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Abstract. The decline of Arctic sea ice in the global warming era has received much attention as a contributing factor to the 

changes in the weather/climate in the Arctic and beyond. The coverage of Arctic sea ice (i.e., sea ice concentration (SIC)) 

has been monitored since 1972 using satellite passive microwave (PMW) measurements because of their extensive coverage 10 

and all-weather capability. However, the fundamental basis of algorithms for estimating SIC has not improved much since 

the early days due to the lack of reference SIC data, leading to discrepancies between existing PMW SIC algorithms. To 

overcome this issue, this study aims to construct data records of reference SIC over Arctic sea ice using 30 m resolution 

imagery from the Operational Land Imager (OLI) onboard Landsat-8. In order to collect relatively bright and clear scenes, 

thresholds of solar elevation > 15° and cloud cover < 10% were applied in this study. Clouds in each Landsat-8 scene were 15 

masked using the cloud masking array provided in Landsat data. Due to the poor accuracy of the cloud masking array over 

ice-covered surface types, an additional step of visually inspecting the state of cloud mask using the true-colour image was 

designated in this study. Each Landsat-8 scene was sorted into four categories depending on the state of cloud mask. 

Normalized Difference Snow Index and OLI band 5 reflectivity were used to differentiate between ice and open water within 

each selected Landsat-8 pixel. The classified data were projected onto a 6.25 km polar stereographic grid, and SIC for each 20 

grid cell was obtained by counting ice-classified pixels within the grid. SIC was only computed for grid cells with more than 

99% of its area covered with Landsat-8 pixels to limit the uncertainty in SIC arising from grids that are not fully 

concentrated with Landsat-8 pixels. Uncertainty in the produced SIC was 1~4%, inferred using the Gaussian error 

propagation method. Out of 15,286 collected Landsat-8 images, 14,297 images were translated into SIC maps, and a total of 

2,934,399 Landsat-8 SIC grid cells were generated. Evaluation of Landsat-8 SIC with SIC from ice charts revealed a good 25 

linear relationship (correlation coefficient of 0.96) between the two products as well as a mean negative bias which fell 

within the uncertainty range of Landsat-8 SIC. SIC based on Landsat-8 can be used as reference SIC to evaluate existing SIC 

products and thus one can improve SIC products as well as the use of the improved SIC for other applications such as data 

assimilation and retrieval studies. The vast amount of Landsat-8 SIC generated in this study may also be used to train deep 

learning models for estimation of Arctic SIC coverage. The Landsat-8 SIC dataset can be publicly accessed at 30 
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https://zenodo.org/doi/10.5281/zenodo.10973297 (Jung et al., 2024), and the python codes for production and evaluation of 

the Landsat-8 SIC dataset is accessible at https://zenodo.org/doi/10.5281/zenodo.12754603 (Jung, 2024). 

1 Introduction 

Since space-borne multi-channel passive microwave (PMW) observations have been available, areal information of Arctic 

sea ice has been successfully monitored. During the past four decades, these observations have shown that sea ice extent 35 

(SIE) which is defined as the area of ocean where sea ice concentration (SIC) is greater than 15% has been rapidly declining 

at a statistically significant negative trend of -12.7% per decade observed in September (Cavalieri and Parkinson, 2012; 

Meier et al., 2014; Meier and Stroeve, 2022). In the global warming era, the change in Arctic sea ice area is considered as a 

key indicator of climate change and this is closely associated with the changes in the Arctic local weather as well as the 

weather at mid-latitudes (Honda et al., 2009; Jaiser et al., 2012; Kim et al., 2014; Trewin et al., 2021; Shi et al., 2023). 40 

Therefore, obtaining precise observations of Arctic SIC is essential in order to diagnose the influences of climate change on 

Arctic sea ice.  

As mentioned above, the spatial coverage of Arctic sea ice (i.e., SIC) has been monitored using satellite PMW measurements 

with their extensive spatial coverage over the Arctic and all-weather capability. Beginning with the launch of the Electrically 

Scanning Microwave Radiometer (ESMR) onboard Nimbus-5 in 1972 (Parkinson et al., 1987), successive launches of PMW 45 

sensors has allowed for the construction of comprehensive and continuous records of Arctic SIC. The Scanning Multi 

channel Microwave Radiometer (SMMR), launched in 1978, was equipped with five channels (6.6, 10.7, 18.0, 21.0, and 

37.0 GHz) in first two Stokes’ polarizations. The emergence of multi-channel PMW radiometers has led to the development 

of various SIC retrieval methods which were more accurate relative to the previous methods used for ESMR which only had 

a single channel at 19 GHz. Addition of the near 90 GHz high frequency channels in the PMW sensors following SMMR, 50 

which include the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave Imager/Sounder (SSMIS), the 

Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), and the AMSR2, has allowed for 

spatially enhanced SIC retrievals. 

Various PMW SIC algorithms have been developed, which estimate SIC based on combinations of brightness temperatures 

(TB) at various channels and empirically derived tie-points. One of the best-known algorithms is the Bootstrap (BT) 55 

algorithm first suggested by Comiso et al. (1984). In BT algorithm, vertically polarized TBs at 19 and 37 GHz and 

horizontally polarized TB at 37 GHz are utilized to determine reference TBs (i.e., tie-points) over open water and fully-

concentrated ice, which can be used to convert the observed TB to SIC with the following equation: 

SIC
B O
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−
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−
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where TB is the satellite-measured TB and TO and TI are the empirically determined open water and ice tie-points, 60 

respectively. Tie-points in the BT algorithm are updated on a daily basis and acquired separately for the Arctic and the 

https://zenodo.org/doi/10.5281/zenodo.10973297
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Antarctic in order to accommodate the variation of TB fields with respect to time and hemisphere (Comiso, 1995). Another 

well-known algorithm is the NASA Team (NT) algorithm which utilizes horizontally polarized TB at 19 GHz and vertically 

polarized TBs at 19 and 37 GHz to calculate the polarization ratio (PR) and the spectral gradient ratio (GR), which are used 

to determine a set of tie-points to estimate SIC and determine the surface type from a combination of open water, first-year 65 

ice, and multi-year ice (Cavalieri et al., 1984). The other is the Arctic Radiation and Turbulence Interaction Study (ARTIST) 

Sea Ice (ASI) algorithm, which was developed by Kaleschke et al. (2001), in order to exploit the high resolution of the near-

90 GHz channels. The ASI algorithm estimates SIC using the tie-points derived from the polarization difference calculated 

in the near-90 GHz channels. The high sensitivity of the near-90 GHz channels to atmospheric effects is compensated for by 

the usage of weather filters, which are applied using the GR thresholds suggested by Gloersen and Cavalieri (1986) and 70 

Cavalieri et al. (1995), and by setting SIC to zero in areas where BT SICs are zero (Spreen et al., 2008). 

However, discrepancies exist among various PMW SIC records retrieved from different algorithms owing to the different 

channel combinations, tie-points, and weather filters used in each algorithm (Comiso et al., 1997; Anderson et al., 2007). 

Due to the lack of reference SIC data with satisfactory temporal and spatial coverages, these disagreements have been 

studied mainly through inter-comparison of different PMW SICs and ensemble methods which compare individual SIC 75 

products to their averaged value. For instance, Ivanova et al. (2014) reported that different PMW SIC products showed a 

maximum difference of up to 1.3×106 km2 in area and 0.6×106 km2 in extent over the Arctic and larger deviations during the 

summer due to the differing sensitivity of retrieval algorithms to the presence of melt ponds and the associated emissivity 

change, as well as a humid atmosphere (Ivanova et al., 2014; Comiso et al., 2017; Horvat et al., 2023). Although these inter-

comparison approaches can provide valuable assessments of the consistency of PMW SIC products from sub-seasonal to 80 

climatological timescales, it is noted that there is a limitation to providing a quantitative assessment of PMW SIC products. 

In order to make such quantitative assessments, it is essential to have independent SIC data that can be used as a reference. 

Spaceborne sensors with visible (VIS) to infrared (IR) channels, such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the sensors onboard the Landsat series, have been used to generate reference SIC due to 

their finer spatial resolutions than PMW sensors (Markus et al., 2002, Cavalieri et al., 2006, 2010; Rösel and Kaleschke, 85 

2011; Kern et al., 2022; Tanaka and Lu, 2023; Song and Minnett, 2024). However, validation attempts using VIS/IR-based 

SIC as a reference have been limited to the usage of a small number of VIS/IR images, with the exception of Kern et al. 

(2022) which used a relatively large number of Landsat scenes (386 scenes) to generate a reference SIC. The dataset by Kern 

et al. (2022) is also utilized in this study for validation of the produced Landsat-8 SIC, and the results of the comparison are 

presented in Section 3.2. In addition to VIS/IR instruments, SIC observations from synthetic aperture radar (SAR) have also 90 

been used for PMW-based SIC validation purposes, but difficulties in obtaining an accurate and automated SIC map from 

SAR images result in the limited use of SAR images for validation purposes (Anderson et al., 2007; Park et al., 2017; Han 

and Kim, 2018; Tanaka and Lu, 2023). 

Recently, efforts to leverage the advantages of both VIS/IR sensors and PMW sensors for retrieving SIC have been explored 

through data merging techniques. Ludwig et al. (2020) used a combination of MODIS and AMSR2 measurements to 95 



4 

 

construct a high-resolution (1 km) and spatially continuous SIC data over pan-Arctic areas. This approach exploited the 

benefits of the 1 km resolution MODIS imagery while mitigating its inherent disadvantage of spatial discontinuity due to 

clouds by introducing the AMSR2 measurements. While the SIC dataset produced by Ludwig et al. (2020) is both high-

resolution and covers pan-Arctic areas, due to the retrievals being reliant on the AMSR2 measurements, the product cannot 

be considered a fully independent reference data for PMW SIC validation. Therefore, it is still necessary to construct a 100 

dataset of Arctic SIC that is fully independent of PMW measurements.  

