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Standardized precipitation index (SPI) 24 

The distribution of precipitation is generally not a normal distribution but a skewed 25 

distribution. Therefore, in precipitation analysis, drought monitoring, and assessment, 26 

the distribution probability Γ  is used to describe the change of precipitation. The 27 

standardized precipitation index (SPI; McKee et al. 1993) is used to calculate the 28 

distribution probability Γ  of precipitation within a certain period of time, perform 29 

normal standardization, and finally classify the drought level with the standardized 30 

precipitation cumulative frequency distribution. 31 

𝑓(𝑥) =
1

𝛽𝛾Γ(𝛾)
𝑥𝛾−1𝑒−𝑥/𝛽      𝑥 > 0 (1) 32 

where 𝛽 > 0 and 𝛾 > 0 are scale and shape parameters, respectively. 𝛽 and 𝛾 can be 33 

obtained by the maximum likelihood estimation method: 𝛾 = [
1

4𝐴
(1 + √1 +

4𝐴

3
)]，𝛽̂ =34 

𝑥̅

𝛾̂
，𝐴 = 𝑙𝑔𝑥̅ −

1

𝑛
∑ 𝑙𝑔𝑥𝑖

𝑛
𝑖=1   35 

where 𝑥𝑖 is a precipitation data sample and 𝑥̅ is the climate average of precipitation. 36 

After the parameters in the probability density function are determined, for the 37 

precipitation 𝑥0 in a certain year, the probability of an event in which random variable 38 

𝑥 less than 𝑥0 can be calculated as follows: 39 

𝑓(𝑥 < 𝑥0) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥0

0

(2) 40 

The event probability when the precipitation is 0 is estimated using the following 41 

formula: 42 

𝐹(𝑥 = 0) = 𝑚/𝑛 (3) 43 

where 𝑚 is the number of samples with precipitation of 0, and 𝑛 is the total number 44 

of samples. The Γ  distribution probability is normalized by the normal distribution 45 

function: that is, the probability values obtained by Equations (2) and (3) are substituted 46 
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into the normalized normal distribution function: 47 

𝐹(𝑥 < 𝑥0) =
1

√2𝜋
∫ 𝑒

−𝑍2

2

𝑥0

0

(4) 48 

𝑍 = 𝑆𝑃𝐼 = 𝑆 (𝑡 −
𝑐0 + 𝑐1𝑡 + 𝑐2𝑡

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3
) (5) 49 

where 𝑡 = √𝑙𝑛
1

𝐹2, F is the probability of finding (2) or (3); and when F > 0.5, F = 1− 50 

F, S = 1, when F ≤ 0.5, S = −1. The values of the coefficients are as follows: 51 

𝑐0 = 2.515517, 𝑐1 = 0.802853,  𝑐2 = 0.010328,  𝑑1 = 1.432788, 𝑑2 = 0.189269, and 52 

𝑑3 = 0.001308. 53 

 54 

Standardized precipitation evapotranspiration index (SPEI) 55 

Both SPI and SPEI use a probability density function to fit time series. SPI uses a 56 

parametric Gamma distribution to fit cumulative monthly precipitation time series. SPEI 57 

is calculated similarly to SPI (Vicente-Serrano et al., 2010), using the cumulative 58 

difference between monthly precipitation and potential evapotranspiration (PET) to 59 

replace the precipitation variable, and then using a three-parameter log-logistic 60 

distribution to fit the data, and then using the inverse cumulative probability density 61 

function of the standard normal distribution to convert to the drought index value (Li et 62 

al., 2020). First, the PET is calculated. The second step is to calculate the difference 63 

between precipitation (P) and PET, D = P − 𝑃𝐸𝑇. The third step is to transform data D 64 

as SPI: 65 

𝐹(𝑥) = [1 + (
𝛼

𝑥 − 𝛾
)𝛽]

−1

(6) 66 

T is the probability of a definite D value: 67 

T = 1 − 𝐹(𝑥) (7) 68 

For T ≤ 0.5, 69 
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𝑊 = √−2 ln(𝑇) (8) 70 

