42 0.68

GUAN 1.36 0.92 1.08 0.93 1.35 0.68

HEAL 1.26 0.95 0.81 1.18 1.61 0.73

OSBS 1.51 1.04 1.13 0.97 1.43 0.69
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PUUM 2.17 1.55 1.39 1.18 1.65 0.71

RMNP 1.33 0.97 0.95 1.04 1.44 0.72

SOAP 1.03 0.77 0.79 0.94 1.34 0.67

TEAK 1.31 0.91 1.04 0.90 1.34 0.67

WREF 0.91 0.73 0.84 0.93 1.24 0.70

YELL 1.27 0.96 0.92 1.08 1.47 0.73

Deciduous Forest

CLBJ 1.31 0.94 1.01 0.98 1.35 0.72

GRSM 1.38 0.94 1.03 0.94 1.37 0.69

HARV 1.31 0.91 1.04 0.91 1.28 0.70

LENO 1.32 0.89 1.02 0.93 1.33 0.68

MLBS 1.56 1.12 1.09 1.06 1.48 0.71

ORNL 1.13 0.78 0.89 0.89 1.29 0.67

SCBI 1.33 0.93 1.01 0.96 1.37 0.70

SERC 1.40 0.96 1.09 0.91 1.33 0.69

STEI 1.30 0.96 0.99 1.02 1.37 0.74

UKFS 1.27 0.91 0.98 0.97 1.36 0.72

Mixed Forest

BART 1.34 0.95 1.02 0.96 1.34 0.71

BONA 1.26 0.92 0.89 1.07 1.51 0.71

JERC 1.42 0.97 1.07 0.96 1.39 0.69

SJER 1.22 0.84 1.01 0.89 1.34 0.66

TALL 1.24 0.87 0.97 0.95 1.37 0.70

TREE 1.34 0.94 0.98 1.01 1.40 0.71

UNDE 1.39 0.99 1.03 1.00 1.39 0.72

Tundra

BARR 1.73 1.51 1.42 1.10 1.48 0.74

NIWO 1.36 1.08 0.98 1.15 1.61 0.72

TOOL 1.42 1.14 1.02 1.14 1.53 0.75

Shrubland

JORN 1.05 0.79 0.87 0.92 1.24 0.69

MOAB 1.00 0.74 0.81 0.90 1.22 0.69

ONAQ 1.10 0.85 0.81 1.06 1.50 0.70

19



SRER 1.02 0.79 0.87 0.92 1.23 0.70

Grassland

CPER 1.08 0.85 0.90 0.96 1.32 0.70

DCFS 1.50 1.11 1.04 1.13 1.58 0.73

KONZ 1.31 0.94 1.02 0.97 1.38 0.71

NOGP 1.34 0.98 0.94 1.08 1.54 0.72

OAES 1.39 1.00 0.99 1.04 1.46 0.72

WOOD 1.63 1.18 1.14 1.07 1.50 0.72

Agriculture

BLAN 1.16 0.85 0.89 1.00 1.37 0.73

DSNY 1.32 0.93 0.96 1.04 1.49 0.70

KONA 1.04 0.81 0.89 0.94 1.24 0.72

LAJA 1.28 0.93 1.06 0.92 1.27 0.72

STER 0.94 0.75 0.87 0.87 1.12 0.72

Table 6: Slopes of the linear regression for net primary productivity (P ) for all methods across all sites. Only half-hour periods

between 6 am and 6 pm (local time) were included. For FVS and CECw, their ensemble average across water-use efficiency

options was used. Sites were grouped according to the dominant vegetation type. To facilitate visual inspection of results,

slopes α in the 10% range (0.9< α < 1.1) are shown in bold, while slopes in the 20% range (0.8< α < 1.2) appear in italic.

site PFVS,PCEC PFVS,PCEA PFVS,PCECw PCECw,PCEA PCECw,PCEC PCEC,PCEA

Evergreen Forest

ABBY 0.32 0.57 0.87 0.32 0.18 1.64

DEJU 0.09 0.16 0.73 0.07 0.04 1.56

DELA 0.45 0.81 0.95 0.67 0.37 1.52

GUAN 0.53 0.69 1.01 0.29 0.20 1.67

HEAL 0.15 0.21 0.75 0.13 0.08 1.43

OSBS 0.36 0.68 1.05 0.36 0.17 1.74

PUUM 0.60 1.01 1.48 0.14 0.08 1.60

RMNP 0.14 0.21 0.87 0.13 0.08 1.49

SOAP 0.11 0.23 0.80 0.10 0.05 1.69

TEAK 0.30 0.46 0.97 0.24 0.13 1.84

WREF 0.18 0.34 0.82 0.16 0.10 1.57
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YELL 0.12 0.24 0.86 0.12 0.07 1.53