In addition to this, recent applications of deep-learning (DL) models for estimating SIC have shown promising results. 

Karvonen (2017) trained a multi-layer perceptron (MLP) model using various combinations of PMW signals extracted from 

AMSR2 and SAR as the training inputs and SIC fields derived from the Finish Meteorological Institute ice charts as the 

reference. This MLP model produced improved SIC compared to the high-resolution ASI SIC. However, the data used to 105 

train the DL model suggested by Karvonen (2017) were limited to regions around the Baltic Sea and were only acquired 

during the winter of 2015-2016. Chi et al. (2019) proposed an estimation of Arctic SIC based on MLP model trained with 

raw AMSR2 TBs as the inputs and SIC derived from seventy-two MODIS images during 2016 as the reference, 

demonstrating that the DL-based SIC shows better performance than the widely used BT and ASI SICs. Since both studies 

used training datasets acquired during a limited time period but showed promising results of the use of DL techniques for 110 

SIC production, it is also desirable to construct a data record for reference SIC data with satisfactory temporal and spatial 

coverages. 

Therefore, this study aims to construct a reference SIC dataset of satisfactory spatiotemporal extent, to allow for validation 

of various SIC products over pan-Arctic areas as well as to be used for DL training. To do this, a total of 14,297 Landsat-8 

images over the three years (2020-2022) were translated into SIC maps in a 6.25 km polar stereographic grid and catalogued 115 

into a region of the Arctic Ocean.  

The remaining sections of this paper are organized as follows: Section 2 provides a detailed description of the Landsat-8 

dataset, the land, sea ice region, coastal area masks, and the reference datasets used to evaluate the Landsat-8 SIC in this 

study. Section 3 describes the processing pipeline of a Landsat-8 image into a SIC dataset along with the uncertainty 

estimation. The resultant SIC product and its uncertainty are shown in Section 4. Possible errors in Landsat-8 SIC, 120 

evaluation of Landsat-8 SIC using existing SIC from ice charts, evaluation of Landsat-8 SIC over melt ponds, and qualitative 

assessment of two PMW SIC products using SIC from Landsat-8 as a reference are discussed in Section 5. Section 6 

provides the data availability statement, and Section 7 gives the summary and conclusion of this research. 

 

 125 
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2 Used Data  

2.1 Landsat-8 OLI-TIRS Collection 2 Level 1 Products 

In this study, reflectivities measured by the Operational Land Imager (OLI) onboard Landsat-8, which is a polar orbiting 

satellite with orbit inclination of 98.2° and a repeat cycle of 16 days (Zanter, 2019), were used to retrieve SICs over pan-

Arctic areas. The OLI sensor has a swath width of 185 km, measuring radiances at eight bands from VIS to short-wave IR 130 

(SWIR) with a spatial resolution of 30 m. It should be noted that areas with a latitude higher than 82°N in the northern 

hemisphere are not measured by Landsat-8 (i.e., the hatched area in Fig. 1) due to the orbit inclination of Landsat-8 and the 

relatively narrow swath width of the OLI. The Landsat-8 Collection 2 Level 1 product used in this study contains eleven 

spectral band images (nine bands from the OLI and two bands from the Thermal Infrared Sensor) provided in GeoTIFF 

format, two quality assessment bands containing masking information for clouds, cloud shadows, cirrus, fill values, and 135 

radiometric saturation. To calculate the SIC, the OLI-measured reflectivities at near-infrared (NIR) band 5 and SWIR band 6 

(used in the Normalized Difference Snow Index) were used in this study. It is worth noting that the methods developed in 

this study (described in Section 3) utilize the NIR and SWIR bands for SIC retrieval and are therefore applicable to a wider 

range of high-resolution sensors that observe at similar bands, including the Multi-Spectral Instrument (MSI) onboard 

Sentinel-2. However, due to the more robust cloud mask performance of the Landsat-8 product, in this study, the Landsat-8 140 

Collection 2 Level 1 product was selected to be used for the production of reference SIC data (Zhu et al., 2015; Tarrio et al., 

2020). 

For the period of Jan. 2020 – Dec. 2022, Landsat-8 Collection 2 Level 1 product and the corresponding true-color images 

were downloaded from the United States Geological Survey Earth Explorer (https://earthexplorer.usgs.gov/). To circumvent 

the influences of cloud contamination and low solar elevation angle on SIC calculation, which hampers accurate 145 

classification of ice and open water, only Landsat-8 images with less than 10% cloud cover (based on fractional cloud 

masked area from the quality assessment band of Landsat-8) during daytime (solar elevation higher than 15°) were collected. 

While the threshold of 0% cloud cover would ensure the acquisition of the least cloudy scenes, this also results in the loss of 

a considerable number of Landsat-8 scenes that contain clear-sky portions (see Fig. S1 and Table S1 in the supplements for 

the number of available Landsat-8 scenes subject to different threshold values of cloud cover). Therefore, the threshold value 150 

for cloud cover was relaxed to 10% during the acquisition of Landsat-8 images. Since VIS measurements are not available 

during polar night-time, the Landsat-8 data between early December to January were not collected. A total of 15,286 images 

were collected and sorted into twelve regions of the pan-Arctic area for the calculation of SIC. In the case of a Landsat-8 

image that observed across more than one region, the image was sampled repeatedly for each region. Footprints of the 

collected Landsat-8 images are displayed in Fig. 1 and the number and the temporal availability of the collected images for 155 

each area are listed in Table 1. 

 

 

https://earthexplorer.usgs.gov/
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Region Baffin Bay Barents Sea Beaufort Sea Bering Sea Canadian A. Central Arctic 

Count 2476 672 451 699 3174 2343 

2020 Jan. 13-Nov. 30 Feb. 27-Oct. 7 Mar. 6-Sep. 17 Jan. 19-Dec. 3 Feb. 29-Oct. 2 Mar. 23-Sep. 2 

2021 Feb. 16-Nov. 26 Feb. 22-Oct. 5 Mar. 7-Sep. 30 Jan. 13-Dec. 3 Mar. 1-Sep. 28 Mar. 24-Sep. 11 

2022 Jan. 25-Dec. 6 Mar. 4-Sep. 29 Mar. 4-Oct. 4 Jan. 24-Nov. 16 Mar. 3-Oct. 10 Mar. 25-Sep. 13 

Region Chukchi Sea E. Greenland E. Siberian Hudson Bay Kara Sea Laptev Sea 

Count 427 1468 546 1485 899 646 

2020 Feb. 27-Oct. 10 Feb. 18-Oct. 31 Mar. 4-Sep. 21 Jan. 13-Nov. 14 Mar. 6-Sep. 16 Mar. 10-Sep. 27 

2021 Feb. 25-Oct. 11 Feb. 25-Oct. 27 Mar. 7-Oct. 2 Jan. 17-Nov. 6 Mar. 7-Sep. 17 Mar. 15-Sep. 13 

2022 Mar. 6-Oct. 14 Mar. 4-Oct. 30 Mar. 10-Sep. 7 Jan. 18-Oct. 29 Mar. 5- Sep. 29 Mar. 12-Sep. 6 

Table 1: The number of Landsat-8 images collected in this study and the available period for each region of the pan-Arctic areas 160 
 

 

 

Figure 1:  Footprints of the collected Landsat-8 images over each region of the pan-Arctic areas during the period of Jan. 2020 – 

Dec. 2022. The hatched region denotes the areas unmeasured by Landsat-8 due to its orbital inclination (i.e., pole hole). The 165 
regions of the pan-Arctic areas were distinguished using the region mask provided by Meier and Stewart (2023). The map 

projection is NSIDC Sea Ice Polar Stereographic North (EPSG: 3413) and the map was plotted using Python. 
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2.2 Land and Sea Ice Region Masks 

Regions of the Arctic Ocean were distinguished using the National Snow and Ice Data Center (NSIDC) ‘Arctic and Antarctic 170 

Regional Masks for Sea Ice and Related Data Products, Version 1’ data (Meier and Stewart, 2023), which divides the Arctic 

Ocean into nineteen different regions with 6.25, 12.5, and 25 km resolution polar stereographic (PSR) grids. In addition, this 

product provides surface masking information to differentiate between ocean areas and non-ocean areas such as land, 

freshwater, land ice, ice shelf, and disconnected ocean. The flag values for the Arctic Ocean regions and the different surface 

types can be found in the product user guide (Meier and Stewart, 2023). Amongst the regions, twelve regions (i.e., Baffin 175 

Bay and Labrador Seas, Barents Sea, Beaufort Sea, Bering Sea, Canadian Archipelago, Central Arctic, Chukchi Sea, East 

Greenland Sea, East Siberian Sea, Hudson Bay, Kara Sea, and Laptev Sea; Fig. 2) were selected to generate Landsat-8 based 

SICs, because the above twelve regions have climatologically meaningful sea ice extent.  

 

 180 

 

Figure 2: Geographic distribution of the designated regions of the Arctic Ocean, based on NSIDC Sea Ice Region Mask data 

(Meier and Stewart, 2023). The map projection is NSIDC Sea Ice Polar Stereographic North (EPSG: 3413) and the map was 

plotted using Python. 

