

Integrating Point Sources to Map Anthropogenic Atmospheric Mercury Emissions in China, 1978–2021

3 Yuying Cui^{1,2}, Qingru Wu^{1,2*}, Shuxiao Wang^{1,2}, Kaiyun Liu³, Shengyue Li^{1,2}, Zhezhe Shi^{1,2}, Daiwei

4 Ouyang^{1,2}, Zhongyan Li⁴, Qinqin Chen^{1,2}, Changwei Lü^{5,6}, Fei Xie^{5,6}, Yi Tang⁷, Yan Wang⁸, Jiming
5 Hao^{1,2}

⁶ ¹State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University,
 7 Beijing 100084, China

- 8 ²State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
- 9 ³College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
- 10 ⁴Weiyang College, Tsinghua University, Beijing 100084, China
- 11 ⁵School of Ecology and Environment, Inner Mongolia University, 010021, Hohhot, China
- 12 ⁶Institute of Environmental Geology, Inner Mongolia University, 010021, Hohhot, China
- ⁷State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,
 100012, Beijing, China
- 15 ⁸College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
- 16
- 17 *Correspondence to*: Qingru Wu (qrwu@tsinghua.edu.cn)

18 Abstract. Mercury emissions from human activities persist in the environment, posing risks to humans and ecosystem, and 19 are regulated by the Minamata Convention. Understanding the historical emissions of mercury is critical for explaining the 20 presence of mercury in the environment. In recent years, some studies have looked at the historical trends of atmospheric emission inventory. The spatial resolution of inventories for relatively recent years have improved. However, limited 21 22 inventories have combined both long time scales and high spatial resolution, which is essential for evaluating the legacy 23 impacts of anthropogenic mercury emissions, particularly in regions with high levels of mercury emissions. Here we compile a new comprehensive point source database by fusing multiple data source, and integrate it with previous China Atmospheric 24 Mercury Emission Model to create an annual point source and gridded emission inventory for China covering 1978-2021. 25 26 Integrating point source emission inventory (P-CAME) improves the accuracy of the gridded emissions, reducing the normalized mean error for all grids by 108% compared to not using point sources in the most recent year of 2021. The improved 27 28 gridded emissions inventory notably enhances the simulation of atmospheric mercury concentrations, particularly in urban 29 areas. P-CAME inventory resulted in a 20-23% reduction in the normalized mean bias. The improved gridded emission data identifies potential polluted grids characterized by high cumulative emissions. It indicates that 20% of cumulative emissions 30 31 originate from just 0.3% of the grids, primarily distributed in Gansu, Yunnan, and Hunan Provinces. These areas are 32 predominantly dominated by non-ferrous metal smelters or a mix of emissions sources including coal-fired industries and 33 cement production. With the improvements in simulation accuracy and the identification of highly polluted regions, this

- 34 updated inventory would greatly facilitate the assessment of mercury exposure, legacy impacts, and effective management of
- 35 cross-media mercury pollution.

36 Keywords

37 Speciated mercury; Emission inventory; Mercury concentration; GEOS-Chem; Cumulative emissions.

38 1 Introduction

39 Mercury is a persistent environmental pollutant that is harmful to the nervous systems and can affect health across generations. 40 Human activities have liberated mercury from stable long-lived reservoirs, mainly geologic deposits and coal, to the Earth's 41 surface, leading to 3-5 fold increase in mercury content in the land, atmosphere, and oceans since the industrial revolution 42 (Streets et al., 2011; Corbitt et al., 2011; Selin, 2009; Selin et al., 2008). The increased load of mercury in the environment poses significantly risks to human health and ecosystem worldwide (Selin, 2009; Bishop et al., 2020; Amos et al., 2013; Li et 43 44 al., 2022; Meng et al., 2011; Giang and Selin, 2016; Smith-Downey et al., 2010), promoting the establishment of the Minamata 45 Convention on Mercury in 2013, a legally binding international treaty aimed at regulating mercury use and emissions in human 46 activities. In accordance with the convention's regulation, the fifth Conference of the Parties had formally initiated the first 47 effectiveness evaluation of the Convention at the end of 2023. Updated historical mercury emissions, with both temporal 48 continuity and spatial precision, are critical and urgent to understand the changing trajectory and present state of mercury 49 pollution and to evaluate the effectiveness of pollution control efforts.

