A DETAILED LIST OF RESPONSES
TO REVIEWER #1
We greatly appreciate your careful reading of the manuscript, insightful comments, and
valuable suggestions. Your thoughtful review has enhanced our paper considerably.
The manuscript has been revised thoroughly according to your comments, with our

point-by-point responses detailed below.

(1) Section 2.2: It is suggested to elaborate missing data handling, as it is one of the
tricky part of the observational data while considering several meteorological
parameters.

Response: Many thanks for your comments. The meteorological station data we used
was from the China Meteorological Administration (CMA; http://data.cma.cn/), from
1961 to 2022. These data have missing values at different time periods, and we did not
fill in the time series for the missing values, because any filling method will introduce
errors.

To avoid potential human errors in filling in missing data in the time series, we
exclusively perform spatial interpolation on the observational data, using only the
available data.

Here, we provide an example using temperature data. Only stations available each day
are used for interpolation, despite daily variation. In Fig. R1, red dots indicate stations
with increased data compared to the previous decade, showing a growing number of
stations available for spatial interpolation over time. In Section 2.2 (Lines 152-153) we

added the following: “For missing values, we did not fill in the time series, but used

only stations with available data for spatial interpolation each day.”
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Fig. R1. Spatial distribution of average temperature (Tmean) monitoring stations over
time. Black dots represent stations that existed in the previous time period, while red

dots indicate stations newly added compared to the earlier time frame.

(2) Why angular distance-weighted interpolation (ADW) is considered for the higher-
resolution gridding? Is it better than optimum interpolation method and state-of-the-art
objective analysis techniques? Considering variability of meteorological parameters
taken in this study, does ADW reasonable for all parameters?

Response: Many thanks for your comments. There are indeed many spatial
interpolation methods. Our team's previous work has proved that the ADW method is
the most suitable for precipitation interpolation (Han et al., 2023). The advantage of
ADW is that it takes into account both the distance and angular relationships between
stations, making it more robust in areas where data points are sparsely or irregularly
distributed. This dual weighting system allows for more accurate interpolation in
complex geographical settings, providing more reliable results for high-resolution
gridding. Second, to maintain the consistency of the interpolation method, we apply the
ADW method to all variables and consider the correlation decay distance (CDD) for

each variable. ADW with CDD provides a key benefit that other methods may not



emphasize as directly: the gradual reduction of correlation with increasing distance
between stations. By explicitly modeling the decay of correlation between station pairs
(e.g., as illustrated for all variables in Fig. R2-R7), CDD ensures that distant stations
contribute less to the interpolation, while nearby, highly correlated stations are given
more weight. This distance-weighting characteristic is critical in regions with uneven
station distributions, where ADW can mitigate the influence of distant stations that may
not reflect local conditions accurately. In Section 2.2 (Lines 148-152) we added the

following: “Before calculating the drought index, we interpolated the basic

meteorological variables (Tmax, Tmin, Tmean, Wind, Ssd, Rh; see Figure 2) and

considered the correlation decay distance (CDD) for each variable, and in the

interpolation process we adopted angular distance-weighted interpolation (ADW),
which considers angular weight in addition to the distance weight function, making it

more robust to outliers. ADW with CDD provides a key benefit that other methods may

not emphasize as directly: the gradual decrease of correlation with increasing distance

between stations.”

Compared to the optimal interpolation (OI) method, ADW offers a simpler
computational process suited for fast processing of large-scale data, making it ideal for
real-time applications. ADW is particularly effective in regions with complex terrain,
such as China, where it can handle spatial heterogeneity and provide smoother
transitions across varying geographic and climatic conditions. Studies show that ADW
more accurately captures spatial variations and reduces interpolation error in
meteorological data. For instance, Chen et al. (2024) generated a high-accuracy raster
dataset of China’s extreme temperature indices (1961-2020) using ADW, verifying its

strong applicability in China.