 185 

 



8 

 

2.3 Ice/Water Classified Landsat-8 Images 

The performance of ice and open water classification (later described in Section 3.2), in this study, was evaluated using ice-

water classification data from the ‘Land surface type over water from supervised classification of surface broadband albedo 

estimates’ (Kern, 2021; Kern et al., 2022). This dataset contains ice/water classification estimates using broadband albedo 190 

values from the Landsat series (i.e., bandwidth weighted mean albedo from Landsat-8-measured reflectivities at bands 3, 4, 

and 5), where each pixel in a scene is classified into open water, thin or bare ice, and thick or snow-covered ice based on 

supervised classification. In our study, the two ice categories (i.e., one for thin or bare ice and the other for thick or snow-

covered ice) were considered as a same ice category due to the higher ambiguities in the discrimination among different ice 

types relative to the discrimination between ice and open water (Kern et al., 2022). In order to evaluate the classification 195 

method suggested by our study we processed Landsat-8 reflectance from six clear-sky scenes that Kern (2021) had classified, 

and then compared results. The result of the comparison is presented in Section 3.2 and the location and time of the Landsat-

8 scenes that were used in the evaluation are provided in the supplements Fig. S2 and Table S2. 

 

2.4 Ice Chart Data 200 

Ice charts provide SIC intervals over the Arctic obtained by manual interpretation of satellite images from various sensors 

such as SAR, MODIS, and the Advanced Very High Resolution Radiometer (AVHRR). In this study, operational ice charts 

from Norwegian Meteorological Institute (MET Norway), which provide SIC maps in PSR grid with nominal resolution of 1 

km, were used to evaluate the performance of the produced Landsat-8 SIC. Each grid in the ice chart contains the classified 

six SIC values (5, 20, 50, 75, 95, and 100%), which represent the ice concentration intervals defined by the World 205 

Meteorological Organization (WMO) (Table A1). The ice charts are provided on a daily basis and cover the spatial domain 

of approximately 80°W-80°E, 60°N-85°N, which overlap with the regions of Barents Sea, Central Arctic, East Greenland 

Sea, and Kara Sea defined in Section 2.2. It is noted that SIC in ice charts are based on the interpretation of multiple satellite 

imageries by ice analysts, and therefore contain high uncertainties, which are reflected by the wide ice concentration 

intervals designated for each of the six SIC values (Table A1). Even with such high uncertainties, SIC from ice charts have 210 

been widely selected as reference data in SIC product validation studies, because they can be used to provide quantitative 

information about the observed ice coverage (Agnew and Howell, 2010; Ivanova et al., 2015; Karvonen, 2017). 

In this study, two-years (2021 and 2022) of ice charts were collected among which 222 ice charts that have spatial overlap 

with the coverage of Landsat-8 SIC and have time difference of less than 1 hour with the Landsat-8 scene were used for 

evaluation of the produced Landsat-8 SIC (see Table S3 in the supplements for the list of ice charts and Landsat-8 files used 215 

in the evaluation of the produced Landsat-8 SIC). 
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2.5 Melt Pond Fraction Data 

Melt ponds are formed from the surface melting of sea ice and are known to exist in preponderance over the Arctic during 

the melting season (Untersteiner, 1961; Fetterer and Untersteiner, 1998; Rösel et al., 2012). In the VIS/IR ranges, melt ponds 220 

typically exhibit lower spectral reflectivities relative to dry sea ice (Perovich, 1996; Malinka et al., 2018), and therefore may 

introduce errors in SIC estimated from VIS/IR observations because the optical characteristics of melt ponds may not be 

differentiated from those of open ocean. In order to test the sensitivity of Landsat-8 SICs to the existence of melt ponds, in 

this study, a melt pond fraction (i.e., the fractional areal coverage of melt ponds over sea ice; MPF) dataset estimated from 

clear-sky Sentinel-2 satellite imagery was introduced (Niehaus and Spreen, 2022; Niehaus et al., 2023). This dataset also 225 

contains an open water mask (OW mask), which is a binary classification mask of each pixel in a Sentinel-2 scene into ice 

and open water. This dataset is available from 2017 to 2021 for the Arctic melting season (i.e., June, July, and August). In 

this study, each MPF dataset was tested for spatiotemporal overlap (time difference of less than 3 hours) with the coverage 

of Landsat-8 SIC. The total of six MPF datasets were found to be overlapping with the coverage of Landsat-8 SIC and thus 

available for use in the evaluation.  The list of available MPF datasets and the corresponding Landsat-8 scenes can be seen in 230 

Table S4 of the supplements. 

3 Method 

Figure 3 shows the processing pipeline of a Level 1 Landsat-8 image into a SIC product based on 6.25 km resolution PSR 

grid. Details of each process are explained as the following sub-sections. 

 235 

 

Figure 3: Processing pipeline of Level 1 Landsat-8 OLI images into SICs with 6.25 km resolution. 



10 

 

3.1 Removal of Cloud Pixels and Cloud Mask Quality Assessment 

Satellite observations of surface properties from the VIS and NIR channels are hindered by the presence of clouds. Therefore, 

it is important to filter the presence of clouds prior to the SIC data production. In this study, clouds and cloud shadows 240 

within each Landsat-8 scene were masked using the masking array constructed from the quality assessment band of each 

Landsat-8 Level 1 product, which is generated by the C Function of Mask (CFMask) (Zhu and Woodcock, 2012). CFMask is 

a cloud detection algorithm that provides masking information for clouds, cloud shadows, and cirrus. Confidence scores are 

also given in three levels (i.e., low, medium, and high) for clouds and two levels (i.e., low and high) for cirrus. Confidence 

score for cloud shadows is not provided because cloud shadows are only derived from high confidence cloud pixels by using 245 

the geometric relationship between the position of the sun and high confidence cloud pixels (Zhu and Woodcock, 2012). 

Although the application of the lowest confidence scores in the removal of clouds and cirrus would ensure the lowest rate of 

false negatives (FN; cloud pixels that are mistaken as clear pixels) in cloud detection, the use of the lowest confidence scores 

also result in the removal of a considerable number of sea ice pixels under clear sky (Foga et al, 2017). Therefore, it is 

important to select proper confidence scores to retain as many clear sky sea ice pixels as possible while minimizing the 250 

number of FN cases. In this study, pixels with medium and high confidence scores for clouds and for cirrus, respectively, 

were discarded prior to Landsat-8 SIC production to avoid cloud and cirrus contamination. In addition, as suggested in Foga 

et al. (2017), dilated cloud pixels, which are clear pixels completely surrounded by cloud pixels, were also masked to prevent 

contamination by cloud edges where cloud detection uncertainty is high. 

It is important to note that CFMask over ice-covered surface types has lower accuracy than other surface types (Foga et al., 255 

2017; Qiu et al., 2019). Therefore, an additional step for cloud mask quality assessment is designated in this study. In this 

step, a visual inspection was performed by comparing the cloud mask array, which is constructed by masking cloud, cirrus, 

cloud shadow, and dilated cloud pixels, from each Landsat-8 image with the corresponding true-color image to identify the 

cases of FN, false positive (FP; clear pixels that are mistaken as cloud pixels), true negative (TN; clear pixels correctly 

detected as clear pixels), and true positive (TP; cloud pixels correctly detected as cloud pixels) pixels in the Landsat-8 image. 260 

From this additional step, Landsat-8 images were sorted into four categories depending on the assessed quality of cloud 

masking. Images with the existence of FN cloud pixels in the cloud mask array, which indicate the underestimated cloud 

cover, were labelled as Category 1 (C1). Images dominated by FP cloud pixels, which occur in cases of the overestimated 

cloud cover, were tagged as C2. Images dominated by TP cloud pixels, which correspond to correctly estimated cloud cover 

for cloudy sky, were labelled as C3. Images dominated by TN cloud pixels, which correctly estimate clear sky, were labelled 265 

as C4. For images under C2 (i.e., overestimated cloud coverages with medium confidence scores for clouds and high 

confidence scores for cirrus), the cloud mask array was regenerated with a higher confidence score (high confidence clouds 

and cirrus) and visually inspected against the true-color image to determine the adequacy of the higher confidence score 

cloud mask as follows: If any FN cloud pixels were present in the higher confidence cloud mask, the original confidence 
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score (i.e., medium for clouds and high for cirrus) was used to mask the clouds. Further details of the visual screening step 270 

are provided in Appendix B. 

In this study, for Landsat-8 images that were labelled as C2, C3, and C4, Landsat-8 pixels that remain after the application of 

CFMask were assumed to be clear sky pixels (i.e., “clear pixel assumption”). However, for Landsat-8 images labelled as C1, 

the “clear pixel assumption” is not valid because C1 category underestimates clouds by CFMask according to the visual 

inspection step, which implies that the associated error due to the underestimated cloud cover in SIC calculation is expected. 275 

Therefore, possible error from the presence of unmasked cloud pixels in C1 is further evaluated in Section 5.1. The number 

of Landsat-8 images under the four categories over the twelve regions is provided in Table 2, and the assessed cloud mask 

quality (i.e., C1, C2, C3, and C4) for each Landsat-8 image is provided in the variable under the name 

‘cloud_contamination_category’ in the produced Landsat-8 SIC dataset in order to allow for quality control of the data in its 

usage. 280 

 

Category C1a C2b C3c C4d 

Baffin Bay 826 80 907 663 

Barents Sea 271 10 265 126 

Beaufort Sea 215 27 111 98 

Bering Sea 209 24 264 202 

Canadian A. 1,573 176 854 571 

Central Arctic 1,165 42 705 431 

Chukchi Sea 154 30 134 109 

E. Greenland 767 29 369 303 

E. Siberian 230 36 145 135 

Hudson Bay 619 116 351 399 

Kara Sea 490 34 245 130 

Laptev Sea 328 23 165 130 

aunderestimated cloud cover 
boverestimated cloud cover 
ccorrectly estimated cloud cover for cloudy sky 
dcorrectly estimated cloud cover for clear sky 285 

 

Table 2: The number of Landsat-8 images for the four cloud mask categories (i.e., C1: underestimated cloud cover, C2: 

overestimated cloud cover, C3: correctly estimated cloud cover for cloudy sky, and C4: correctly estimated cloud cover for clear 

sky) over the twelve regions of the Arctic Ocean during the periods of Jan. 2020 – Dec. 2022. 