Deciduous Forest

CLBJ 0.36 0.61 0.92 0.61 0.38 1.45

GRSM 0.53 0.91 1.09 0.57 0.32 1.62

HARV 0.62 1.07 1.06 0.72 0.40 1.59

LENO 0.49 0.92 0.97 0.83 0.44 1.61

MLBS 0.57 0.91 1.11 0.44 0.27 1.47

ORNL 0.47 0.92 0.88 0.80 0.39 1.73

SCBI 0.49 0.85 0.97 0.77 0.44 1.52

SERC 0.60 1.00 1.06 0.79 0.46 1.52

STEI 0.32 0.53 0.95 0.40 0.23 1.43

UKFS 0.34 0.58 0.88 0.45 0.26 1.50

Mixed Forest

BART 0.52 0.92 1.03 0.52 0.27 1.58

BONA 0.13 0.25 0.80 0.12 0.06 1.56

JERC 0.30 0.59 0.97 0.52 0.26 1.61

SJER 0.33 0.53 1.04 0.34 0.20 1.74

TALL 0.38 0.65 0.94 0.43 0.23 1.64

TREE 0.40 0.70 0.94 0.55 0.30 1.53

UNDE 0.38 0.67 0.97 0.41 0.22 1.49

Tundra

BARR 0.05 0.10 1.20 0.04 0.02 1.54

NIWO 0.03 0.07 0.84 0.04 0.02 1.48

TOOL 0.05 0.12 0.99 0.07 0.03 1.42

Shrubland

JORN 0.08 0.17 0.84 0.06 0.03 1.81

MOAB 0.01 0.03 0.90 -0.00 -0.00 1.75

ONAQ 0.04 0.10 0.88 0.05 0.02 1.54

SRER 0.10 0.22 0.86 0.12 0.06 1.84

Grassland

CPER 0.06 0.17 0.94 0.08 0.04 1.56

DCFS 0.13 0.22 0.92 0.14 0.09 1.48

KONZ 0.33 0.60 0.99 0.41 0.22 1.51
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NOGP 0.17 0.29 0.98 0.17 0.10 1.61

OAES 0.21 0.36 0.95 0.25 0.15 1.48

WOOD 0.22 0.39 1.09 0.22 0.12 1.52

Agriculture

BLAN 0.39 0.67 0.92 0.44 0.25 1.54

DSNY 0.35 0.72 0.98 0.34 0.16 1.83

KONA 0.05 0.17 0.91 0.09 0.03 1.50

LAJA 0.43 0.79 0.96 0.71 0.40 1.48

STER 0.05 0.15 0.88 0.05 0.02 1.58

In contrast to ET flux partitioning, the estimated CO2 flux components showed more disagreement across methods (Table

6). Generally, methods that do not require water-use efficiency (CEC, CEA, and MREA) underestimated P and R compared to

FVS and CECw, where most slopes indicated less than 10% of agreement. Our previous findings using large-eddy simulations

to test all methods (Zahn et al., 2024) found larger errors for CO2 components by CEC, CEA, and MREA. We identified

that while CO2 is essential as a tracer for H2O in these methods’ formulations, it cannot be reliably partitioned between soil375

and canopy components given the lack of an upper bound on Fc components, which combine a positive (respiration) and a

negative flux (photosynthesis). In contrast, FVS and CECw limit the magnitude of these components by imposing W = P/T ,

thus adding a constraint to the magnitude of Fc=R+P . Note, however, that P (and R) will be subjected to uncertainties

present in the water-use efficiency estimate. Overall, these findings indicate that CO2 flux partitioning is more challenging,

and care must be taken when using and interpreting these results. At present, for CO2 flux components we thus recommend380

taking the ensemble average of CECw and FVS (across all five W estimates), potentially adding CEA as a third member of the

ensemble for select sites, in particular above deciduous forests, following Table 6.

6 Exploring research opportunities with a flux partitioning dataset

The final dataset will enable hydrologists and ecologists to investigate a variety of research questions related to flux partitioning.

