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Abstract. The production and evaluation of the Analysis Ready and Cloud Optimized (ARCO) data cube for continental Eu-

rope (including Ukraine, the UK, and Turkey), derived from the Landsat Analysis Ready Data version 2 (ARD V2) produced

by Global Land Analysis and Discovery team (GLAD) and covering the period from 2000 to 2022 is described. The data cube

consists of 17TB of data at a 30–meter resolution and includes bimonthly, annual, and long-term spectral indices on various

thematic topics, including: surface reflectance bands, Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegeta-5

tion Index (SAVI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Normalized Difference Snow Index

(NDSI), Normalized Difference Water Index (NDWI), Normalized Difference Tillage Index (NDTI), minimum Normalized

Difference Tillage Index (minNDTI), Bare Soil Fraction (BSF), Number of Seasons (NOS), and Crop Duration Ratio (CDR).

The data cube was developed with the intention to provide a comprehensive feature space for environmental modeling and

mapping. The quality of the produced time series was assessed by: (1) assessing the accuracy of gap-filled bimonthly Landsat10

data with artificially created gaps, (2) visual examination for artifacts and inconsistencies, (3) plausibility checks with ground

survey data, and (4) predictive modeling tests, examples with soil organic carbon (SOC) and land cover (LC) classification.

The time series reconstruction demonstrates high accuracy, with RMSE smaller than 0.05, and R2 higher than 0.6, across all

bands. The visual examination indicates that the product is complete and consistent, except for winter periods in northern lati-

tudes and high-altitude areas where high cloud and snow density introduce significant gaps, and hence many artifacts remain.15

The plausibility check further shows that the indices logically and statistically capture the processes. The BSF index showed

a strong negative correlation (-0.73) with crop coverage data, while the minNDTI index had a moderate positive correlation

(0.57) with the Eurostat tillage practices survey data. The detailed temporal resolution and long-term characteristics provided

by different tiers of predictors in this data cube proved to be important for both soil organic carbon regression and LC clas-

sification experiments based on the 60,723 LUCAS observations: long-term characteristics (tier 4) were particularly valuable20

for predictive mapping of SOC and LC coming on the top of variable importance assessment. Crop-specific indices (NOS and

CDR) provided limited value for the tested applications, possibly due to noise or insufficient quantification methods. The data

cube is made available under a CC-BY license and will be continuously updated.
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1 Introduction

Earth Observation (EO) data is increasingly recognized for its critical role in environmental sciences (Kansakar and Hossain,

2016; Salcedo-Sanz et al., 2020). Compared to traditional field surveys, it offers high-resolution, large-scale, and recurrent5

spatial environmental data at relatively low cost. These capabilities are important for comprehensive environmental studies,

ongoing monitoring, and effective management (Chatenoux et al., 2021; Giuliani et al., 2021). EO data not only offer valuable

insights into the Earth’s surface through various spectral bands but can also highlight specific land surface features through

spectral indices derived by processing them. In addition, satellite data serve as an essential input for various models that study

physical processes, forecast future scenarios, and inform policy- and decision makers (Salcedo-Sanz et al., 2020).10

As EO technology develops, more opportunities emerge. The development of a wider range of spectral indices allows a

more detailed analysis using different combinations of satellite bands (Montero et al., 2023). Improvements in spatial and

temporal resolutions enable more detailed observations. In addition, a longer record of satellite imagery facilitates long-term

environmental studies. These advances help us better understand the environmental dynamics and enhance natural resource

management strategies. However, they also introduce new challenges. One of the key challenges to fully unlock the potential15

of EO data for environmental applications, as highlighted by numerous researchers (Killough, 2018; Wagemann et al., 2021;

Giuliani et al., 2021; Chatenoux et al., 2021; Montero et al., 2023), is the gap between the demand for detailed EO data and

the limited processing capabilities of most users. As the volume of EO data and the complexity of spectral indices increase,

processing typically requires specialized expertise and costly computational resources, both locally and in the cloud. For

example, while platforms such as MODIS, Landsat, and Sentinel openly provide valuable satellite data, these data often require20

preprocessing to remove poor quality pixels, such as those affected by cloud cover and geometric distortions (Wulder et al.,

2022; Radeloff et al., 2024). While many pre-processed layers are available, they tend to be scattered across various data portals

and often focus on limited themes. Accessing these ready-to-use datasets usually demands domain-specific knowledge to even

be aware of their existence. In addition, non-standardized data formats further complicate the ability of users to integrate these

data sets for specific applications (Lokers et al., 2016; Wagemann et al., 2021). Thus, there is an essential need for solutions25

that ensure easy access to open environmental data. Furthermore, these solutions should also facilitate the easy integration of

these data, enabling its combined use to effectively address critical environmental and economic challenges (Giuliani et al.,

2017).