 290 
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3.2 Ice and Open Water Classification 

Classification of a Landsat-8 pixel as ice or open water was performed by applying thresholds to the top-of-atmosphere 

(TOA) reflectivity at band 5 (NIR) and the normalized difference snow index (NDSI). To do this, first, the reflectivity of a 

Landsat-8 pixel, which is stored as a 16-bit digital number in the Landsat-8 Collection 2 Level 1 dataset, was scaled to TOA 

reflectivity using the following equation (Zanter, 2019): 295 

sin( )

DN

SE

M Q A
 






+
=                      (2) 

where Mρ, and Aρ are the multiplicative and additive scale factors, θSE is the solar elevation angle, and QDN is the TOA 

reflectivity of the Landsat-8 pixel in 16-bit digital number format. 

Then, the NDSI was calculated from the scaled reflectivities as follows:  

5 6

5 6

NDSI
 

 

−
=

+
                                   (3) 300 

where ρ5 and ρ6 are the TOA reflectivities at bands 5 (NIR) and 6 (SWIR) of the OLI sensor, respectively.  

The steps for differentiating ice and open water pixels and for removing possible cloud pixels are shown in Fig. 4. The first 

is the ρ5 criterion in order to detect open water pixels, which has lower reflectivity at band 5 compared to that over ice or 

cloud pixels. The next step is the NDSI criterion in order for detecting ice pixels, which has higher NDSI than cloud pixels, 

due to higher reflectivity of ice at band 5 and lower reflectivity of ice at band 6, compared to the cloud reflectivities (Hall et 305 

al., 1995; Riggs et al., 1996, 1999). The NDSI criterion for the separation of ice and cloud pixels was kept in order to 

reinforce cloud removal process in addition to CFMask explained in Section 3.1. In this study, the thresholds for ρ5 and 

NDSI were selected as 0.08 and 0.45, respectively (Liu et al., 2016; Tanaka and Lu, 2023). 

As mentioned in Section 3.1, the “clear pixel assumption” was applied during the classification of Landsat-8 images labelled 

C2, C3, and C4. Accordingly, the performance of classification based on ρ5 and NDSI with the selected thresholds was 310 

evaluated over clear sky pixels using the surface classification data from Landsat-8 images (Kern, 2021) mentioned in 

Section 2.3 as reference data. The values of ρ5 and NDSI were collected separately over open water and ice pixels in the 

reference data and classification over the collected pixels was performed following the procedure in Fig. 4. From the 

distributions of ice and open water pixels in the two-dimensional histogram between NDSI (x-axis) and ρ5 (y-axis) in Fig. C1, 

it can be seen that ice and open water are well differentiated by the selected threshold values of ρ5 and NDSI, respectively 315 

(Fig. C1). In addition, for quantitative assessment of the performance of ice and open water classification, the recall was 

computed for the open water and ice categories using the classification result summarized in Table 3 and Eq 4.   

X as X

X as X

X as X X as ~X

N
RC =

N +N
                    (4) 
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where NX as X and NX as ~X are the number of pixels in category X classified as X (TP) and the number of pixels in category X 

classified as not X (FN), respectively. With the designated thresholds the recall was found to be 98.94% for water and 97.67% 320 

for ice. FN classifications of ice into open water can cause negatively biased SIC. The bias due to such classification error 

was estimated to be 2.33% from the percentage of the number of ice pixels that were classified as open water in Table 3. 

Conversely, FN classification of open water into ice can cause positively biased SIC, which was estimated to be 1.06% from 

the value in Table 3. Misclassification of ice or open water pixels into cloud pixels from the application of the NDSI 

threshold rarely occurred for both ice and open water categories. Thus, it can be concluded that the classification method 325 

used in this study is accurate over clear sky pixels. Furthermore, the error from ice/water classification over clear sky is 

within the uncertainty range of Landsat-8 SIC which is discussed in Section 4.3. 

This classification result may not be applicable for Landsat-8 images tagged C1 (i.e., underestimated cloud cover), because 

as mentioned in Section 3.1, such images do not consist solely of clear sky pixels, but contain undetected cloud pixels by 

CFMask. Therefore, for Landsat-8 images labelled C1, in order to understand possible errors in SIC calculation from the 330 

designated classification method, it is necessary to evaluate the performance of classification over the undetected cloud 

pixels. This is discussed further in Section 5.1. 

 

Figure 4: The process for separating ice, open water, and possible unmasked clouds using ρ5 and NDSI criterion, where ρ5 and 

NDSI are the TOA reflectivity at band 5 of the OLI sensor and the Normalized Difference Snow Index, respectively. 335 
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Classified 

Reference 
Open water Ice Cloud 

Open water 
13,271,877 

(98.94%) 

141,582 

(1.06%) 

19 

(0.00%) 

Ice 
747,481 

(2.33%) 

31,353,954 

(97.67%) 

336 

(0.00%) 

Table 3: The number of classified pixels for open water, ice, and cloud from the suggested method and surface classification 

reference data (Kern, 2021). The original categories in the reference data are shown in the rows, and the classified categories from 340 
the method in Fig. 4 are shown in the columns. The values inside the parentheses indicate the percentage of pixels from the 

original category that are classified into open water, ice, and cloud. 

 

3.3 Projection and Computation of SIC 

After the ice and open water classification for the selected Landsat-8 pixels, the classified pixels were projected onto the 345 

target grid system of the NSIDC Polar Stereographic grid with 6.25 km resolution. The number of ice and open water pixels 

within each 6.25 km × 6.25 km grid cell was used to compute SIC for the grid cell according to, 

( )ice

ice water

N
SIC 100 %

N N
= 

+
                    (5) 

where Nice and Nwater are the number of Landsat-8 pixels classified as ice and water within each 6.25 km × 6.25 km grid cell, 

respectively. It is noted that some of the grid cells with 6.25 km resolution are not entirely filled by Landsat-8 pixels at the 350 

edges of a Landsat-8 image and/or near cloud masked regions. In this study, this kind of grid cell is referred to as ‘partially-

covered grid cell’. Therefore, SIC computed in such a grid cell is unlikely to be representative of the actual ice coverage over 

the area covered by the grid cell. To avoid this caveat, a minimum threshold in the number of Landsat-8 pixels for a single 

6.25 km × 6.25 km grid cell (Ncritical) was applied prior to the computation of SIC. In this study, a specific value of Ncritical 

was introduced as the minimum threshold, which is discussed in the following subsection. 355 

 

3.4 Sensitivity Test and Uncertainty Analysis 

The sensitivity of Landsat-8 SIC to the prescribed thresholds of ρ5 and NDSI was investigated for each cloud contamination 

category. In doing so, for each of the four cloud contamination categories (i.e., C1, C2, C3, and C4), ten scenes were 

randomly sampled over all twelve regions (Fig. 2), and thus 120 scenes were used per each cloud contamination category for 360 

sensitivity test (see Table S5 in the supplements for the full list of scenes used for sensitivity test).  SIC over the selected 

scenes were calculated using Eq. 5 based on classification results with NDSI and ρ5 thresholds perturbed by their 
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uncertainties. Values of 0.015 and 0.016 were assigned as the uncertainties of ρ5 and ρ6, respectively, followed by Pinto et al. 

(2020) which provides the root mean squared differences of the Landsat-8 TOA reflectivities and in situ observed 

reflectivities at bands 5 and 6. The uncertainty of NDSI was calculated using the Gaussian error propagation method, which 365 

can be written for NDSI as: 

5 6

2 2

2 2 2

NDSI

5 6

NDSI NDSI
   

 

 
= +

 

   
   
   

                   (6) 

where 
5

  and 
6

  are the uncertainties of Landsat-8 TOA reflectivities at bands 5 and 6, respectively. Substituting Eq. 3 

for NDSI in Eq. 6, the analytical form of the uncertainty in NDSI can be expressed as the following: 

5 6

2 2
2 2 26 5
NDSI 4 4

5 6 5 6

4 4

( ) ( )
 

 
  

   
= +

+ +
                   (7) 370 

From Eq. 7 with 
5

0.015 =  and 
6

0.016 = , a value of 0.05 was assigned as the uncertainty of NDSI which is the 

median value of NDSI  computed over 480 randomly selected Landsat-8 scenes. For the four cloud contamination categories, 

mean values of SICs calculated with the perturbed thresholds of 0.45±0.05 and 0.08±0.015 for the NDSI and ρ5, respectively, 

are provided in Fig. 5. With the perturbation of ±0.015 for ρ5 threshold, mean SICs from C1, C2, C3, and C4 vary by 

∓0.641%, ∓0.495%, ∓0.665%, and ∓0.402%, respectively (blue lines in Fig. 5). With perturbation of ±0.05 for NDSI 375 

threshold, mean SIC from C1, C2, C3, and C4 varied by ∓0.111%, ∓0.002%, ∓0.007%, and ∓0.002%, respectively (red 

lines in Fig. 5). The calculated SICs are more sensitive to the ρ5 threshold relative to the NDSI threshold because the ρ5 

threshold is responsible for separating open water and ice. It is noted that sensitivity of SICs to the NDSI threshold is two-

orders of magnitude higher for scenes labelled C1 than for C2, C3, and C4. The very low sensitivity of SICs to the NDSI 

threshold for scenes labelled C2, C3, and C4 infers that cloud pixels in such scenes had been successfully masked by 380 

CFMask prior to the ice/water classification described in Section 3.2. However, relatively higher sensitivity of SICs to the 

NDSI threshold for scenes under C1 infers that undetected cloud pixels had remained after the application of CFMask and 

that such cloud pixels had been further removed by the NDSI threshold. 