0.8 4

0.4+

Correlation coefficient

0.0

0 1000 2000 3000 4000 5000
Distance (km)

Fig. R2. Estimation of correlation decay distance (CDD = 99) for daily mean
temperature (Tmean) series for all stations in the interpolated domain. Black points
show the distance—correlation pair for each station. The red line is the exponential curve
fitted to the data by ordinary least squares. The blue dashed line marks where

correlation equals 1/e.
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Fig. R3. Estimation of correlation decay distance (CDD = 136) for daily min
temperature (Tmin) series for all stations in the interpolated domain. Black points show
the distance—correlation pair for each station. The red line is the exponential curve fitted
to the data by ordinary least squares. The blue dashed line marks where correlation

equals 1/e.
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Fig. R4. Estimation of correlation decay distance (CDD = 272) for daily max
temperature (Tmax) series for all stations in the interpolated domain. Black points show
the distance—correlation pair for each station. The red line is the exponential curve fitted
to the data by ordinary least squares. The blue dashed line marks where correlation

equals 1/e.
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Fig. R5. Estimation of correlation decay distance (CDD~361) for daily wind speed
(Wind) series for all stations in the interpolated domain. Black points show the
distance—correlation pair for each station. The red line is the exponential curve fitted to
the data by ordinary least squares. The blue dashed line marks where correlation equals

1/e.
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Fig. R6. Estimation of correlation decay distance (CDD =~ 480) for daily sunshine
duration (Ssd) series for all stations in the interpolated domain. Black points show the
distance—correlation pair for each station. The red line is the exponential curve fitted to
the data by ordinary least squares. The blue dashed line marks where correlation equals

1/e.
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Fig. R7. Estimation of correlation decay distance (CDD = 420) for daily average
relative humidity (Rh) series for all stations in the interpolated domain. Black points
show the distance—correlation pair for each station. The red line is the exponential curve
fitted to the data by ordinary least squares. The blue dashed line marks where

correlation equals 1/e.

(3) Why authors have not considered multivariate drought indices including
precipitation and soil moisture? An example of such long-term global datasets can be
found at https://doi.org/10.1088/1748-9326/7/4/044037

Response: Many thanks for your comments. Considering that different drought indices
can characterize different types of drought, and that there are so many drought indices
to date, in this work we focus only on meteorological drought, which is a precursor to
other types of drought. Accurate analysis of meteorological droughts is essential for
predicting and understanding the development of other droughts, such as agricultural
and hydrological droughts. By first conducting in-depth research on meteorological

drought, we can lay the foundation for subsequent research on multiple drought types,



and improve the accuracy of overall drought monitoring and early warnings.
Considering a multivariate drought index could indeed allow more comprehensive
drought analysis; however, other data (such as soil moisture data) are difficult to obtain,
and there are shortcomings in data quality and spatiotemporal coverage. Therefore, we
plan to gradually introduce and integrate multiple-drought-type data in future studies to
achieve more comprehensive drought assessment.

Additionally, as noted in the work of Aghakouchak and Nakhjiri (2012), the
integration of GPCP and satellite data facilitates robust monitoring of past and near-
real-time meteorological drought conditions through SPI calculation; however, their
approach focuses solely on precipitation. Our study, on the other hand, calculates
multiple indices that require a broader range of meteorological variables. For example,
the calculation of potential evapotranspiration (PET), as used in the SPEI, requires
variables such as precipitation, temperature, sunshine duration, and wind speed.
Moreover, most satellite products lack key variables such as relative humidity and
sunshine duration, which is why we rely on high-quality interpolated meteorological

data for our drought index calculations.

(4) Yangtze River basin may be highlighted in any one figure for the convenience of
the global readers.

Response: Many thanks for your comments. CHM_Drought covers the entire country
from 1961 to 2022. For demonstration, in Section 4.1 of the paper, we take the summer
of 2022 in the Yangtze River Basin as an example to examine the monitoring
capabilities of each drought index. In the original, we used national data and did not
show the scope of the Yangtze River basin, so we revised the manuscript to include the
Yangtze River basin boundary to aid international readers. Among them, SPI, SPEI,
and EDDI have multi-scale characteristics, so we show SPI, SPEI, and EDDI at a three-
month scale (June, July, August; JJA) in Figure 3, while PDSI_China, SC-PDSI, and
VPD represent mean summer (JJA) values. In addition, since the drought in the Yangtze
River Basin this summer was prolonged, persisting into autumn, different time scales

of the drought index could be used to monitor the initial hot spot of the drought and the



drought conditions caused after a long accumulation time. Similarly, the boundary of
the Yangtze River Basin was also included in Figure 4. In Section 4.1 (Lines 285-287)