50 Amidst a wide array of studies, three main global emission inventories stand out for their comprehensiveness: those established by Streets (Streets et al., 2011; Streets et al., 2019), EDGAR (Muntean et al., 2018; Muntean et al., 2014), and AMAP/UNEP 51 52 (AMAP/UNEP, 2013, 2019). Nonetheless, discrepancies existed among these inventories in terms of emission quantities, 53 species profiles, temporal trends and spatial precisions. Particularly, China has garnered great attention due to its substantial emission levels, complex source profiles, and swift advancement of control technologies. These factors collectively pose 54 55 challenges to precisely estimate atmospheric mercury emissions in China. Prior researches have reduced the uncertainty of emission factors through extensive field experiments in China, culminating in the development of regional, sectoral, and 56 national emission inventories in specific years (Wu et al., 2006; Tian et al., 2010; Tian et al., 2015; Zhang et al., 2015; Zhao 57 58 et al., 2015; Wu et al., 2016; Liu et al., 2019b; Zhang et al., 2023).

59 Among these, three notable decadal emission inventories have been developed (Tian et al., 2015; Wu et al., 2016; Zhang et al., 2023). Yet, variations in emission trends, particularly after 2010, were pronounced. Tian et al., (2015) neither provided long-60 term spatial characteristics nor species profiles, limiting the comprehensiveness of their inventory. Wu et al., (2016) presented 61 62 gridded emission data, but its reliance on population and GDP proxies introduced a notable degree of uncertainty regarding 63 spatial accuracy. Zhang et al., (2023) took a step forward by aligning emissions from several critical sectors with point-source 64 locations; however, detailed gridded emissions were made available only for 2010, 2015, and 2020. These inventories underscore a persistent gap in fine-resolution gridded and speciated mercury emission data in China, which is essential for 65 evaluating the present state of mercury pollution and supporting effective regulatory actions. 66

Here we introduce a novel, speciated annual mercury emission inventories spanning from 1978 to 2021, derived from the
Point-source Integrated China Atmospheric Mercury Emission Model, herein referred to as P-CAME inventories. This updated

69 inventory opens avenues for enhancing our comprehension of atmospheric mercury pollution. Crucially, our inventory's 70 accurate, annual, high-resolution emission maps can identify cumulative emission hotspots, and highlight areas of potential 71 multi-media environmental impacts. This inventory is publicly accessible and maintains temporal and spatial consistency with 72 detailed information; therefore, it lays a solid foundation for discussions on anthropogenic emissions, atmospheric pollution 73 and health implications. Furthermore, it is poised to offer robust support for the inaugural evaluation of the effectiveness of 74 the Minamata Convention.

75 2 Methods

76 2.1 P-CAME Emission inventory

77 This study coupled the China Atmospheric Mercury Emission Model (Zhang et al., 2015; Wu et al., 2016) with the point source 78 database to generate the P-CAME emission inventory. The studied 24 sectors (Table S1) were divided into 3 categories (Tier 79 1-3). Tier 1 was the point source emission category, including coal-fired power plant (CFPP), zinc smelting (Zn), leading 80 smelting (Pb), copper smelting (Cu), cement production (CEM), iron and steel production (ISP), Coal-fired industrial boilers 81 (CFIB), Municipal solid waste incineration (MSWI), Large scale golden production (LSGP). Emissions in Tier1 were computed using facility-level activity and dynamic technology-based emission factors (Equation S1). Emissions from other 82 83 sectors were calculated using provincial activity data combined with probabilistic technology-based emission factors (Tier2, 84 Equation S2) or time-varying emission factors (Tier3, Equation S3). To acquire gridded emissions for sectors in Tier 2 and Tier 3, source-specific spatial proxies (Table S1) were used to allocate provincial area sources to grids at a resolution of 85 $0.25^{\circ} \times 0.3125^{\circ}$. Emissions from each point source were assigned to the grid corresponding to their geographical coordinates 86 and combined with nonpoint source data to create comprehensive emission maps at a resolution of $0.25^{\circ} \times 0.3125^{\circ}$ for total 87 mercury (Hg^T) and each mercury species, namely gaseous elemental mercury (Hg⁰), gaseous oxidized mercury (Hg^{II}), and 88 89 particulate-bound mercury (Hg_P). The new inventories, encompassing speciated mercury emissions from point sources, 90 nonpoint sources, were named as P-CAME. Annual emission inventories for each mercury species during 1978-2021 are 91 available.