Numerous platforms have emerged in the last decade that aim to make the management, processing and analysis of big EO

data operational, including Google Earth Engine (GEE, Gorelick et al., 2017), Sentinel Hub (SH, https://www.sentinel-hub.30

com/), Open Data Cube (ODC, https://www.opendatacube.org/), Copernicus Data Space Ecosystem (https://dataspace.copernicus.

eu/), and openEO Cloud (https://openeo.cloud/). Each platform has its strengths and weaknesses: GEE offers extensive datasets

and robust processing, but is limited by its closed nature, restricting external contributions and governance. Sentinel Hub faces
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similar limitations. OpenEO provides flexibility with user-defined functions but lacks guaranteed compatibility across differ-

ent back-end systems. Among these, the Open Data Cube (ODC) stands out for its open-source nature, flexibility, and strong

community support, making it a leading option (Gomes et al., 2020). As a result, many analysis-ready data (ARD) cubes have

been developed using ODC principles. ARD refers to a multidimensional time series stack of spatially aligned pixels that are

ready for analysis, eliminating the need for additional data harmonization (Giuliani et al., 2017, 2021). These efforts reduce5

technical complexity and have been shown to be effective in delivering information efficiently, as demonstrated by successful

implementations in various domains, such as vegetation dynamics (Obuchowicz et al., 2023), snow cover (Poussin et al., 2023),

and drying trend (Poussin et al., 2021).

EcoDataCube.eu, developed by Witjes et al. (2023), is the first product to cover the entire EU with a sufficient temporal

range to support a long-term analysis of land degradation and land use change dynamics. This work extends the concept of10

ARD to ARCO (analysis-ready and cloud-optimized) data cubes (Stern et al., 2022; Iosifescu Enescu et al., 2021), which helps

to optimize cloud-based data management and processing. Cloud optimization allows for on-the-fly access, reduces latency

through partial and parallel reads, and efficient metadata handling. Cloud-Optimized GeoTIFF (COG, https://www.cogeo.org/),

adopted by EcoDataCube.eu, is a good example of such a format. COG files are structured to facilitate network access through

HTTP range requests, ensuring compatibility with cloud object storage systems. This design supports integration with high-15

level analysis libraries and distributed frameworks. Additionally, EcoDataCube.eu also minimizes data gaps caused by clouds,

which is a major obstacle to unlocking the potential of EO data (Baumann, 2024). This is achieved through time-reconstruction

algorithms to ensure optimal cloud-free conditions (Zhou et al., 2016; Consoli et al., 2024). This approach not only prepares

the data for spatio-temporal analysis but also proves beneficial for modeling, as models typically require complete input data

to function effectively.20

EcoDataCube.eu provides valuable insights through its quarterly temporal resolution and raw bands, making it a significant

resource for Earth observation applications. To further reduce the burden on end users and increase the use and impact of

EO data, we developed the ARCO data cube for the EU by refining the temporal resolution, processing reflectance bands

to derive spectral indices, and updating the data layers until 2022. Our Landsat-based spectral indices data cube spans from

2000 to 2022, covering the pan-European area, including Ukraine, the UK, and Turkey, with data at a detailed 30m resolution.25

Using the Global Land Analysis and Discovery team (GLAD) Landsat Analysis Ready Dataset version 2 (ARD V2) presented

by Potapov et al. (2020) as input, we adopt the state-of-the-art approach of Consoli et al. (2024) to generate four tiers of

environmental predictors:

1. Bimonthly aggregated cloud-optimized bands;

2. Bimonthly spectral indices derived from bands;30

3. Annual indices derived by analyzing the bimonthly time series of indices;

4. Long-term indices reflecting features across two decades.
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The foundational tier of the data cube consists of bimonthly cloud-optimized bands, derived using time reconstruction

methods to address the gaps left by cloudy pixels (Consoli et al., 2024). Building upon this, we calculate bimonthly spectral

indices as the second tier of predictors. This selection includes the most widely used indices, covering key aspects such as

vegetation, crops, soil, and water (Montero et al., 2023): the Normalized Difference Vegetation Index (NDVI) is used to evaluate

vegetation health and biomass. Complementing NDVI, the Soil Adjusted Vegetation Index (SAVI) has been shown to be more5

effective in areas with sparse vegetation by minimizing the impact of soil brightness on vegetation sensing (Huete, 1988;

Rhyma et al., 2020; Reddy et al., 2022). Additionally, the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

provides a more direct measurement of plant productivity (Myneni and Williams, 1994). The Normalized Difference Water

Index (NDWI), also known as the Normalized Difference Moisture Index (NDMI), provides insights into water dynamics and

climatic characteristics (Gao, 1996). The Normalized Difference Snow Index (NDSI) helps identify snowy areas (Salomonson10

and Appel, 2006). The Normalized Difference Tillage Index (NDTI), also known as Normalized Burn Ratio 2 (NBR2), shows

potential in tillage detection, post-�re recovery studies and soil sealing identi�cation (Zheng et al., 2012; Daughtry et al., 2010;

Eskandari et al., 2016; Beeson et al., 2020; Sonmez and Slater, 2016; Storey et al., 2016; Ettehadi Osgouei et al., 2019; Xiang

et al., 2022).