Considering the dataset’s breadth of coverage, its spatial and temporal distributions enable comparison across diverse condi-385

tions, encompassing various forest structures, water availability, climate and weather patterns, and more. Due to remaining

gaps in the final flux time series, the evaluation of long-term budgets over the period of five years is not recommended without

additional work to complete the temporal coverage. Nonetheless, budgets over smaller periods and for specific NEON sites are

possible and can be explored. In this case, for nighttime periods, when most partitioning results are unavailable, researchers

might fill gaps by assuming zero plant fluxes (for example for T and P ), and E = ET and R= Fc.390

One relevant research question regarding ecosystem functioning revolves around the main drivers of plant and soil fluxes.

To briefly explore this question, we implemented XGBoost to estimate the importance of a few environmental variables on T

and T/ET , where we first averaged the output from all five partitioning models (excluding gap-filled periods). Note that this
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analysis is different from the procedure used for gap filling, where ET was used as a predictor. Here, we simply investigate

the importance of each environmental variable as a driver of plant fluxes, and thus ET is not used as an input. The selected395

features were air temperature, photosynthetically active radiation, relative humidity, vapor pressure deficit, mean wind speed,

sensible heat flux, and friction velocity.

The importance of each environmental variable is shown in Figure 4 for T (top row) and T/ET (bottom row) averaged

across sites with the same vegetation type. The standard deviation was also computed across sites and is represented by the

bars in the figure (the outer circle represents a standard deviation of 20%). Notably, these seven environmental variables can400

explain up to 77% (R2 = 0.77 over agricultural sites) of the variability in transpiration. With exception of tundra sites, where

sensible heat was the most important variable, photosynthetically active radiation, followed by air temperature, were the most

relevant features. Intersite variability was also observed; for instance, the standard deviation of PAR and TAIR was as large

as 20% for evergreen and mixed forests. The variability across methods is not included in this analysis since their ensemble

average was used; nonetheless, similar to our discussion regarding gap filling, we observed that FVS combined with WCC and405

WCR often differed from the other methods (results not shown). This discrepancy is also left for future studies.

Figure 4. Importance of seven environmental variables as drivers of transpiration (top row) and T/ET (bottom row) across vegetation types.

From left to right, the legend includes air temperature (TAIR), photosynthetically active radiation (PAR), relative humidity (RH), vapor

pressure deficit (VPD), mean wind velocity (U ), sensible heat flux (H), and friction velocity (u∗). Pie charts display the average over all sites

with the same vegetation type, where bars represent the standard deviation of feature importance across sites (in percentage). As a reference,

the outer circle represents a standard deviation of 20%.

The ratio T/ET , on the other hand, is more complex and dependent on additional variables not include in this analysis.

Across vegetation types, these seven features were able to explain as little as 23% (shrublands), to no more than 48% (de-

ciduous forests). While relevant environmental variables such as soil moisture and accumulated rainfall were not included in
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our analyses due to availability and/or data quality, these variables can be included for selected sites and/or smaller temporal410

records. By exploring different environmental forcings, this dataset presents an opportunity to address specific inquiries, such

as the impact of heat waves, droughts, and other extreme events on plant transpiration. Research endeavors of this nature are

vital, as they contribute to a deeper comprehension of how present and future climate conditions affect local water and energy

budgets, as well as plant water-use efficiency (Hatfield and Dold, 2019).

The link between fluxes and canopy structure features another set of critical scientific questions that can be addressed using415

this dataset. Previous work (Wang et al., 2014; Wei et al., 2017) compiled results from several case studies and summarized the

correlation between T/ET and leaf-area-index (LAI), which has been turned into a simple regression model often used in other

studies (Nelson et al., 2020). Future investigations could expand this study, and utilize NEON products or satellite imagery to

derive seasonal variations in LAI, thereby enhancing our understanding of how vegetation dynamics influence transpiration. By

combining the most important meteorological features and vegetation characteristics, simpler and more accurate partitioning420

models can be derived and more broadly applied.

In addition to observational studies, modeling or hybrid studies (Rafi et al., 2019; Kozii et al., 2020) can also benefit from

the dataset compiled here. This approach can be explored to develop models for transpiration partitioning or modeling (Bright

et al., 2022), where observations can validate the model or help determine relevant parameters, such as plant conductance.