 71 

𝑆𝑃𝐸𝐼 = 𝑊 − 
(𝑐2𝑊 + 𝑐1)𝑊 + 𝑐0

[(𝑑3𝑊 + 𝑑2)𝑊 + 𝑑1]𝑊 + 1
(9) 72 

For T > 0.5, 73 

𝑊 = √−2 ln(1 − 𝑇) (10) 74 

𝑆𝑃𝐸𝐼 = − (𝑊 −  
(𝑐2𝑊 + 𝑐1)𝑊 + 𝑐0

[(𝑑3𝑊 + 𝑑2)𝑊 + 𝑑1]𝑊 + 1
) (11) 75 

 76 

Values of coefficients are follows: 𝑐0  = 2.515517, 𝑐1  = 0.802853, 𝑐2  = 0.010328, 77 

𝑑1 = 1.432788, 𝑑2 = 0.189269, and 𝑑3 = 0.001308. 78 

 79 

 80 

Evaporative demand drought index (EDDI) 81 

In recent years, the indices for monitoring drought have mainly focused on water 82 

imbalance, because the physical actual evapotranspiration (AET)-based drought signal 83 

indices are used more and more frequently. These include the SPEI, soil water deficit 84 

index, evapotranspiration deficit index, remote sensing global drought severity index, 85 

etc. Although SPEI monitors drought on the basis of the difference between precipitation 86 

(P) and PET, PET is calculated on the basis of some formula or model; for example, PET 87 

obtained by Thornthwaite’s method is estimated on the basis of average temperature, 88 

while reference crop evapotranspiration (ET0) is not directly measured or represented by 89 

a separate index. An index based only on physical ET0 measurements will have several 90 

advantages: first, the physically based ET0 index does not need to consider the 91 

availability of surface water, because it focuses on the atmospheric water demand rather 92 

than the difference between surface water supply and demand. Second, it avoids the 93 
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difficulties inherent in remote sensing data: some remote sensing data are affected by 94 

various factors, such as satellite remote sensing data being limited by cloud cover or the 95 

time interval when the satellite passes over the ground. This may lead to data delays or 96 

missing data. The physically based ET0 index avoids the difficulties of relying on these 97 

data, because it does not need to use remote sensing data to infer water demand. EDDI 98 

was developed by Hobbins et al. (2016) as an indicator of atmospheric drying potential, 99 

which can indicate plant stress on the ground. 100 

The rationale for this indicator is based on two main physical feedbacks between 101 

AET and ET0 : under conditions of water resource constraint (protracted drought), AET 102 

and ET0 change in opposite directions (Bouchet 1963), and under conditions of energy 103 

constraint at the onset of a sudden drought, they are in parallel (Fig. S4). Specifically, 104 

the magnitude of AET depends on the availability of energy (usually solar radiation, etc.) 105 

or water. If water limits evaporation, then atmospheric evaporation demand either plays 106 

a role in determining actual evaporation or is a reflection of it. For example, under non–107 

water-constrained conditions, ET0 estimates the upper limit of (energy-constrained) AET, 108 

whereas under water-constrained conditions, land–atmosphere feedbacks from AET lead 109 

ET0 towards opposite or complementary directions. If we use the examples of persistent 110 

and sudden droughts, persistent droughts indicate persistent deficits in soil moisture (SM) 111 

and fluxes associated with land–air interfaces, where water constraints affect AET. 112 

However, “rapid droughts” (i.e., rapidly developing droughts caused by strong, transient 113 

meteorological/radiometric changes, such as increasing temperature, wind speed, 114 

radiation or moisture decrease, without substantial change in precipitation) tend not to 115 

be affected by water constraints. Nevertheless, ET0 exhibited positive signals in both 116 

sustained and rapid droughts, indicating its value in monitoring droughts and as an early 117 

indicator of the development of drought conditions (Hobbins et al., 2016). 118 
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 119 

Palmer drought severity index (PDSI) 120 

PDSI is a drought index with clear physical meaning established by Palmer, (1965). 121 