Through time series analysis, we also derive several annual indices that capture temporal patterns within the year as our15

third tier of predictors. This includes the Number of Seasons (NOS) and Crop Duration Ratio (CDR) from NDVI time series,

which shed light on the intensity of cropland use (Siebert et al., 2010; Li et al., 2014; Patel and Oza, 2014; Estel et al., 2016).

The Bare Soil Fraction (BSF) measures the duration of soil exposure, which is related to soil health (Demattê et al., 2020;

Mzid et al., 2021; Sharma et al., 2018; Turmel et al., 2015). Although NDTI is positively correlated with the crop residue cover

ratio (CRC), using it to distinguish between conventional, conservative, and zero tillage practices can be challenging without20

knowing the speci�c timing of tillage or planting (Zheng et al., 2012, 2013). Therefore, its annual derivation, minimum NDTI

(minNDTI), is adopted as a proxy for tillage due to its ease of application (Zheng et al., 2012). We also calculate annual

percentile aggregations (25th, 50th and 75th) of NDVI and NDWI to quantify annual vegetation and water conditions. Finally,

from these annual time series, we develop long-term indices that reveal decadal characteristics as the 4–tier predictors.

Given the comprehensive and extensive nature of this data cube, it is impractical to validate every derived spectral index25

against ground truth data. Plausibility checks were conducted selectively, focusing on 3rd tier predictors where feasible and

necessary, and where relevant ground data were available. These checks involved matching the data with the ground survey

statistics to highlight the advantages and limitations of the data. Our predictors data cube will be compared with EcoDat-

aCube.eu, which has been utilized for land cover (LC) classi�cation by Witjes et al. (2023). By benchmarking against Eco-

DataCube.eu, our aim is to highlight the improvements and advantages offered by our spectral indices data cube, speci�cally30

in terms of accuracy, robustness, and usability for land cover classi�cation. To demonstrate the versatility and utility of the

data cube for various environmental modeling purposes, we also present a case study focused on building regression modeling

for soil organic carbon (SOC) using thid data cube. Finally, we discuss the recommended uses, limitations, and future devel-

opment of this data cube and compare it with other similar projects and initiatives. All the layers we produced are available

under the open data license CC-BY and can be accessed and visualized via our https://stac.ecodatacube.eu as Cloud-Optimized35
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GeoTIFFs (Witjes et al., 2023). To enable users to easily assess the suitability of datasets for speci�c applications, metadata

is embedded within the layer name in a structured and standardized format, aligning with Data-Fitness-For-Use assessment

methodologies (Yang et al., 2013; Pôças et al., 2014; Lokers et al., 2016; A. Wentz and Shimizu, 2018; Lacagnina et al., 2022).

A copy of the data, including bimonthly re�ectance bands, spectral indices, annual aggregations andlong-term analysis, is also

available from Zenodo (Tian et al., 2024, https://doi.org/10.5281/zenodo.10776891); complete code used to derive all indices5

is available via https://doi.org/10.5281/zenodo.12907281.

2 Material and method

2.1 Landsat ARD V2

The data cube presented in this study is based on the Landsat Analysis Ready Dataset version 2 (ARD V2), developed by the

Global Land Analysis and Discovery (GLAD) team at the University of Maryland (Potapov et al., 2020). Landsat ARD V2,10

the second version of Landsat ARD, consists of 16-day tiled composites with 23 images per year from 1997 to 2022, totaling

598 images. It includes seven re�ectance bands (blue, green, red, near-infrared, short-wave infrared 1, short-wave infrared 2

and thermal) and a detailed quality �ag that classi�es each pixel as land, water, cloud, cloud shadow, topographic shadow,

hill shade, snow, haze, cloud proximity, shadow proximity, other shadows, or buffered proximity of the previously mentioned

classes. These quality �ags enable the identi�cation of poor quality pixels, including those affected by clouds, cloud shadows,15

haze, or other shadowy conditions. The presence of these gaps requires signi�cant preprocessing before the data can be used

for direct modeling and analysis. As one of the few globally consistent archives for historical time series of normalized surface

re�ectances derived from various Landsat satellite collections, Landsat ARD V2 offers long-term availability (since 1997)

and detailed spatial resolution (30 meters). For this study, we cropped the global Landsat ARD V2 layers to a pan-European

extent, including Ukraine, the UK and Turkey. The GLAD ARD tile system is adopted to support data organization, parallel20

processing, and spatial inference when necessary.