Gaussian error propagation was also used to estimate the uncertainty of Landsat-8 SIC according to: 

5

22

2 2 2

SIC NDSI

5

SIC SIC
(%)

NDSI
  



 
= +

 

  
   
   

                  (8) 385 

where σx and 
SIC

x




 are the uncertainty of x and the sensitivity of SIC to x, respectively. The sensitivities for the two 

variables (i.e., ρ5 and NDSI) were computed numerically from the mean SIC variation observed in sensitivity test (see Tables 

S6, S7, S8, and S9 in the supplementary for the computed values of sensitivity). In addition, in order to check the relative 
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contribution of each variable to the overall uncertainty in SIC, a contribution factor (CFx) was defined and calculated for the 

two variables as the following: 390 

2

SIC

2

2SIC

CF 100 (%)

x

x

x







= 

 
 
 

                    (9) 

The estimated uncertainty of Landsat-8 SIC (σSIC) produced in this study was less than 1% in average for all four cloud 

contamination categories and the ρ5 threshold contributes to about 99% of the uncertainty for C2, C3, and C4 and about 97% 

of the uncertainty for C1 in SIC calculation. Further discussion of the uncertainty of Landsat-8 SIC is handled in Section 4.3. 

As mentioned in Section 3.3, SIC computed from partially-covered grid cells may not be representative of actual ice 395 

coverage over the entire grid cell and the corresponding uncertainty of SIC estimates in such grid cell can be as large as the 

fraction of the uncovered areas. In order to circumvent such a problem, in this study, Ncritical was determined as 0.99×Nmax 

where Nmax is the maximum number of Landsat-8 pixels within a 6.25 km ×  6.25 km grid cell.  
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 400 

 

Figure 5: Mean of Landsat-8 SIC values for (a) C1 (i.e., underestimated cloud cover), (b) C2 (i.e., overestimated cloud cover), (c) 

C3 (i.e., correctly estimated cloud cover for cloudy sky), and (d) C4 (i.e., correctly estimated cloud cover for clear sky) derived 

from the selected scenes under perturbed thresholds for NDSI (red) and ρ5 (blue), where ρ5 and NDSI are the TOA reflectivity at 

band 5 of the OLI sensor and the Normalized Difference Snow Index, respectively.  405 
 

3.5 Application of Land and Region Masks 

In order to circumvent potential contamination of land signals, in this study, SIC pixels generated over non-ocean regions 

were masked using the surface mask described in Section 2.2. The region mask was applied in addition to the surface mask 

to obtain SIC products catalogued into the 12 regions. If all SIC pixels in a Landsat-8 scene were masked by the combination 410 

of land, region, and cloud masks, the scene was removed from the SIC dataset.  
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4 Result 

4.1 Landsat-8 SIC Dataset 

Out of 15,286 Landsat-8 Level 1 images collected over pan-Arctic areas during the study period, the number of Landsat-8 415 

images used for calculating SICs for the categories of C1, C2, C3, and C4 were 6,336 (41.4%), 549 (3.6%), 4,389 (28.1%), 

and 3,123 (20.4%), respectively. The remaining 989 (6.5%) images were removed from the combination of surface, region, 

and cloud masks. For each of the twelve regions, the number of Landsat-8 scenes generated into Landsat-8 SIC (Nscene), and 

the number of produced Landsat-8 SIC pixels (Npixel) for each cloud contamination categories during the study period are 

shown in Fig. 6 along with the mean and standard deviation of SIC (see Table S10 in the supplementary for values). The 420 

total number of Landsat-8 SIC pixels produced during the study period was 2,934,399. 

 

 

Figure 6: (a) The mean SIC, (b) the standard deviation of SIC, (c) the number of Landsat-8 scenes used for SIC production (Nscene), 

and (d) the number of Landsat-8 SIC pixels produced (Npixel) over the twelve regions. The black, red, blue, and green bars indicate 425 
values for categories C1 (i.e., underestimated cloud cover), C2 (i.e., overestimated cloud cover), C3 (i.e., correctly estimated cloud 

cover for cloudy sky), and C4 (i.e., correctly estimated cloud cover for clear sky), respectively. 
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4.2 Qualitative Evaluation for Landsat-8 SIC Under Four Cloud Contamination Categories 

Figure 7 shows the Landsat-8 true-color image (first column of Fig. 7), classification map of ice, open water, and the 430 

removed cloud pixels (second column of Fig. 7), and Landsat-8 SIC in 6.25 km resolution (third column of Fig. 7) for the 

four selected cases. Ice and open water pixels, which were differentiated following the methods explained in Section 3.2, are 

shown as the white and blue pixels, respectively. Cloud pixels removed in both CFMask and the NDSI criterion are shown as 

the cyan pixels. Cloud pixels removed from CFMask but undetected from the NDSI criterion are shown as the purple pixels. 

Cloud pixels removed from the NDSI criterion but undetected in CFMask are shown as the red pixels. SICs were only 435 

estimated over grid cells that satisfy N>Ncritical, therefore grid cells with more than 1% of its area covered with cloud pixels 

or grid cells located near the edges of a Landsat-8 scene have no SIC values. In addition, areas close to the coastline (within 

6.25 km) are masked in the Landsat-8 SIC maps presented in Fig. 7. 

The first case is an example of the underestimated cloud cover (i.e., C1) on March 13, 2022 over the Kara Sea (first row of 

Fig. 7) where cloud pixels observed in the lower left area of Fig. 7a were not removed by CFMask (cyan and purple pixels in 440 

Fig. 7b). However, for this particular scene, most of such undetected cloud pixels were removed from application of the 

NDSI criterion (red pixels in Fig. 7b) and therefore the produced SIC was estimated only over clear sky area (Fig. 7c). The 

second case is an example of the overestimated cloud cover (i.e., C2) on March 17, 2021 over the Barents Sea (second row 

of Fig. 7) where FP cloud pixels are densely distributed in the upper left area of Fig. 7e. It is shown that SICs were not 

estimated for grid cells with such wrongly-masked pixels (Fig. 7f). The third is an example of correctly estimated cloud 445 

cover for cloudy sky (i.e., C3) on June 26, 2022 over the Kara Sea (third row of Fig. 7) where the position of cloud pixels 

removed from CFMask (cyan and purple pixels in Fig. 7h) coincide well with the location of cloud presented in the true-

color image (Fig. 7g). The fourth case is an example of correctly estimated cloud cover for clear sky (i.e., C4) on June 15, 

2022 over the Beaufort Sea (fourth row of Fig. 7) where no clouds are observed in both the true-color image (Fig. 7j) and the 

classification map (Fig. 7k).  450 

For all four cases, over clear sky pixels, discrimination between open water pixels (blue pixels in Fig. 7b, Fig. 7e, Fig. 7h, 

and Fig. 7k) and ice pixels (white pixels in Fig. 7b, Fig. 7e, Fig. 7h, and Fig. 7k) based on the ρ5 thresholds coincided well 

with the locations of open water and ice observed from the true-color images (first column in Fig. 7). Therefore, it can be 

concluded that the ice-water classification in this study is successfully done and the calculated SICs correspond well to the 

classification results (third column in Fig. 7). In addition, cloud pixels only detected from the NDSI criterion (red pixels in 455 

second column in Fig. 7) are rarely observable for the cases of C2, C3, and C4 which further demonstrates the validity of the 

assumption that all cloud pixels had been removed prior to ice/water classification in Section 3.2 for the Landsat-8 scenes 

under the three categories.  
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 460 

Figure 7: Example of (a, d, g, i) original Landsat-8 true-color image, (b, e, h, k) classification map of ice (white), open water (blue), 

and cloud (cyan, purple, and red), and (c, f, i, l) Landsat-8 SICs with 6.25 km resolution on (first row) Mar. 22, 2022 over the Kara 

Sea, (second row) Mar. 17, 2021 over the Barents Sea, (third row) Jun. 26, 2022 over the Kara Sea, and (fourth row) Jun. 15, 2022 

over the Beaufort Sea. From top to bottom row, the select cases correspond to the cloud contamination categories of 1, 2, 3, and 4 

respectively. SICs are not estimated over areas of cloud mask (cyan, purple and red pixels in the middle column), and SICs near 465 
the coastal area (6.25 km) are masked in this figure. The true-color images were obtained from Earth Resources Observation and 

Science (EROS) Center (2020). . 
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4.3 Uncertainty of Landsat-8 SIC 

The estimated σSIC from all the selected 480 scenes in Section 3.4 was less than 1%, and the ρ5 threshold was found to be 

responsible for more than 99% of σSIC. The uncertainty (i.e., σSIC) estimated separately for different regions or different cloud 470 

contamination categories all remained within 1% and had similar contribution ratios with the ρ5 threshold being the dominant 

contribution factor to σSIC (see Table D1, D2, D3 in Appendix D for the exact values). Thus, σSIC seems to be independent of 

region or cloud contamination label. However, σSIC was found to be dependent on the SIC value itself. Figure 8 shows the 

variation in σSIC with respect to the SIC range, illustrating that the lowest uncertainty is ~0.2% in the SICs from 0 to 10% and 

from 90 to 100% while the highest uncertainty of 4.5% is observed in SIC ranged from 50 to 60% (see Table D4 for exact 475 

values). Still, the ρ5 threshold explains most of the uncertainty, regardless of SIC values. In spite of the relatively high 

uncertainty in Landsat-8 SIC between 20% and 80%, the product can still be used for validation purposes because most 

PMW SIC products exhibit much larger uncertainties over such SIC range of up to ±12% in the winter (Ivanova et al., 2014) 

and ±20% in the summer (Meier and Notz, 2010). 