It comprehensively considers many factors such as precipitation, soil moisture, runoff, 122 

and potential evapotranspiration; it can reflect the impact of pre-season precipitation and 123 

water supply and demand on later-period related factors; and it can effectively judge 124 

long-term drought conditions (Aiguo et al., 2004). 125 

The water balance equation for water supply and demand to reach climate 126 

adaptation is as follows: 127 

𝑃′ = 𝛼𝑖𝑃𝐸𝑇 + 𝛽𝑖𝑃𝑅 + 𝛾𝑖𝑃𝑅𝑂 − 𝛿𝑖𝑃𝑙 (12) 128 

𝑃′ represents the climate-suitable precipitation, and 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, and 𝛿𝑖 are the water 129 

balance coefficients of each month i (i = 1, 2, 3, ..., 12), which can be defined as follows: 130 

𝛼𝑖 =
𝐸𝑇𝑖
̅̅ ̅̅

𝑃𝐸𝑇𝑖
̅̅ ̅̅ ̅̅

, 𝛽𝑖 =
𝑅𝑖̅

𝑃𝑅𝑖
̅̅ ̅̅ ̅

, 𝛾𝑖 =
𝑅𝑂𝑖
̅̅ ̅̅ ̅

𝑃𝑅𝑂𝑖
̅̅ ̅̅ ̅̅ ̅

, 𝛿𝑖 =
𝐿𝑖̅

𝑃𝐿𝑖
̅̅ ̅̅̅

(13) 131 

ET, RO, R, and L are respectively the actual evapotranspiration, actual flow, actual soil 132 

water replenishment, and actual soil water loss in month i. PET, PRO, PR, and PL are 133 

respectively the potential evapotranspiration, potential runoff, potential soil water 134 

replenishment, and potential soil water loss. In this model, PR = AWC − (Ss + Su), 135 

PRO = AWC – PR = Ss + Su, PL = PLs + PLu, PLs = min(PE,Ss), PLu = (PE − 136 

PLs)Su/AWC, Ss is the initial effective upper soil water content, and Su is the initial 137 

effective lower soil water content. According to the AWC data recommended by Li et 138 

al., (2023) we adopted the Global Gridded Surfaces of Selected Soil Characteristics data 139 

(https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1006). 140 

Water deficit (d) is the difference between actual precipitation (P) and climate-141 

appropriate precipitation (P'). In order to make PDSI a standardized index, after finding 142 

the water deficit, we multiply it by the climate weight coefficient K of a given month in 143 
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a given place, and thus obtain the water anomaly index Z, also known as Palmer Z index, 144 

which indicates the deviation degree between the actual climate dry–wet condition and 145 

its average water condition in a given month and place: Z = dK; the value of K is 146 

determined by the month and geographical location: 147 

𝐾𝑖 =
𝑎

∑ 𝐷𝑗̅
12
𝑗=1 𝐾𝑗

′ 𝐾𝑖
′ (14) 148 

The empirical constant a = 17.67 obtained by Palmer from the data of nine stations 149 

in seven states was revised to 16.84 according to the climate characteristics of China 150 

(Zhong et al., 2019), where ∑ 𝐷𝑗̅
12
𝑗=1 𝐾𝑗

′ is the average annual absolute moisture anomaly 151 

over the years, with j representing January to December; 152 

𝐾𝑖
′ = 1.6 log10(

𝑃𝐸𝑇𝑖
̅̅ ̅̅ ̅̅ + 𝑅𝑖̅ + 𝑅𝑂𝑖

̅̅ ̅̅ ̅

𝑃𝑖̅ + 𝐿𝑖̅
+ 2.8

𝐷𝑖̅

) + 0.4 (15)
 153 

where 𝐷𝑖̅ the multi-year average of the absolute value of the moisture anomaly d in 154 

month i. Finally, the PDSI value for each month is calculated as follows: 155 

𝑋𝑖 = 𝑝𝑋𝑖−1 + 𝑞𝑍𝑖 (16) 156 

𝑝 and 𝑞 are the duration factors that affect PDSI sensitivity. Palmer obtained p as 0.897 157 

and q as 1/3 based on two stations in central Iowa and western Kansas, but we revised 158 

them to p = 0.755 and q = 1/1.63 on the basis of data from weather stations in China. 159 