For instance, Schreiner-McGraw et al. (2022) used transpiration data from FVS to optimize parameters for ParFlow.CLM,425

a hydrological model coupling groundwater flow to a land-surface model (Maxwell and Miller, 2005). This methodology is

particularly useful for evaluating the performance of land surface models, such as NOAH-MP (Niu et al., 2011; Li et al., 2021)

and the Community Land Model (Lawrence et al., 2007), thereby improving assessments of their impact on weather prediction

and climate projections (Berg and Sheffield, 2019; Dong et al., 2022).

Future studies can also expand this dataset by including additional partitioning models, including the products derived from430

the CO2 partitioning algorithm proposed by Reichstein et al. (2005) and Lasslop et al. (2010). In terms of ET partitioning,

for instance, different methods have been proposed that take GPP as an input (Perez-Priego et al., 2018; Zhou et al., 2016;

Nelson et al., 2018); such models have been compared by Nelson et al. (2020) across FLUXNET sites . By comparing different

algorithms, we can further explore their uncertainties and focus on model improvement. Finally, as more data become available,

other options can be used to train machine learning algorithms focusing on gap filling.435

7 Conclusions

This paper described the first dataset of flux partitioning across all NEON eddy-covariance sites from 2019 to 2023. Estimates

of transpiration, evaporation, soil respiration and plant net CO2 assimilation were obtained by five partitioning approaches.

These methods had undergone extensive testing in both experimental and numerical settings in prior studies (Zahn et al.,

2022, 2024), aiding in understanding their limitations and reliability440

Overall, ET components exhibited notable consistency across methods, particularly evident in FVS, CEA, and CECw,

thereby enhancing confidence in these estimates. In contrast, CO2 components are more challenging, and care must be taken
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when interpreting these estimates. The final dataset, available at https://doi.org/10.5281/zenodo.12191876, can be used to

address numerous research questions. We recommend utilizing an ensemble average of methods available for a particular site.

However, based on the comparison presented in this study, a combination of methods might be adopted for specific analyses or445

NEON sites. In any case, the user should keep in mind the following considerations:

1. None of the methods can estimate plant respiration and gross photosynthesis separately; only an estimate of their dif-

ference, plant net photosynthesis (i.e., plant net fluxes) is computed. Similarly, below canopy respiration — which we

assume to be mostly from the soil — also includes respiration from roots and litter;

2. Evaporation from canopy intercepted water is neglected;450

3. While nighttime fluxes are also included, we do not recommend the inclusion of nighttime periods since CO2 assimilation

is not expected at night for C3 and C4 plants, thus breaking the assumption of CO2/H2O coupling;

4. Uncertainties in W will be transferred to the partitioning estimates for FVS and CECw;

5. Given the differences in the methods’ frameworks and their assumptions, data gaps vary. Thus, selecting the periods of

interest and methods to average must be done with care to avoid biases.455

This dataset opens many research pathways that we outlined above, and can be the basis for other derived datasets. The

partitioning approaches can also be applied to other periods of NEON observations, or implemented in the NEON workflow

so that the partitioned fluxes are part of the standard NEON outputs.

8 Code and data availability

The dataset is available at https://doi.org/10.5281/zenodo.12191876 (Zahn and Bou-Zeid, 2024). In addition to all flux com-460

ponents, it also contains the auxiliary meteorological inputs used to implement the Extreme Gradient Boosting algorithm

for gap filling and feature importance analysis. The scripts used to implement all five partitioning methods can be found at

https://doi.org/10.5281/zenodo.13244979 (Zahn, 2024).
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Appendix A: Diurnal cycle of T/ET

Figure A1. Diurnal cycle of the partitioning ratios T/ET for all methods across seasons and vegetation type. Half-hourly estimates during

daytime hours (local 6 am to 6 pm) are only included when all methods have valid solutions. For FVS and CECw, their ensemble average

across water-use efficiency options was used.

Author contributions. EZ and EBZ conceptualised the study and designed the methodology; EZ processed the data; EZ wrote the original465

draft; EZ and EBZ edited and revised the manuscript.
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Figure A2. Diurnal cycle of the partitioning ratios T/ET comparing the FVS output from different water-use efficiency models (and their

ensemble average) and the CEA method (dahsed line). Half-hourly estimates during daytime hours (local 6 am to 6 pm) are only included

when all methods have valid solutions.
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