
A DETAILED LIST OF RESPONSES 

TO THE EDITOR  

We greatly appreciate your careful reading of the manuscript, insightful comments, and 

valuable suggestions. Your thoughtful review has enhanced our paper considerably. 

The manuscript has been revised thoroughly according to your comments and those of 

the individual reviewers, with our point-by-point responses detailed below. 

 

(1) Given the importance of uncertainty quantification for the drought dataset, I think 

that Figure S4 should be added to the main body of the manuscript AND that there 

should be a suitable discussion around its interpretation. Such a discussion would 

ALSO include general limitations of uncertainty quantification in the presence of sparse 

observations. 

Response: Many thanks for your comments. We have put the uncertainty graph (form 

Figure S4 to Figure 7) in the manuscript and discussed it around three main aspects: 

interpolation method uncertainty, interpolation station density, and consideration of 

covariates. Specifically, in Section 4.2 (Lines 371-390) we added the following: “In 

addition, we quantified the uncertainties of SPI, SPEI and EDDI at different time scales 

(Figure 7). We used standard deviation to quantify the results, which were similar to 

those in Figures S2–S4. The regions with higher standard deviation, such as the arid 

northwest, highlight the spatial variability in uncertainty across different datasets. This 

suggests that the drought indices calculated from these datasets may show obvious 

discrepancies in regions with sparse observational coverage. These uncertainties may 

have the following reasons: (1) The variability in interpolation techniques across 

datasets is a critical factor contributing to uncertainty. For instance, the CHM dataset 

employs advanced interpolation techniques based on high-density observational 

stations, while the CRU and CN05.1 datasets utilize thin plate smooth spline (TPSS) 

and inverse distance weighting (IDW) methods, respectively (Harris et al., 2020; Xu et 

al., 2009). These methodological differences become particularly pronounced in areas 

with complex topography, such as the arid northwest. Xu et al. (2022) demonstrated 

that TPSS performs well in capturing broad climate gradients, it may overly smooth the 



results in data-sparse regions, leading to underestimation of extremes. Conversely, 

IDW might overemphasize local station values, causing biases in interpolated fields 

(Shen et al., 2023). (2) Sparse observational coverage is another significant source of 

uncertainty. Liu et al. (2009) highlighted that the density of interpolation sites is the 

key factor influencing interpolation accuracy.  They found that the performance of 

interpolation methods, such as kriging or IDW, deteriorates significantly as the number 

of sites decreases. (3) Differences in the inclusion of auxiliary covariates, such as 

topography, land cover, or climate zones, further contribute to dataset discrepancies.  

The CHM dataset incorporates high-resolution digital elevation models (DEM) as 

covariates, while the CRU dataset primarily relies on planar spatial gradients without 

explicitly considering terrain effects (Harris et al., 2020).  This leads to substantial 

differences in regions with complex orography.” 

 

(2) To increase transparency of the methods: Figures R2-R7 should be added to the 

Supplement. To do so they should be modified to (1) include measures of the fit of the 

exponential decay (e.g. variance explained) and (2) ideally changed to contour/ density 

plots to better visualize the distribution. 

Response: Many thanks for your comments. We have added the contents of the CDD 

section to the supplementary document, including the CDD concept and method 

description, as well as the CDD density map with these meteorological variables added 

in Figure S1. Specifically, in Supplementary document (Lines 26-39) we added the 

following: “The ADW interpolation method used for this study was the modified 

Shepard’s algorithm, which introduces the concept of correlation decay distance (CDD), 

also called correlation length scale or decorrelation length (Shepard, 1984; Dunn et al., 

2020). The CDD is defined as the distance at which the correlation between one station 

and all other stations decays below 1/e, approximately corresponding to the significance 

level of 0.05 for the correlation within large samples (Jones et al., 1997; Harris et al., 

2020). The number of stations for interpolating the target grid cell is well constrained 

by the CDD, thus improving the interpolation precision (New et al., 2000; Mitchell and 

Jones, 2005; Hofstra and New, 2009). For every station, correlations (r) and distances 



(x) for each variable are shown in Figure S1, and the ordinary least-squares method was 

used to fit an exponential decay function: 𝑟 = 𝑒−𝑥/𝐶𝐷𝐷 , take the meteorological 

variable Wind (Figure S1a), for example, the estimated CDD is 361 km (95 % 

confidence interval: 361 km) at the 0.05 significance level.” 

 

 



Figure S1: Kernel density visualization of the Correlation Decay Distance (CDD) and 

the distribution for meteorological variables (Wind≈361, Ssd≈480, Rh≈420, Tmax≈ 

272, Tmean≈ 99, Tmin≈ 136) for all stations within the interpolated domain. Black 

points show the distance–correlation pair for each station. The blue line is the 

exponential curve fitted to the data by ordinary least squares. The red dashed line marks 

where correlation equals 1/e. 

(3) Technical:L125: PrecIpitation, L351 > no comma after THAT 

Response: Many thanks for your comments. We have modified. 
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---------------------------------------------- end line ----------------------------------------- 

For your convenience, to make the review of our revisions easier, we have marked all 

responses and related revisions in light blue. 