PDSI is a cumulative index: that is, an index where each successive value is based on 160 

the previous value. Specifically, any given PDSI value (𝑋𝑖) is the weighted sum of the 161 

previous PDSI value (𝑋𝑖−1 ) and the current humidity anomaly 𝑍𝑖 . For example, the 162 

current PDSI value (𝑋𝑖) is equal to q times the current water vapor outlier 𝑍𝑖 plus p 163 

times the previous PDSI value (𝑋𝑖−1). 164 

 165 

Self-calibrating palmer drought severity index (SC-PDSI) 166 
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Based on PDSI, Wells et al. (2004) proposed and evaluated an SC-PDSI. Wells et al. 167 

(2004) believed that changing the ratio (𝐾̃) could solve the spatial inconsistency of PDSI 168 

without changing the way PDSI deals with seasonal climate changes. 169 

𝐾̃ =
𝑎

∑ 𝑑𝑗̅
12
𝑗=1 𝐾𝑗

′
𝐾𝑖

′ (17) 170 

Since ∑ 𝑑𝑗̅
12
𝑗=1 𝐾𝑗

′ can be approximately regarded as the annual sum of the average 171 

absolute value of Z (𝑍̃ = ∑ 𝑑𝑗̅
12
𝑗=1 𝐾𝑗

′), and the value of a, 17.67 as obtained by Palmer, 172 

is the average value of 𝑍̃ (i.e., the annual average sum of vapor anomalies), and since 173 

PDSI is based on cumulative vapor anomalies, so 𝐾̃ =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝐷𝑆𝐼

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝐷𝑆𝐼
. If the non-174 

extreme value range of PDSI is defined as −4 to 4, but in practice this range is different. 175 

Palmer (1965) argues that if the PDSI were truly a standardized measure of drought 176 

severity, then values outside of that range (−4 to 4) would occur with roughly the same 177 

frequency. If the frequency of extreme events is fe, then the feth percentile should be 178 

−4.00 and the (100 − fe)th percentile should be 4.00. So 𝐾̃ =179 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐷𝑆𝐼

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐷𝑆𝐼
. Defining an extreme drought as a "one in 50 year 180 

event" does not determine the percentage of PDSI values below −4.00, as it may last two 181 

months or two years. In this implementation, Wells et al. (2004) used an fe value of 2%, 182 

which resulted in the following climate characterization equation: 183 

𝐾 = {
𝐾′(−4 / 2𝑛𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒), 𝑖𝑓 𝑑 < 0

𝐾′(4 / 98𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒), 𝑖𝑓 𝑑 ≥ 0
(18) 184 

Palmer found the duration factor empirically, based on the linear relationship between 185 

the length of time and severity of the most extreme droughts he studied in Kansas and 186 

Iowa. To estimate the severity of droughts, he summarized the Z-scores for severe 187 

droughts and derived the following linear relationship: 188 
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𝑃𝐷𝑆𝐼 = −4.0 ⇒ ∑ 𝑍𝑖 = −1.236𝑡 − 10.764

𝑡

𝑖=1

(19) 189 

𝑃𝐷𝑆𝐼 = −3.0 ⇒ ∑ 𝑍𝑖 = −0.927𝑡 − 8.073

𝑡

𝑖=1

(20) 190 

𝑃𝐷𝑆𝐼 = −2.0 ⇒ ∑ 𝑍𝑖 = −0.618𝑡 − 5.382

𝑡

𝑖=1

(21) 191 

𝑃𝐷𝑆𝐼 = −1.0 ⇒ ∑ 𝑍𝑖 = −0.309𝑡 − 2.691

𝑡

𝑖=1

(22) 192 

∑ 𝑍𝑖 = (0.309𝑡 + 2.691

𝑡

𝑖=1

)𝑋𝑖 (23) 193 

The linear relationship from (19) to (23) can be simplified to (24), respectively, for a 194 