2.2 TSIRF framework and scikit-map

As a comprehensive framework for processing EO time series, Time-Series Iteration-free Reconstruction Framework (TSIRF)

enables diverse time-series processing techniques by simply adjusting the convolution kernel (Consoli et al., 2024). We adopted

TSIRF for temporal aggregation and gap-�lling to impute data gaps created after removing clouds using the ARD 2 quality25

assessment mask. This framework is implemented through the Python packagescikit-map (https://github.com/openlandmap/

scikit-map), which optimizes speed by leveraging data structures for parallel computing. In addition to TSIRF,scikit-map

also offers straightforward capabilities for band operations, trend calculations, temporal statistics, parallel raster reading and

writing, and processing. These functionalities enable ef�cient processing, analysis, and visualization of large multidimensional

raster datasets. In this work, all data processing and map production were performed usingscikit-map python library.30
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2.3 Spectral indices predictors data cube

The preparation of the spectral biophysical indices data cube involves developing four tiers of predictors from Landsat ARD

V2, step by step. These tiers differ in temporal resolution and processing complexity, as outlined in Fig. 1 and detailed in the

following subsections. Section 2.3.1 introduces the production of tier-1 bimonthly, gap-free Landsat re�ectance bands. Tier-2

predictors are bimonthly time series for six biophysical indices (Section 2.3.2). From tier-2 indices, time series analyses are5

conducted to derive annual predictors (Section 2.3.3). Finally, further time series analyses are applied to tier-3 predictors to

extract long-term temporal features representing persistent states (Section 2.3.4).

2.3.1 First tier of predictors: bimonthly Landsat bands

The �rst tier predictors are ARCO land surface re�ectance bands, gap-�lled using Landsat ARD V2 data. Pixels with insuf-

�cient quality were identi�ed using the quality band and masked, creating gaps in the time series. These gaps were initially10

reduced by calculating a weighted average from several scenes (typically 6–7) within and adjacent to the two-month period of

the original 16-day interval time series, resulting in a bi-monthly product (one image every two months). Despite this aggre-

gation, signi�cant gaps remained, as shown in Fig. 2, which were subsequently �lled using the Seasonally Weighted Average

Generalization (SWAG) method developed by (Consoli et al., 2024). SWAG assigns weights for aggregation based on the clear

sky fraction of the corresponding tiles. For gap-�lling, SWAG respects seasonality and causality by reconstructing each pixel's15

time series using weighted averages, prioritizing images from the same period in previous years, and relying only on past data.

This Tier 1 product is part of the global bi-monthly aggregation framework established by (Consoli et al., 2024) and repre-

sents the European subset of that effort. Within this work, the data has been re�ned for regional applications by applying the

pan-European landmask (https://doi.org/10.5281/zenodo.8171860) to exclude water bodies and assembling it into continental

mosaics stored as COGs, as shown in step (1) of Fig. 1. These gap-�lled bi-monthly ARCO Landsat surface re�ectance layers20

provide the foundational material for producing spectral indices and their derivatives.

2.3.2 Second tier of predictors: bimonthly spectral index

The second tier of predictors is calculated per pixel using ARCO surface re�ectance bands, as shown in step (2) of Fig. 1. Direct

satellite-derived indices make use of the unique spectral signatures of different objects on the surface of the land to detect their

presence within a pixel. Direct satellite-derived indices include Normalized Difference Vegetation Index (NDVI), Soil Adjusted25

Vegetation Index (SAVI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Normalized Difference Tillage

Index (NDTI), Normalized Difference Water Index (NDWI), and Normalized Difference Snow Index (NDSI). The calculation

formula we adopted is described in Table 1.

2.3.3 Third tier of predictors: annual aggregated index

In step (3), the aggregated annual indices are derived by extracting key temporal features or statistics from the bimonthly index30

series for each year. These indices are then provided at a 30m spatial resolution on an annual basis:
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Figure 1. General work�ow for processing Landsat-based spectral index predictors. They formed four different tiers based on their level of

processing and different temporal resolutions through the work�ow. The predictors could also be categorized into �ve thematic groups, each

framed by different colors in the �gure, including vegetation, water, band-speci�c properties, crops, and soil characteristics. The “(3) Time

series analysis” in the work�ow incorporates three different temporal operations: temporal aggregation, which extracts statistical measures

over speci�c periods to represent those intervals; trend analysis, which evaluates the directional changes of a predictor over time; and

cumulative analysis, which sum up the corresponding annual predictor values from a starting baseline year (i.e. 2000) to the speci�ed index

year. Land-mask source: https://doi.org/10.5281/zenodo.8171860.
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Figure 2. Per-pixel count of available values in the bimonthly aggregated Landsat time-series from 1997 to 2022. Darker areas are more

affected by presence of data-gaps in the time-series. In addition to cloud-presence and snow-cover, it is possible to notice patterns determined

by overlapping scenes in the original Landsat raw images. Adapted from Consoli et al. (2024).

– Annual P25, P50, and P75 aggregation of NDVI, NDWI and NDTIare calculated by identifying the values at the

25th, 50th and 75th percentile of the sorted bimonthly NDVI and NDWI values for each pixel within a year.

– Minimum Normalized Tillage Index (minNDTI) is determined as the minimum value of the six NDTI values over a

year (Zheng et al., 2012).