 480 

 

Figure 8: (a) Uncertainties in Landsat-8 SICs (σSIC) and (b) contributions of the ρ5 (blue) and the NDSI thresholds (red) to the 

estimated uncertainties for different SIC range, where ρ5 and NDSI are the TOA reflectivity at band 5 of the OLI sensor and the 

Normalized Difference Snow Index, respectively. Dark and light-coloured bars indicate the uncertainty and contributions 

computed from all 480 scenes and separately for each SIC sub-range, respectively.  485 
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5 Discussion 

5.1 Possible Errors in SIC Produced from Landsat-8 Images Labelled C1 

As mentioned in Sections 3.1 and 3.2, the “clear pixel assumption”, which assumes that all cloud pixels in a Landsat-8 image 

have been removed by the application of CFMask, is not valid for Landsat-8 images labelled C1 in Section 3.1. For Landsat-

8 SIC associated with C1 category, therefore, it is necessary to evaluate the possible uncertainty in SIC induced by 490 

unremoved cloud pixels (i.e., underestimated cloud cover). Evaluation was performed as follows: From Landsat-8 images 

under the C1 category, those having 100% cloud cover based on visual inspection, but less than 100% cloud cover from 

CFMask were selected. From these images, the ρ5 and NDSI values were collected over pixels that were not masked by 

CFMask (i.e., undetected cloud pixels). Classification following the process illustrated in Fig. 4 was performed over the 

collected undetected cloud pixels to quantitatively assess the possible errors in SIC estimated over such pixels. A total of 495 

6,721,605 undetected cloud pixels were used in this evaluation, and the name and location of Landsat-8 images used are 

shown in Fig. S3 and Table S11 in the supplements. 

The classification result is summarized in Table 4 and Fig. C2. From the distribution of the unmasked cloud pixels in the 

two-dimensional histogram between NDSI (x-axis) and ρ5 (y-axis) in Fig. C2, it can be seen that the NDSI criterion used in 

this study reinforces the cloud removal process by filtering cloud pixels that were undetected by CFMask. However, even 500 

with the additional procedure to remove remained cloud signals (i.e., the NDSI criterion), 8.54% of the undetected cloud 

pixels are still classified as open water and/or ice. It is noted that such cloud pixels (i.e., cloud pixels undetected from both 

CFMask and the NDSI criterion) were predominantly classified as ice (Table 4). Therefore, it can be inferred that the 

undetected cloud pixels in a Landsat-8 image can induce positively biased SIC and thus for SICs produced from Landsat-8 

images labelled C1 over which the “clear pixel assumption” is invalid, the error from ice/water classification is estimated to 505 

be large as 8.54% from the percentage of cloud pixels classified as ice in Table 4. The possibility of such large uncertainties 

should be taken into note when using Landsat-8 SIC labelled C1. 

 

Classified 

(ρ5 and NDSI) 

Reference 

Open water Ice Cloud 

Undetected Cloud 

(by CFMask) 

215 

(0.00%) 

573,922 

(8.54%) 

6,147,468 

(91.46%) 

Table 4: The number of cloud pixels that were undetected from the C Function of Mask (CFMask) classified into open water, ice, 

and cloud from application of the procedure in Fig. 4. The scenes used for the evaluation belong to C1 (i.e. underestimated cloud 510 
cover) category from the method described in Section 3.2. The values inside the parentheses indicates the percentage of pixels that 

belong to each category. 
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5.2 Evaluation of Landsat-8 SIC Using Ice Charts 515 

The accuracy of Landsat-8 SIC produced in this study was evaluated using ice charts provided by MET Norway as reference. 

For quantitative comparison, ice charts were collocated into the grid system of Landsat-8 SIC (i.e., PSR grid with 6.25 km 

resolution) as follows: Data points on the ice chart within each 6.25 km × 6.25 km grid cell were collected, and the SIC mean 

value from the collected data points were taken as the representative SIC value of ice chart for the 6.25 km × 6.25 km grid 

cell. It is important to be noted that SIC values in the original ice charts are not normally-defined SICs in satellite remote 520 

sensing, but contain uncertainties represented by the ice concentration range defined in Table A1. Therefore, it is necessary 

to consider the propagation of uncertainty in the collocation process. Uncertainty of the collocated ice chart SIC was 

estimated by taking the average of the uncertainty in ice chart data points collected from each 6.25 km × 6.25 km grid cell. 

To avoid the influence of land contamination, a 6.25 km coastal area mask was applied to both SICs prior to the comparison. 

The number of collocated data points used in the evaluation was 45,547. 525 

From Fig. 9, a good linear relationship (i.e., correlation coefficient of 0.96) between Landsat-8 SIC and ice chart SIC is 

observed. The spread (i.e., 20 and 80 percentiles) of Landsat-8 SIC for ice chart SIC sub-ranges, which are shown as red 

vertical lines in Fig. 9a, was larger in SIC ranged from 20% to 80% relative to other ranges, which is likely due to a 

consequence of the wider concentration intervals assigned to the 20-80% of SIC values in the original ice chart (Table A1). 

In addition, SIC from the ice charts tends to be higher than that found from Landsat-8 SIC and the bias is more pronounced 530 

in the lower SIC range. This type of state dependent overestimation of SIC from ice charts has been reported in previous 

works of Tonboe et al. (2016) and Cheng et al. (2020), which shows that overestimation of SIC from ice charts is largest in 

the lower SIC range due to the “better-safe-than-sorry” practices of the ice charting community. For quantitative comparison 

of the bin-wise mean biases in Landsat-8 SIC relative to ice chart SIC, bin-averaged SICs from Landsat-8 (red triangle in Fig. 

9b) and from ice charts (blue circles in Fig. 9b) were plotted along with their respective uncertainties. Uncertainties of 535 

Landsat-8 SICs over the SIC sub-ranges were taken as the values from Table D4. Except for 70-80% SIC interval, Landsat-8 

SICs were negatively biased to ice chart SICs. However, the mean biases for all SIC sub-range were found to be within the 

uncertainty ranges estimated for each product. 
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 540 

Figure 9: (a) Scatter plot of bin-wise mean Landsat-8 SICs and ice chart SIC sub-ranges. The bin-wise mean SICs are shown as 

red triangles, and the 20 and 80 percentiles are shown as the red vertical lines. The values for number of data points (N), root-

mean-square error (RMSE), bias, and Pearson correlation coefficient (R) are presented. (b) For the same SIC intervals as (a), the 

bin-wise mean SICs of Landsat-8 (red triangle) and ice chart (blue circle) and their respective uncertainties (vertical lines). The 

uncertainties of Landsat-8 SIC are taken from the values in Table D4. 545 

 

5.3 Evaluation of Landsat-8 SIC Over Melt Ponds 

The evaluation of variation in Landsat-8 SICs due to melt pond presence was performed using the MPF dataset (Niehaus and 

Spreen, 2022) described in Section 2.5 as reference data for melt ponds. As mentioned in Section 2.5, a total of six Landsat-8 

scenes obtained from the periods of Jul. 2020, Aug. 2020, and Jul. 2021 were used in the evaluation. The evaluation was 550 

conducted as follows: First, the collocation of the MPF dataset into the grid system of Landsat-8 SIC was performed. This 

was done by collecting MPF data points within each 6.25 km × 6.25 km grid cell and taking the mean value of the collected 

MPF data points as the MPF values for each corresponding grid cell in 6.25 km resolution. In addition, from the OW masks 

in the MPF dataset, SIC values (SICMPF) were computed in the grid system of Landsat-8 SIC following the same method 

introduced in Section 3.3. Second, in order to remove the effects of SIC variation from the evaluation, the corresponding 555 

Landsat-8 SIC and MPF data points were collected when data points satisfy SICMPF=100%. The number of collected data 

points is 98. From the collected data points, the net ice surface fraction (Cnet) was computed as the following, 

net MPF
C (1 MPF) SIC= −                     (10) 

where MPF is the melt pond fraction and SICMPF is the estimated SIC value from the MPF dataset. Since SICMPF was fixed to 

100%, in this study, the variation in Cnet can be considered solely driven by the variation in MPF. 560 

The robustness of the Landsat-8 SIC to the presence of melt ponds is illustrated in Fig. 10, which is a scatter plot between 

the collected Cnet (x-axis) and Landsat-8 SIC (y-axis). In this plot, the MPF was varying from 0% to 33%, and therefore, the 
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computed values of Cnet are ranged from 67% to 100%. However, SICs estimated from Landsat-8 are observed to be nearly 

independent to the varying Cnet (statistically insignificant correlation coefficient of 0.11) and thus nearly independent of MPF. 

Although a few Landsat-8 SICs are observed to be affected by melt pond presence (data points highlighted in red from Fig. 565 

10), which can be expected because melt ponds are not easily distinguished from open water, the number of such data points 

are very small (only four data points out of 98 data points). It is noted that on average the deviation from 100% ice 

concentration computed from the data points shown in Fig. 10 was less than 1%. Therefore, it can be inferred that the impact 

of melt pond presence in SIC calculation using Landsat-8 imagery is small, and that the proposed algorithm for SIC 

production in this study is robust regardless of surface melting. 570 

 

 

 

Figure 10: Scatter plot of net ice surface fraction (x-axis) and Landsat-8 SIC (y-axis). The data points shown satisfy SICMPF=100% 

and have MPF that vary from 0% to 33%. Data points with more than 4% deviation of Landsat-8 SIC from 100% ice 575 
concentration are highlighted in red. The values for number of data points (N), Pearson correlation coefficient (R), and p-value for 

the correlation coefficient are presented.  
 