given PDSI value 𝑋𝑡 = −4, −3, −2, and −1. 195 

∑ 𝑍𝑖 = (𝑚𝑡 + 𝑏

𝑡

𝑖=1

)
𝑋𝑡

C
(24) 196 

It is not difficult to find that when C = −4, m = −1.236, and b = −10.764, (24) is equal 197 

to (19); (24) can also be derived in a generalized form as follows: 198 

𝑋𝑡 = (1 −
𝑚

𝑚 + 𝑏
)𝑋𝑖−1 +

𝐶

𝑚 + 𝑏
𝑍𝑡 (25) 199 

Thus, the persistence factor 𝑝 = (1 −
𝑚

𝑚+𝑏
), 𝑞 =

𝐶

𝑚+𝑏
. 200 

In practical analysis, because different regions have different sensitivities to 201 

precipitation events, and some regions have different sensitivities to precipitation and 202 

non-precipitation periods, two sets of duration factors are needed. SC-PDSI establishes 203 

a separate duration factor for dry and wet periods, so that the sensitivity of the index 204 

depends on local climate and has different sensitivities to wetness and moisture deficit. 205 

We summarize the calculation steps of SC-PDSI as follows, after Wells et al. (2004):  206 

(1) First, calculate moisture departures according to (12) and (13), 𝑑 = 𝑃 − 𝑃′; 207 
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(2) Calculate K according to K' in (15), and then calculate the moisture anomaly index, 208 

Z = dK;  209 

(3) Calculate the index duration factor using the least squares method under extremely 210 

wet and extremely dry conditions: ∑ 𝑍𝑖 = 𝑚𝑡 + 𝑏𝑡
𝑖=1  , which will give two sets of 211 

parameters m and b. Calculate m and b according to the results of (13);  212 

(4) Substitute m and b into Equation (25) to calculate PDSI; 213 

(5) Recalculate K according to (18) after finding the 98th and 2nd percentiles of PDSI; 214 

(6) Substitute the results of (10) into Z = dK to get the new Z; 215 

(7) Return to step 3 again to get the new m and b, and finally get SC-PDSI. 216 

 217 

Vapor pressure deficit (VPD) 218 

Saturated vapor pressure is a function of temperature and can be directly calculated 219 

from temperature, as shown in the Tetens empirical formula (Allen et al., 1998): 220 

𝑒0(𝑇) = 0.6108exp [
17.27𝑇

𝑇 + 237.3
] (26) 221 

where 𝑇 is the air temperature (°C), and 𝑒0(𝑇) is the saturated water vapor pressure 222 

at temperature (kPa). Since the above equation is a nonlinear function, for the average 223 

saturated vapor pressure with such a long interval at the monthly scale, if the average 224 

temperature is used to replace the daily maximum and minimum temperatures, the 225 

estimated value of the average saturated vapor pressure will be low, and the 226 

corresponding vapor pressure difference will be small. Therefore, the mean value of the 227 

saturated vapor pressure corresponding to the daily average maximum and minimum 228 

temperatures within the time interval is used for calculation (Li et al., 2014): 229 

𝑒𝑠 =
𝑒0(𝑇𝑚𝑎𝑥) + 𝑒0(𝑇𝑚𝑖𝑛)

2
(27) 230 

where, 𝑒𝑠 is the average saturated vapor pressure (kPa), and 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the 231 
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daily average highest and lowest air temperature (°C), respectively. The actual vapor 232 

pressure 𝑒𝑎  (kPa) is calculated according to the monthly average relative humidity 233 

(𝜑𝑚𝑒𝑎𝑛): 𝑒𝑎 = 𝑒𝑠
𝜑𝑚𝑒𝑎𝑛

100
, and VPD = 𝑒𝑠 − 𝑒𝑎. 234 

 235 

Slope of the saturated vapor pressure  236 

∆=
4098 × [0.6108 × exp (

17.27𝑇
𝑡 + 237.3)]

(𝑇 + 237.3)2
 

(28) 

where ∆  is the slope of the saturated vapor pressure temperature relationship (kPa ·237 