– Bare Soil Fraction (BSF)is calculated by dividing the number of pixels classi�ed as bare surface within a year's time5

series (identi�ed by the criterion of NDVI values below 0.35) by the total number of pixels analyzed in that year (Castaldi

et al., 2019).

– Number of season (NOS)indicates the frequency of cropping cycles within a year, calculated by identifying peaks in

the NDVI time series (Li et al., 2014; Liu et al., 2020). Time steps with NDVI values greater than 0.5 are �rst �agged
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Table 1. Overview of third tier of predictors

Index Band Operation Reference

NDVI
nir � red
nir + red

Tucker (1979)

NDTI
swir1� swir2
swir1+ swir2

Van Deventer et al. (1997)

NDWI
nir � swir1
nir + swir1

Gao (1996)

NDSI
green� swir1
green+ swir1

Salomonson and Appel (2006)

SAVI
(nir � red)

(nir + red+ 0 :5)
� 1:5 Huete (1988)

FAPAR
(ndvi � 0:03) � (0:95� 0:001)

0:96� 0:03
+ 0 :001 Robinson et al. (2018)

as candidate peaks, possibly corresponding to an actual cropping cycle. A prominence �lter of 0.25 ensures that each

candidate peak is at least 0.25 higher than its surrounding troughs, addressing consistently high NDVI values in areas

such as forests. Adjacent peaks with intervals shorter than 2 months are merged, keeping the one with higher NDVI

values, to ensure an accurate representation of distinct cropping cycles.

– Crop Duration Ratio (CDR) quanti�es the length of active cropping periods, calculated as the ratio of time during5

which a pixel is in an active cropping state, de�ned as when the vegetation signals reach at least half the amplitude of

the phenological curve's peak values (White et al., 1997). The peak values are determined by the average NDVI values

of the peaks identi�ed during the calculation of NOS.

– Accumulated NDVI P50, NDWI P50, NDVI of the month of July and August, and minNDTI The cumulative indices

are calculated by summing their values over time from the year 2000. They are expected to re�ect the cumulative effects10

of water content, vegetation health, and tillage practices on each pixel.
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2.3.4 Fourth tier of predictors: long-term temporal feature index

In step (4), the indices that quantify long-term temporal features over 2000–2022 are calculated. The long-term changes trends

are derived from annual aggregates to represent the changes from 2000 to 2022. For this, we adopted the Theil-Sen estimator

to �t the trend for 2000–2022. This is a statistical, non-parametric approach that is resistant to outliers, as it calculates the

median slope among all point-pairs (Theil, 1950; Sen, 1968). This results in trend maps for Bare Soil Fraction (BSF), NDVI5

P50, NDWI P50, and minNDTI. Additionally, the P25, P50, and P75 percentiles of NDVI, NDWI, and BSF are derived for the

years 2000-2022 to provide a general overview of their distribution and general state over the this period.

2.4 Plausibility check

Due to the limited availability of land survey data that align temporally, spatially, and thematically with our data cube, we

were unable to perform traditional accuracy validation on most index layers, which requires extensive ground-truth datasets10

for direct comparison. Instead, we conducted a plausibility check to assess whether the data align logically and statistically

with established land surface processes. Apart from tier 1 product, we focus our quality assessment on the third tier of predic-

tors—annual aggregated indices such as minNDTI, BSF, NOS, and CDR—since they are more complex and less established

than simpler spectral indices like NDVI and NDWI.

2.4.1 Quality assessment of tier-1 product15

The quality of the gap-�lled time series for bimonthly Landsat surface re�ectance bands was evaluated using 2,746 time series

randomly sampled from Europe. Details are provided in the supplemental computational notebook available in the Section 7. To

simulate real-world conditions, 10% arti�cial gaps were introduced into the data. Performance metrics were used to assess the

accuracy of the TSIRF model, including R-squared (R2) which measures the proportion of variance explained by the model;

Root Mean Squared Error (RMSE), quantifying the average magnitude of prediction errors; and Concordance Correlation20

Coef�cient (CCC; Lawrence and Lin 1989), evaluating the agreement between observed and predicted values are reported to

indicate the accuracy of TSIRF in reconstructing the tier-1 land surface re�ectance bands.

2.4.2 Index statistics by crop type: BSF, NOS and CDR

To examine the effectiveness of crop-speci�c parameters — BSF, NOS and CDR-in re�ecting the crop patterns — we used the

harmonized LUCAS (Land Use and Cover Area frame Survey) data, which details crop types information at speci�c locations25

and times (d'Andrimont et al., 2020). Three NUTS2 regions are selected to capture a diverse array of European agricultural

practices and climates: Picardy region (FRE2), Piedmont province (ITC1), and Malopolska Province (PL21). Picardy is chosen

for its temperate maritime climate and highly mechanized, large-scale farms. Piedmont is included to represent its unique damp

rice paddies, which illustrate specialized crop cultivation. Malopolska offers insights into agriculture under a more continental

climate, contrasting with other regions. We identi�ed points belonging to four predominantly grown crops in the selected30

NUTS2 regions—FRE2, ITC1, and PL21 from the most recent LUCAS 2018 dataset. These points were then overlaid onto
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the 2018 index maps for BSF, NOS and CDR, followed by the calculation of the statistics for crop-speci�c indices among

the different crop types. By comparing the statistics of these indices across regions and crops, we conducted an evaluation of

the indices' sensitivity and accuracy in capturing the distinctions in cropping patterns and re�ecting the speci�c agricultural

dynamics.