5.4 Possible Applications of Landsat-8 SIC for Assessing PMW-based SICs 

Landsat-8 SIC produced from this study can be utilized to assess the PMW-based SICs. This section provides the possible 580 

application of the constructed Landsat-8 SIC for examining PMW-based SICs. To do this, Landsat-8 SIC was downscaled to 

25 km resolution and compared against SICs estimated from BT and NT algorithms, both provided in the PSR grid with 25 
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km resolution and obtained from NSIDC (Meier et al., 2021), for the selected two cases of Landsat-8 scenes acquired during 

melting (Jul. 21, 2022 over the Laptev Sea) and freezing (Mar. 4, 2022 over the Chukchi Sea) seasons, respectively. To 

avoid the influence of land contamination, a coastal area mask, which was also downscaled to 25 km resolution, was applied 585 

before the comparison.  

Figure 11 illustrates spatial distributions of the three different SICs, differences in SICs of BT and NT from Landsat-8, and 

scatter plots of BT and NT SIC against Landsat-8. For the case of the melting season (top two rows in Fig. 11), BT SIC 

showed a positive bias of 8.95%, RMSE of 16.30%, and correlation coefficient of 0.92 (Fig. 11d) to Landsat-8 SIC while 

SIC retrieved from the NT algorithm is negatively biased to Landsat-8 SIC by -5.21% with a RMSE of 14.35%, and 590 

correlation coefficient of 0.94 (Fig. 11h). It is interesting to note that BT SICs are positively (negatively) biased to Landsat-8 

SIC for lower (higher) concentrated ice areas (Fig. 11c), while opposite patterns are observed for NT SICs (Fig 11g). Both 

PMW-based SICs show the largest disagreement with Landsat-8 SIC near the edges of pack ice (i.e., boundaries between sea 

ice and open water). 

For the scene in the freezing season (bottom two rows in Fig. 11), the BT and NT algorithms produced nearly 100% SICs for 595 

all grids in this case while Landsat-8 SIC shows lower SIC values in regions coinciding with the leads in the pack ice 

observed from the true-color image. As a result, positive biases were observed near the position of the lead (Fig. 11k and Fig. 

11o), and mean biases for the BT and NT algorithms were 0.83% and 0.53%, respectively. RMSEs of BT and NT SIC were 

calculated as 1.35% and 0.81%, respectively, which are lower than the RMSE evaluated during the melting season for the 

two SIC algorithms (Fig. 11i and Fig. 11p). 600 
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Figure 11: Geographical distributions of (a, i) original Landsat-8 true-color image, (e, m) Landsat-8 SIC, (b, j) SIC from the 

Bootstrap (BT) algorithm, (f, n) SIC from the NASA Team (NT) algorithm, (c, k) difference in SICs between BT and Landsat-8, (g, 

o) difference in SICs between NT and Landsat-8 and scatterplot (d, l) between Landsat-8 SIC and SIC from BT and (h, p) between 605 
Landsat-8 SIC and SIC from NT. The values of root-mean-square error (RMSE), bias, and Pearson correlation coefficient (R) are 

presented with the scatter plots. Upper two panels for July 21, 2022 (melting season) over the Laptev Sea and for March 4, 2020 

over the Chukchi Sea, respectively. The true-color images were obtained from Earth Resources Observation and Science (EROS) 

Center (2020) and the SIC retrievals from the BT and NT algorithms were obtained from Meier et al. (2021). 

 610 
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6 Code and Data Availability 

The Landsat-8 SIC dataset can be downloaded at https://zenodo.org/doi/10.5281/zenodo.10973297 (Jung et al., 2024). 

Datasets generated for each Arctic region can be found in “sic_landsat08_{region name}.nc. The datasets are stored in 

netCDF format and can be accessed using software including Python, MATLAB, and QGIS. Along with the SIC values, N, 

coastal mask, and region mask are also provided in a 1792 × 1216 array format. Cloud contamination category and name of 615 

the original Landsat-8 files are also provided for each scene. Variables in the netCDF file are visualized in Fig. 12. Fill 

values were assigned to grids outside the coverage of a Landsat-8 scene, grids over land, or grids masked by clouds (black 

grids in Fig. 12a, b). Description of each variable and the fill/flag values are summarized in Table 5. 

Datasets used to produce and validate the Landsat-8 SIC are listed as follows. 

- ‘Landsat-8 Collection 2 Level 1 Product’ and the corresponding true-color images are accessible from United States 620 

Geological Survey Earth Explorer at https://earthexplorer.usgs.gov/ (Earth Resources Observation and Science (EROS) 

Center, 2020). 

- ‘Arctic and Antarctic Regional Masks for Sea Ice and Related Data Products, Version 1’ used to mask non-ocean areas 

and distinguish regions can be accessed at https://doi.org/10.5067/CYW3O8ZUNIWC (Meier and Stewart, 2024). 

- ‘Landsat surface type over water from supervised classification of surface broadband albedo estimates 625 

(Version_2021_fv0.01)’ used to test the performance of the ice and open water classification can be accessed at 

http://doi.org/10.25592/uhhfdm.9181 (Kern, 2021). 

- ‘Arctic Ocean – Sea Ice Concentration Charts – Svalbard and Greenland’ ice charts used to evaluate the produced 

Landsat-8 SIC can be accessed at https://doi.org/10.48670/moi-00128 (E.U. Copernicus Marine Service Information 

(CMEMS), accessed on 11 June 2024). 630 

- ‘Melt pond fraction on Arctic sea-ice from Sentinel-2 satellite optical imagery (2017-2021)’ used to test the robustness 

of Landsat-8 SIC over melt ponds can be accessed at https://doi.org/10.1594/PANGAEA.950885 (Niehaus and Spreen, 

2022). 

- ‘NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4’ used to illustrate 

possible applications of Landsat-8 SIC dataset can be accessed at https://doi.org/10.7265/efmz-2t65 (Meier et al., 2024). 635 

The python codes for Landsat-8 SIC production, sensitivity and uncertainty analysis, ice/water classification evaluation, 

Landsat-8 SIC validation, and figure generation are accessible at https://doi.org/10.5281/zenodo.12754603 (Jung, 2024). 

Example data to check the functionalities of each python code are provided with the code repository. 

 

https://zenodo.org/doi/10.5281/zenodo.10973297
https://earthexplorer.usgs.gov/
https://doi.org/10.5067/CYW3O8ZUNIWC
http://doi.org/10.25592/uhhfdm.9181
https://doi.org/10.48670/moi-00128
https://doi.org/10.1594/PANGAEA.950885
https://doi.org/10.7265/efmz-2t65
https://doi.org/10.5281/zenodo.12754603
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 640 

Figure 12: Variables in the Landsat-8 SIC netCDF. The scene is from Jun. 12, 2021 over the Canadian Archipelago. For the (d) 

sub-region mask, ‘In’ and ‘Out’ denote grid cells located inside and outside the designated region, respectively. 

 

 

 645 

Variable Long Name Flag values 

sea_ice_concentration 
Estimated fractional sea ice area from 

Landsat-8 measurements 
[-99: Fill value] 

sample_size 
Number of Landsat-8 pixels used to 

estimate the sea ice concentration 
[0: Fill value] 

coastal_mask Open sea/Coastal Flag [0: Open_sea, 1: Coast] 

sub_region_mask Sub-region Flag [0: inside_sub_region, 1: outside_sub_region] 

Table 5: Variables in the Landsat-8 SIC netCDF file, name of the variables, and the flag values for each variable. 
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7 Conclusion 

In this study, three years (2020-2022) of Landsat-8 data were collected and used to generate sea ice concentration (SIC) 

datasets in the polar stereographic grid with 6.25 km resolution. A total of 14,297 Landsat-8 images were used to calculate 650 

2,934,399 SIC grid points. Each Landsat-8 SIC is catalogued under a netCDF file named after the twelve regions.  

Each Landsat-8 image was labelled into four cloud contamination categories (i.e., C1, C2, C3, and C4) according to the 

overall quality of cloud mask over the image. The categories are provided in the variable under the name 

‘cloud_contamination_category’ of the Landsat-8 SIC dataset to allow for selection of SICs calculated without the 

interference of cloud signals. 655 

The uncertainty of Landsat-8 SIC was estimated to be ranged from 1 to 4% based on the Gaussian error propagation method. 

In addition, to regulate the potential uncertainty that may arise from the use of partially-covered grid cells, SIC was only 

produced for grid cells with over 99% of its area covered by Landsat-8 pixels. Evaluation of Landsat-8 SIC using SIC from 

ice charts show good linear correlation between the two products and also reveal existence of negative bias in Landsat-8 SIC. 

However, the bias was found to be within the uncertainty range of the Landsat-8 and ice chart SIC. In addition, the 660 

production method used for Landsat-8 SIC was found to be robust over melt ponds. Thus, Landsat-8 SIC produced in this 

study can be considered to be reliable estimates of SIC. 

Comparison of Landsat-8 SIC against SIC retrievals from NASA Team (NT) and Bootstrap (BT) algorithms for two cases 

reveal overall negative bias in NT and positive bias in BT SIC. The spatial distribution of the bias shows that bias in NT and 

BT SIC may be related to the SIC values, with NT SIC exhibiting stronger negative bias in high SIC regime, and BT SIC 665 

showing stronger positive bias in low SIC regime. This suggests that the Landsat-8 SIC can be used as reference SIC to 

generate quantitative error statistics of various passive microwave SIC retrievals over different regions, seasons, and SIC 

values, which can be used to develop an optimal combination of existing SIC algorithms or be used to provide realistic 

observation errors to enhance the performance of sea ice data assimilation.  

Future works are aimed to extend the temporal and spatial coverage of the current Landsat-8 SIC dataset by the addition of 670 

Landsat-8 images from the years 2018 and 2019. In addition, given the large number of Landsat-8 SIC data points generated 

in this study, the obtained SIC values also have the potential to be used to train deep-learning models in order to retrieve 

optimal SIC estimates over the Arctic. 