℃−1) 238 

 239 

Psychrometric constant 240 

𝛾 =
𝑐𝑝𝑃

𝜀𝜆
= 0.665 × 10−3𝑃 

(29) 

𝑃 = 101.3 × (
293 − 0.0065𝑧

293
)5.26 

(30) 

where γ is the psychrometric constant (kPa · ℃−1); 𝜆 is the latent heat of evaporation 241 

(2.45 MJ · 𝑘𝑔−1 ); 𝜀  is the molecular weight ratio of water to air (0.622); 𝑐𝑝  is the 242 

specific heat of air at constant pressure (1.013 × 10−3MJ · 𝑘𝑔−1℃−1); P is atmospheric 243 

pressure (kPa); and 𝑧 is local elevation (m). 244 

 245 

Vapor pressure of the air 246 

𝑒𝑜(𝑇) = 0.618exp (
17.27𝑇

𝑇 + 237.3
) 

(31) 

𝑒𝑎 =
𝑅𝐻𝑚𝑒𝑎𝑛

100
[𝑒𝑜(𝑇)] 

(32) 

𝑒𝑠 =
𝑒𝑜(𝑇𝑚𝑎𝑥) + 𝑒𝑜(𝑇𝑚𝑖𝑛)

2
 

(33) 
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where 𝑅𝐻𝑚𝑒𝑎𝑛 is the mean daily relative humidity; 𝑇𝑚𝑎𝑥 is the maximum temperature 247 

( ℃ ); 𝑇𝑚𝑖𝑛  is the minimum temperature ( ℃ ); and 𝑒𝑜(𝑇)  is the saturation vapor 248 

pressure function (kPa). 249 

 250 

Net radiation at the ground surface 251 

The first step is to calculate the extraterrestrial radiation ( 𝑅𝑎 ). The daily 252 

extraterrestrial radiation at different latitudes during the year can be estimated from the 253 

solar constant, the magnetic declination of the sun, and the day’s position during the year. 254 

𝑅𝑎 =
24 × 60

𝜋
𝐺𝑠𝑐𝑑𝑟[𝜔𝑠 sin(𝜑) sin(𝛿) + cos(𝜑) cos (𝛿)sin (𝜔𝑠)] 

(34) 

 

where 𝑅𝑎 is extraterrestrial radiation (MJ · 𝑚−2𝑑𝑎𝑦−1); 𝐺𝑠𝑐 is the solar constant and 255 

takes the value of 0.082 (MJ · 𝑚−2𝑚𝑖𝑛−1); 𝑑𝑟 is the average distance between the Earth 256 

and the sun, calculated by equation (35); 𝛿 is the magnetic declination of the sun (rad), 257 

calculated by formula (36);  𝜑  is latitude (rad); and 𝜔𝑠  is the sunset hour angle, 258 

calculated by formula (37). 259 

𝑑𝑟 = 1 + 0.033cos (
2𝜋

365
𝐽) 

(35) 

δ = 0.408sin (
2𝜋

365
𝐽 − 1.39) 

(36) 

where J indicates the day order, ranging from 1 to 365 or 366. 260 

𝜔𝑠 = arccos [−tan (𝜑)tan (𝛿)] (37) 

If the observed value of solar radiation 𝑅𝑠 is not available, it can be obtained from 261 

the formula for the relationship between solar radiation and extraterrestrial radiation and 262 

relative insolation: 263 

𝑅𝑠 = (𝑎𝑠 + 𝑏𝑠

𝑛

𝑁
)𝑅𝑎 

(38) 

where n is actual sunshine hours (h); N is the maximum possible sunshine hours; and 𝑎𝑠 264 
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and 𝑏𝑠  vary with atmospheric conditions (humidity, dust) and the sun’s magnetic 265 

declination (latitude and month). When there are no actual solar radiation data and 266 

empirical parameters to use, it is recommended to use 𝑎𝑠 = 0.25 and 𝑏𝑠 = 0.5. 267 