2.4.3 Correlation with land survey data: BSF5

We matched BSF maps against two land survey datasets, with approximately 150 records of crop cover duration from 2007

to 2016 on cropland (Edlinger et al., 2022, 2023). The hypothesis is that the proportion of time that crops cover the soil is

inversely related to the presence of bare soil during the same time period. By implementing a correlation analysis between

BSF values derived from satellite data and ground-based measurements of crop cover duration, our objective was to assess the

reliability of the BSF in capturing the extent of bare soil across agricultural landscapes.10

2.4.4 Correlation with regional statistics: minNDTI

To validate the minNDTI's effectiveness in re�ecting tillage practices across the EU, we compared it with Eurostat's tillage

area statistics (https://doi.org/10.2908/EF_MP_PRAC). Eurostat's data originates from farm structure surveys conducted in 28

EU countries and is available in a vector shape�le format covering 319 NUTS2 regions, detailing arable areas under different

tillage practices. The breakdown of arable land area based on tillage practices is as follows:15

X
(TIL_CV + TIL_CSERV+ TIL_ZERO+ ARAXTIL ) = ARA (1)

where TIL_CV refers to areas under conventional tillage, TIL_CSERV refers to areas under conservation tillage, TIL_ZERO

refers to areas under zero tillage, ARA refers to total arable land areas, and ARAXTIL refers to areas land excluding from

tillage survey; all areas recorded in hectares. Notably, ARAXTIL represents land that is excluded from tillage survey due to not

being sown/cultivated during the reference year, which includes areas with multi-annual plants such as temporary grassland,20

leguminous plants, industrial crops (hops or aromatic plants) etc. These are recorded in hectares and together make up the total

arable land area (ARA).

To spatially match the Eurostats data with our predictor layers, the data preparation process involved four steps:

1. Calculate Tillage Shares: For valid NUTS2 data records with all four types of tillage practices, calculate the share of

each tillage practice within each NUTS2 region.25

2. Crop Masking: Remove non-arable pixels from the minNDTI maps using the EU crop mask developed by d'Andrimont

et al. (2021).

3. Spatial Overlay: Overlay the Eurostat survey data with crop-masked minNDTI map layers of matching years.

4. Calculate Average minNDTI: Calculate the average minNDTI value within each NUTS2 region.
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The relationship between each tillage practice and minNDTI is assessed separately using Ordinary Least Squares (OLS)

regression models, correlating the shares of each tillage practice with the average minNDTI values within each NUTS2 region.

To capture the collective impact of all tillage practices, we introduced the concept of Weighted Crop Residue Cover (WCRC).

This metric aggregates the in�uence of various tillage practices, considering minNDTI's correlation with crop residue cover

(CRC):5

WCRC=
X

tillage types

(typical CRC value� area share) (2)

where WCRC integrates typical CRC values for each tillage type, weighted by their respective area shares within each NUTS2

region.

We �tted typical CRC values for each type of tillage practice from their respective ranges, as outlined in Table 2 (Magdoff

et al., 2000; Zheng et al., 2012). This optimization process identi�ed the values within these ranges that maximize the corre-10

lation between WCRC and minNDTI. For excluded tillage practices, we assume a broad range of 0 to 100 percent to cover all

possibilities, re�ecting the uncertainty in its typical CRC values. The correlation analysis assesses the relationship between the

estimated WCRC and the average minNDTI of the NUTS2 regions.

Table 2.Typical CRC value range for each tillage practice type

Tillage Practice Type CRC Range (%)

Conventional tillage 0–30

Conservation tillage 30–70

Zero tillage 70–100

Excluded tillage practices 0–100

2.5 Comparison to EcoDataCube in LC classi�cation

The Landsat-based predictor data cube are intended as an improvement of the version in the EcoDataCube (Witjes et al.,15

2023). The switch to a bimonthly temporal aggregation from a seasonal one with three percentiles leads to a smaller number

of variables (6 instead of 12) and a higher level of temporal resolution. In order to quantify the difference of these aggregation

techniques, we compare the performance of sets of random forest classi�ers trained on both sets of Landsat data to predict

seven types of land cover: Cropland, Grassland, Bare land, Forest, Arti�cial land, Shrubland, and Wetlands. We exclude the

EcoDataCube non-Landsat data (DTM and Sentinel–2) and indices in this work to guarantee an objective comparison. Details20

about the training data will be discussed in the next section, while an overview of the experiment work�ow is presented in

Fig. 3.
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Figure 3. Work�ow for modeling experiments, illustrating the comparison between EcoDataCube and the proposed data cube in the LC

classi�cation experiment, as well as the feature importance analysis conducted for the LC classi�cation model and the SOC regression model

using the proposed data cube. Components speci�c to EcoDataCube are marked in blue, those unique to the data cube produced in this work

are marked in red, and shared general components are marked in yellow.