we added the following: “A severe drought occurred in the south of China in the

summer of 2022, mainly concentrated in the Yangtze River basin. To show the

performance of the CHM Drought dataset in monitoring drought, we use the summer

(June, July, August; JJA) of 2022 in the Yangtze River Basin as an example to examine

the monitoring capabilities of drought indices.”
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Figure 3: Spatial distribution of summer (June, July, August; JJA) drought
characteristics in the Yangtze River Basin, China. Here, (a), (b), and (c) depict the three-
month scale spatial distribution of drought indices, while (d), (e), and (f) present the

average summer (JJA) values for these indices.
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Figure 4. Spatial distribution of three drought indices (SPI, SPEI, and EDDI) in the
Yangtze River Basin, China, across multiple timescales (2-week, 1-month, 3-month,
and 6-month), using August 2022 as an example. (a—d) SP1-2W shows the 2-week scale
SPI, SPI-1 shows the 1-month scale SPI, SP1-3 shows the 3-month scale SPI, and SPI-
6 shows the 6-month scale SPI. The scales of SPEI and EDDI follow the same naming

pattern.

(5) How empirical constant of expression 8 was determined. It needs to be elaborated.
Response: Many thanks for your comments. We used the modified calculation method
for China-specific PDSI provided by the China National Standard for Meteorological
Drought Classification (Standard No. GB/T 20481-2017; hereafter referred to as GB/T)
(Zhong et al., 2019) for the calculation of PDSI_China, which includes the empirical
constant in Expression 8.

Comparisons done for 9 stations in 7 states by Palmer. (1965) indicated different

Y D, K] values, and the average value of Y. D, K; for these 9 stations (i.e., 17.67) was



taken as the numerator and the ZEJK{ for a given region was taken as the

denominator. GB/T sets a in expression 8 to 16.84 instead of 17.67 according to the
results of An et al. (1985). Specifically, An et al. (1985) selected the relevant data from
12 meteorological stations (Beijing, Qingdao, Xian, Xuzhou, Hohhot, Taiyuan,
Hanzhong, Jiamusi, Shenyang, Hankou, Wuzhou, and Kunming) to revise the Palmer
drought degree model in the process of revising the weight factors. For the detailed
formula, please refer to the supplementary document.
a
K; = WK{ (8)

(6) What is the role of land use/ land cover on drought indices? Is it possible to introduce
any new index considering land use/land cover change?
Response: Many thanks for your comments. Although land use and land cover (LULC)
significantly impacts drought, particularly in agricultural and hydrological contexts, our
focus is on meteorological variables such as precipitation and temperature. On the other
hand, because our high-resolution drought index is based on observational data,
meteorological data already reflect land-atmosphere interactions, including LULC
changes. Thus, the effect of LULC is inherent, although not explicitly isolated in this
study.

Our current priority is to develop the CHM_Drought dataset, focused on high-
resolution meteorological drought indices across mainland China from 1961 to 2022.

Integrating LULC changes for a more comprehensive drought index is a valuable goal

for future research.

(6) It is suggested to prepare an uncertainty map for each drought index. It would be
vital for end users.

Response: Many thanks for your comments. We quantified the uncertainty of each
indexusing standard deviation (Figure S4). Among the 6 drought indices involved in
the study, the CRU data lacked relative humidity variables when calculating VPD

index, which could not be calculated. Therefore, standard deviation was calculated for



all indices except the VPD index (Figure S4). In Section 4.2 (Lines 363-365) we

added the following: “In addition, we quantified the uncertainties of SPI, SPEI and

EDDI at different time scales (Figure S4). We used standard deviation to quantify the

results, which were similar to those in Figures S1-S3. The results all showed that the

highest uncertainties were mainly found in areas with few stations.”
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Figure S4: Spatial distribution of the standard deviations of the SPI, SPEI, and EDDI
drought indices across three data sources (CRU, CHM, and CNO5.1) at various time
scales (1-, 3-, 6-, and 12-month). Here, (a-c) show the 1-month scale, (d-f) show the 3-

month scale, (g-i) show the 6-month scale, and (j-1) show the 12-month scale.
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For your convenience, to make the review of our revisions easier, we have marked all

responses and related revisions in light blue.
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