Net short-wave radiation at the surface is calculated by the balance of received and 268 

reflected solar radiation: 269 

𝑅𝑛𝑠 = (1 − α)𝑅𝑠 (39) 

where 𝑅𝑛𝑠  is net solar radiation or shortwave radiation (MJ · 𝑚−2𝑑𝑎𝑦−1 ); and α  is 270 

albedo, where the albedo of the reference crop of green grassland is 0.23.  271 

When near sea level or when empirical parameters are available for 𝑎𝑠 and 𝑏𝑠, the 272 

clear-sky solar radiation is calculated by the following formula: 273 

𝑅𝑠𝑜 = (𝑎𝑠 + 𝑏𝑠)𝑅𝑎 (40) 

where 𝑅𝑠𝑜 is clear-sky solar radiation (MJ · 𝑚−2𝑑𝑎𝑦−1). 274 

The net long-wave radiation (𝑅𝑛𝑙) is calculated as follows. Long-wave radiation is 275 

proportional to the 4th power of the absolute surface temperature, and this relationship 276 

can be quantified by the Stefan-Boltzmann law. However, due to atmospheric absorption 277 

and downward radiation, the net energy flux at the surface is less than the value 278 

calculated using the Stefan-Boltzmann law. Water vapor, clouds, carbon dioxide, and 279 

dust all absorb and emit long-wave radiation, and their concentrations should be known 280 

when estimating net expended radiation fluxes. Due to the large influence of humidity 281 

and cloud cover, these two factors are used to estimate the net expenditure flux of long-282 

wave radiation using the Stefan-Boltzmann law, and the concentration of other absorbers 283 

is assumed to be constant: 284 

𝑅𝑛𝑙 = σ[
𝑇𝑚𝑎𝑥,𝐾

4 + 𝑇𝑚𝑖𝑛,𝐾
4

2
](0.34 − 0.14√𝑒𝑎)(1.35

𝑅𝑠

𝑅𝑠𝑜
− 0.35) 

(41) 

where σ  is the Stefan-Boltzmann constant with a value of 4.903 × 10−9 ( MJ ·285 
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𝐾−4𝑚−2𝑑𝑎𝑦−1 ); 𝑇𝑚𝑎𝑥,𝐾  is the highest absolute temperature in a day (24 hours) in 286 

Kelvin (K) (K = °C + 273.16); 𝑇𝑚𝑎𝑥,𝐾 is the lowest absolute temperature in a day (24 287 

hours) in Kelvin (K) (K = °C + 273.16); and (0.34 − 0.14√𝑒𝑎) is the corrected term for 288 

air humidity: if the air humidity increases, the value of this term will become smaller; 289 

(1.35
𝑅𝑠

𝑅𝑠𝑜
− 0.35) is the revised term for the cloud cover, and if the amount of cloud 290 

increases, 𝑅𝑠 will decrease and the value of this term will decrease accordingly. 291 

The net radiation 𝑅𝑛  is the difference between the incoming short-wave net 292 

radiation 𝑅𝑛𝑠 and the outgoing long-wave net radiation 𝑅𝑛𝑙: 293 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙 (42) 

 294 

  295 
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296 

Fig. S1. (a–c) Correlation spatial distributions of SPI-12, SPEI-12, and EDDI-12 based 297 

on CHM and CRU data. (d–f) Correlation spatial distributions of SPI-12, SPEI-12, and 298 

EDDI-12 based on CHM and CN05.1 data. 299 

  300 
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 301 

Fig. S2. (a–c) Spatial distributions of NSE of SPI-12, SPEI-12, and EDDI-12 based on 302 

CHM and CRU data. (d–f) Spatial distributions of NSE of SPI-12, SPEI-12, and EDDI-303 

12 based on CHM and CN05.1 data. 304 

305 
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306 

Fig. S3. Spatial distribution of seasonal VPD in China, 1961−2022. (a) Spring (March–307 

April–May, MAM). (b) Summer (June–July–August, JJA). (c) Autumn (September–308 

October–November, SON). (d) Winter (December–January–February, DJF). 309 

  310 
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 311 

Fig. S4. Idealized parallel and complementary responses of AET and ET0 (E0 in figure) 312 

to varying moisture and energy conditions. Figure adapted from Hobbins et al. (2016).  313 
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