 

 675 
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8 Appendices 

Appendix A: SIC Values in The MET Norway Ice Chart 

Concentration class Concentration interval [%] Fixed concentration value [%] Concentration range [%] 

Fast Ice 100 100 0 

Very Close Drift Ice 90-100 95 5 

Close Drift Ice 70-80 75 5 

Open Drift Ice 40-60 50 10 

Very Open Drift Ice 10-30 20 10 

Open Water 0-10 5 5 

Table A1: Concentration class, concentration interval, fixed concentration value, and concentration range of the operational ice 

chart produced by MET Norway.  

 685 

Appendix B: Visual Inspection for Cloud Mask Quality Control 

In this section, a step-by-step description of the process taken to perform the visual inspection of Landsat-8 scenes is 

presented. As defined in Section 3.1, each pixel in a Landsat-8 scene can be sorted into the following four categories 

depending on the state of cloud mask for the pixel: False negative (FN; cloud pixel mistaken as clear pixel), false positive 

(FP; clear pixel mistaken as cloud pixel), true negative (TN; clear pixel identified as clear pixel), and true positive (TP; cloud 690 

pixel identified as cloud pixel). It is noted that the pixels with FN are used to calculate SICs while the pixels with FP are not, 

indicating that the presence of FN pixels can directly introduce errors in the calculated SIC value. Therefore, visual 

inspection was performed very strictly to detect FN pixels. 

Figure B1 outlines the steps taken to perform the visual inspection. The descriptions of each step are provided along with an 

example case of a Landsat-8 scene that is categorized into C1 during the section-wise inspection stage. 695 
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Figure B1: Processing pipeline of the visual inspection step.  Each Landsat-8 image is labelled as C1 (i.e., underestimated cloud 

cover), C2 (i.e., overestimated cloud cover), C3 (i.e., correctly estimated cloud cover for cloudy sky), or C4 (i.e., correctly estimated 

cloud cover for clear sky) depending on the observed dominance of true negative (TN; clear pixels identified as clear pixels), false 

negative (FN; cloud pixels mistaken as clear pixels), false positive (FP; clear pixels mistaken as cloud pixels), and true positive (TP; 700 
cloud pixels identified as cloud pixels) pixels. 

 

Step 1. Generating jpeg file of cloud mask (i.e., cloud mask image). 

For each Landsat-8 scene, a false-colour image with each pixel classified as ice (white pixels in Fig. B2b, d), open 

water (blue pixels in Fig. B2b, d), cloud (grey pixels in Fig. B2b, d), and fill value (black pixels in Fig. B2b, d) is 705 

constructed using the OpenCV module in Python. Ice and open water pixels are differentiated using the method 

described in Section 3.2. Cloud pixels are classified by masking the medium confidence cloud, high confidence 

cirrus, cloud shadow, and dilated cloud pixels identified by the quality assessment band (i.e., the cloud mask array 

produced by CFMask). 

Step 2. Comprehensive inspection of cloud mask quality. 710 

The cloud mask image generated in Step 1 is visually inspected against the true-colour image to identify sections 

populated with FN, FP, TN, or TP pixels. This is done in the following order: First, if no cloud pixels are observed 

from both the cloud mask image and the true-colour image (i.e., all pixels in the image are TN pixels), the scene is 

labelled as C4. Second, if any cluster of FN pixels is observed, the scene is labelled C1. Third, if any cluster of FP 

pixels is identified, the scene is labelled C2 and passed on to Step 3. If the clusters of cloud pixels in the cloud mask 715 
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image are well corresponding to the position of clouds observed in the true-colour image (i.e., TP pixels), the scene 

is labelled C3 and passed on to Step 4 (Fig B2a, b).  

Step 3. Comprehensive inspection of cloud mask quality for C2. 

For the scenes passed on to this step (i.e., scenes labelled C2 from Step 2), the cloud mask image is recreated using 

a higher confidence threshold (i.e., high confidence cloud, high confidence cirrus, cloud shadow, and dilated cloud 720 

pixels) for the quality assessment band. The new cloud mask image is visually inspected against the true-colour 

image, and if any cluster of FN pixels is observed, the confidence threshold for the quality assessment band is 

returned to its initial value (i.e., medium confidence cloud, high confidence cirrus, cloud shadow, and dilated cloud 

pixels). If the observed clusters of cloud pixels in the new cloud mask image are well corresponding to the position 

of clouds observed in the true-colour image, the higher confidence threshold is kept, and the scene is passed on to 725 

Step 4. 

Step 4. Section-wise inspection of cloud mask quality. 

In this step, the identified clusters of TP pixels are inspected in more detail. For each cluster of TP pixels observed, 

we zoom in (i.e. about 1000 × 1000 pixels; the full-size image is approximately 8000 × 8000 pixels) to the section 

of the cluster to check for the existence of FN pixels. If any FN pixels are found within the cluster, the scene is 730 

labelled C1 (Fig B2c, d). 

An example of how a Landsat-8 scene may be categorized according to the process described in Fig B1 is presented using 

the case of a Landsat-8 scene acquired on Mar. 25, 2022, over the Barents Sea (Fig B2). First, from Step 2. (i.e., the 

comprehensive inspection step), visual inspection of the cloud mask image (Fig. B2b) against the true-colour image (Fig. 

B2a) shows that the position of clouds in the cloud mask array is generally well corresponding to those observed in the true-735 

colour image. Therefore, at this step, this scene is labelled C3 and passed on to Step 4 as described above. Next, the section-

wise inspection of the cloud mask quality is performed by zooming in to the cloud areas. This is illustrated in Fig. B2c and 

Fig. B2d, which is a zoomed in image of the area enclosed by the red rectangle in Fig. B2a and Fig. B2b. Inspection of this 

sub-section shows the presence of unmasked cloud shadow pixels, which results in the erroneous classification of ice as open 

water. Therefore, at this step, the label of this scene is changed to C1. 740 

The visual inspection was done by HJ and it took approximately 5 – 10 minutes to inspect one Landsat-8 scene for cloud 

cover. 
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Figure B2: The case of a Landsat-8 scene classified as C1 (i.e., underestimated cloud cover) from the visual inspection step. Shown 

in the panels are (a) full size true-colour image, (b) full size cloud mask array, (c) true-colour image of the area enclosed by the red 745 
rectangle in (a) and (b), and (d) cloud mask array of the area enclosed by the red rectangle in (a) and (b). The blue, white, grey, 

and black pixels in (b) and (d) are open water, ice, cloud, and fill value pixels, respectively. The scene is from Mar. 25, 2022, over 

the Barents Sea. The true-colour image is obtained from Earth Resources Observation and Science (EROS) Center (2020). 
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Appendix C: Validation of Ice and Open Water Classification 750 

 

Figure C1: Scatterplot between NDSI and ρ5 for (a) ice and (b) open water. The values for ice and open water pixels were collected 

using the ice/water surface classification map (Kern, 2021) as reference data. The thresholds for NDSI and ρ5 used in this study are 

shown by the white dashed lines. The colorbars denote the number of pixels. 

 755 

 

Figure C2: Scatterplot between NDSI and ρ5 for cloud pixels that remain unmasked after the application of CFMask. The pixels 

are acquired from ten select Landsat-8 images categorized as C1. The thresholds for NDSI and ρ5 used in this study are shown by 

the white dashed lines. The colorbars denote the number of pixels. 

 760 
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Appendix D: Uncertainty of Landsat-8 SIC With Respect To Region, Cloud Contamination Label, an SIC Sub-Range 

Cρ5 [%] CNDSI [%] σSIC [%] 

99.66 0.34 0.56 

Table D1: Contributions from ρ5 (Cρ5) and NDSI (CNDSI) to the estimated uncertainty of SIC (σSIC) and σSIC over all 480 scenes. 

 

 765 

Region Cρ5 [%] CNDSI [%] σSIC [%] 

Baffin Bay 99.74 0.26 0.80 

Barents Sea 99.84 0.16 0.65 

Beaufort Sea 99.33 0.67 0.30 

Bering Sea 97.46 2.54 0.89 

Canadian A. 99.93 0.07 0.25 

Central Arctic 99.86 0.14 0.56 

Chukchi Sea 99.97 0.03 0.45 

E. Greenland 99.58 0.42 0.65 

E. Siberian 100.00 0.00 0.53 

Hudson Bay 98.48 1.52 0.54 

Kara Sea 99.23 0.77 0.43 

Laptev Sea 99.99 0.01 0.63 

Table D2: Contributions from ρ5 (Cρ5) and NDSI (CNDSI) to the estimated uncertainty of SIC (σSIC) and σSIC for the twelve regions. 

 

 

Cloud Contamination Category Cρ5[%] CNDSI [%] σSIC [%] 

C1 97.10 2.90 0.65 

C2 100.00 0.00 0.50 

C3 99.99 0.01 0.66 

C4 100.00 0.00 0.40 

Table D3: Contributions from ρ5 (Cρ5) and NDSI (CNDSI) to the estimated uncertainty of SIC (σSIC) and σSIC for the three cloud 

contamination categories. 770 
 

 

  



37 

 

SIC sub-range [%] Cρ5 [%] CNDSI [%] σSIC [%] 

0-10 99.87 0.13 0.11 

10-20 99.96 0.04 2.16 

20-30 99.98 0.02 3.45 

30-40 99.97 0.03 3.99 

40-50 99.97 0.03 4.15 

50-60 99.98 0.02 4.46 

60-70 99.99 0.01 4.11 

70-80 99.99 0.01 3.61 

80-90 99.99 0.01 2.25 

90-100 100.00 0.00 0.19 

Table D4: Contributions from ρ5 (Cρ5) and NDSI (CNDSI) to the estimated uncertainty of SIC (σSIC) and σSIC for varying SIC sub-

range. 775 
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