2.6 Modeling experiments

To demonstrate the utility of the indices in the data cube, we performed two modeling experiments: soil organic carbon (SOC)

regression and LC classi�cation. The general work�ow is depicted in Fig. 3. The data points used for SOC regression and land

cover classi�cation come from the LUCAS land cover and top soil surveys. Only surveyed point data (i.e. identi�ed by unique

point id and sampling year) with available both land cover and topsoil SOC data were selected for modeling experiments.5

These point data were overlaid with EcoDataCube Landsat data, along with all Landsat re�ectance and biophysical index

layers generated in this study, to create the training dataset for modeling experiments. Using strati�ed sampling, we select

about 10 % of test data points based on a 30 km grid tiling system to ensure that the test data accurately represent the spatial

distribution throughout the study area. This results in 52.306 training data points and 8.417 test data points, in total 60.723

points.10

The models' performance for both tasks is evaluated by training them with different combinations of predictors, organized

into two main categories: themes and tiers. The �rst division categorizes the predictors by themes: re�ectance bands, vege-
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tation, water, soil, and crop (see Table 3). The second division organizes predictors by tiers, which represent different levels

of temporal aggregation and processing, as detailed in Section. 2.3. These tiers, as described above, include bimonthly bands,

bimonthly indices, annual indices, and long-term indices. By systematically testing models with these combinations, we can

understand how indices developed for different purposes and how short-term variations, seasonal dynamics, and long-term

temporal features contribute to the accuracy and robustness of predictive models. Both SOC regression and land cover classi-5

�cation models were trained using different groups from both divisions. We examined the feature space to identify the most

in�uential predictors and compared their importance between the regression and classi�cation tasks. This analysis aimed to

highlight the �exibility and comprehensive nature of our data cube. Apart from comparing different feature combinations, we

also provide the top 20 most important features for the model trained on all predictors and all point data. This provides a

focused analysis that identi�es which speci�c predictors are the most in�uential across the entire dataset when no subsets are10

used.

Table 3.Theme-Based Division of Predictors

Theme Predictors

Re�ectance Bands Bimonthly Landsat bands

Annual P25, P50, and P75 of Landsat bands

Vegetation Bimonthly NDVI, SAVI, FAPAR

Annual NDVI P25, P50, and P75; acumulated NDVI P50 and

NDVI of the bimonth July and August

Long term P25, P50, P75 and trend of NDVI

Water Bimonthly NDWI, NDSI

Annual NDWI P25, P50, and P75

Long term P25, P50, P75 and trend OF NDWI

Soil Bimonthly NDTI

Annual minNDTI, NDTI P25, P50, and P75, and BSF

Long term P25, P50, P75 and trend of BSF, and long term trend

of minNDTI

Crop Annual NOS and CDR

For the SOC regression experiment, we used the random forest (RF) as an estimator to predict the SOC content throughout

the EU. The target variable, SOC, was obtained from the LUCAS soil survey. We evaluated the performance of the regression

model using different combinations of predictors to identify which set provided the most accurate predictions. Performance

metrics used to assess model accuracy include R2, RMSE, and CCC. We used a Random Forest regression model with the fol-15

lowing parameters: a maximum depth of 20 to control complexity,sqrt for max features to improve performance, a minimum

of 2 samples per leaf to prevent over�tting, a minimum of 5 samples per split for stable node splitting, and 800 estimators to
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ensure robust predictions. These parameters were selected through empirical testing and cross-validation, implemented using

thescikit-learn library in Python. The metrics will also be calculated in thelog1pspace.

For the LC classi�cation experiment, we employed a random forest classi�er to predict LUCAS LC classes. Similarly to the

SOC regression, we tested the model's performance with different combinations of predictors to determine the most effective

feature sets. Performance metrics used to evaluate the classi�cation model include precision, assessing the accuracy of positive5

identi�cations; recall, evaluating the model's ability to capture all relevant cases; and F1-score (Taha and Hanbury, 2015),

providing a balance between precision and recall for a comprehensive model assessment.

3 Result

This section begins with an accuracy assessment of time series reconstruction using the TSIRF method to generate tier-1

predictors. This is followed by a qualitative visual examination of spatial patterns in three zoomed-in areas, each representing10

distinct dominant land cover types and unique land dynamics over the past decades. Additionally, long-term trends of BSF,

NDVI, and NDWI are analyzed using annual time-series data from 2000 to 2022 at three LUCAS points within these areas.

These analyses provide both spatial and temporal insights into land cover changes and agricultural practices, demonstrating

how these indices capture and re�ect patterns and trends over time. Where relevant data are available, quantitative assessments

are also incorporated to further validate our approach, as elaborated in the Section 2.4.15

3.1 Accuracy of reconstructed tier-1 predictors

The Table 4 presents performance metrics for the reconstructed Landsat surface re�ectance bands across tier-1 seven spectral

bands. Overall, the reconstruction demonstrates high accuracy, with low RMSE, high R2 and CCC across all bands. Thermal

band consistently shows the best performance, while the NIR band exhibits the lowest performance, with slight variations

observed among the other bands. In a similar global-scale experiment, Consoli et al. (2024) reported generally higher recon-20

struction performance. For a more comprehensive perspective on global time-series reconstruction, we refer readers to their

work, which focuses exclusively on this topic.

Table 4.Performance metrics for the reconstruction of tier-1 product

Metric Blue Green Red NIR SWIR1 SWIR2 Thermal

RMSE 0.04 0.04 0.04 0.05 0.03 0.02 0.01

RMSE/� 0.86 0.51 0.56 0.20 0.15 0.22 0.01

RMSE/� 0.56 0.56 0.58 0.60 0.41 0.40 0.32

R2 0.67 0.67 0.67 0.62 0.83 0.84 0.90

CCC 0.83 0.82 0.81 0.79 0.91 0.91 0.95
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3.2 Visual examination of tier-3 predictors

Figure 4 presents zoomed-in examples of tier-3 predictors: NDVI P50, NDWI P50, BSF, NOS, and CDR. They provide an

overview of vegetation health, moisture levels, bare soil exposure, number of growing seasons, and crop duration. These visual

representations complement the statistical analysis by highlighting spatial patterns that may not be evident through quantitative

methods alone, providing an intuitive understanding of the spatial patterns of the indices. The three presented regions have5

distinct features (Fig. 4): (A) an agricultural area in northern France, characterized by well-organized grid-like �eld patches

of various crops; (B) a rice cultivation region that featured less regular �eld texture in northern Italy; and (C) the former

Szczakowa sand mine in southern Poland (Pietrzykowski and Krzaklewski, 2007; Pietrzykowski, 2008).

NDVI and NDWI delineate agricultural patches with 30 m spatial resolution (Fig. 4-A). Forested areas show high values

of NDVI and NDWI, while urban areas (scattered towns in Fig. 4-A and Fig. 4-B) and exposed land from mining activities10

(Fig. 4-C) exhibit low values. High NDWI values in region B, attributed to �ooded paddy �elds, do not always coincide with

high NDVI (Ranghetti et al., 2016). For example, there are several patches in Fig. 4-B exhibiting high NDWI but moderate

NDVI values. This observation could be attributed to the paddy �elds in region B, which are �ooded in a controlled way to

meet the water demand of the rice plants (Ranghetti et al., 2016).

Although derived from the NDVI annual time series, the BSF shows different patterns. Urban and exposed soil areas have15

high BSF values, while woodlands have low values. Despite lower NDVI P50 values, region B has lower BSF values due to

stable NDVI levels above a threshold, indicating less bare soil exposure throughout the year. This highlights that BSF reveals

different aspects of the landscape compared to NDVI P50, making it a valuable complement to assess exposure to bare soil

and vegetation dynamics. The crop-speci�c NOS and CDR provide insights into growing seasons and their duration. CDR

highlights the duration for which crops occupy a pixel within a year and generally inversely relates to BSF. Most croplands20

in regions A and B have a NOS value of 1, indicating a single annual growing season, while urban and forested areas have

a NOS value of 0 (Fig. 4-C). Some areas show NOS values of 2, indicating possible practices such as winter cropping or

double-cropping systems.

3.3 Trend analysis with land cover dynamics

Four trend maps were produced to analyze land surface trends between 2000 and 2022: NDVI annual median, NDWI annual25

median, BSF, and minNDTI (Fig. 5). The NDVI trends reveal a positive trend in most parts of Europe. However, speci�c

regions, including the Alps, Northern Europe, northern Scotland, Iceland, and Scandinavia, exhibit clear negative NDVI trends.

These areas, characterized by high latitudes or altitudes, often experience persistent snow cover and frequent cloudiness. The

NDWI trend map for these regions shows a positive trend, indicating an increase in vegetation water content. In other parts

of Europe, the NDWI trends display a mix of positive and negative changes, lacking a de�nitive overall trend. The decreasing30

trend in NDVI in regions of high altitude and high latitude is also re�ected in the BSF trend map (Fig. 6). In Spain and Turkey,

strong positive and negative trends are scattered, with the positive trend being more dominant. Generally, our results show an
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Figure 4. Zoomed-in examples of NDVI and NDWI median in the year 2018 at (A) Northern France, with the city of Saint-Quentin at south-

east corner; (B) Northern Italy, in the western Po Valley, east of Vercelli; (C), Southern Poland, within the Przemsza River basin, featuring the

Szczakowa sand mine. Each image tile has a side length of 20km. Satellite imagery source: © Google Earth (https://earth.google.com/web/).
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