92 2.1.1 Point source emission model (Tier 1)

Annual facility-level activity was from point source database. Point source database combined point sources we could get from Environmental Statistics, Industry Associations, Pollution Source Censuses, yearbooks of various industry sectors and previous studies, as shown in Table S2. To construct the point source database, detailed data collected for each facility included corporate name, type of industry, capacity, types of raw materials or fuels, production or consumption levels, production or combustion processes, control technologies, and geographical information. Data from various sources were integrated based on the Unified Corporate Social Credit Code unique to each enterprise. Missing information of point sources in the database

were addressed using data retrieval or assimilation methods. The Baidu Map System (http://jingweidu.757dy.com/) and 99 Qichacha website (https://www.qcc.com/) were used to fill in missing coordinates and operational years, respectively. For 100 101 2013-2021, we acquired point sources activity for each year and validated and adjusted the activity by comparing it with 102 provincial activity from the yearbook. For earlier years, where varying activity were more difficult to obtain, we used point source data from the best-validated year and time-varying provincial activity to estimate point source activity for the period 103 104 1978-2012. Specifically, for the annual activity, we first extracted data of operating facilities in the current year based on their 105 operational years. Then, the activity was obtained by multiplying the provincial activity in that year by the proportion of the point source activity in the province. Dynamic technology-based emission factors for point sources were derived from 106 107 provincial mercury concentrations in fuel or raw materials, combustion or production technology release rates, air pollution control device (APCDs) removal efficiencies, and speciation profiles (Equation S1). Raw mercury concentrations in fuel or 108 109 raw materials were obtained from our previous studies (Zhang et al., 2012; Wu et al., 2012; Liu et al., 2018). Release rates and mercury removal efficiency were from field experiments (Zhang et al., 2016; Zhang, 2012; Chang and Ghorishi, 2003; Omine 110 et al., 2012). The removal efficiencies and speciation profiles for APCDs were detailed in Table S3. 111

112 2.1.2 Probabilistic technology-based emission model (Tier 2)

113 Annual provincial activity for sectors in Tier 2 were obtained from statistical yearbooks (Table S2). Probabilistic technology-114 based emission factors were calculated by the provincial mercury concentration in fuel or raw materials, the release rate associated with combustion or production technology, the removal efficiency of air pollution control devices (APCDs), the 115 116 proportion of mercury species (Equation S2). Raw mercury concentration data in fuel or raw materials were sourced from our 117 previous studies (Zhang et al., 2012; Wu et al., 2012; Liu et al., 2018; Liu et al., 2019b). The release rate was determined based on the specifications outlined in the preceding section for coal-fired sectors. The release rates and mercury removal efficiency 118 119 were from field experiments (Zhang et al., 2016; Zhang, 2012; Chang and Ghorishi, 2003; Omine et al., 2012). The removal 120 efficiency and the proportion of speciated mercury in different APCDs combinations was derived from our previous studies (Liu et al., 2019b; Zhang et al., 2023; Wu et al., 2016). 121

122 2.1.3 Time-varying emission model (Tier 3)

Annual provincial activity for sectors in Tier 3 were obtained from statistical yearbooks, Chinese environmental statistics, and investigation reports (Table S2). The emission factors for Tier 3 sectors dynamically changed with technology iterations, assuming that emission factors fit a transformed normal distribution due to the dynamics of technology change (Tian et al., 2015; Streets et al., 2011). The emission factor for a specific year was calculated using the emission factor at the beginning year of technology transition (ef_a) and the best achievable emission factor (ef_b), as outlined in Equation S3. The parameters ef_a , ef_b , and the curve shape parameter S were derived from previous studies (Tian et al., 2015; Streets et al., 2011; Wu et al., 2016;

129 Wu et al., 2006; Zhang et al., 2015).

Provincial emissions from sectors in Tier 2 and Tier 3 were allocated to grids at a resolution of $0.25^{\circ} \times 0.3125^{\circ}$ using a newly 130 131 developed spatial allocation system, as detailed in Table S1. This allocation relied on proxies such as GDP, population data, 132 and a roadmap dataset. Provincial non-point sources were first allocated to the city level based on GDP and then further 133 distributed to the grid level using either population or road network datasets, as specified in Equation S4. City-level GDP data were extracted from statistical yearbooks, with the GDPs of primary, secondary, and tertiary industries utilized for various 134 sectors, as detailed in Table S1. Population data at the grid level were obtained from the resource and environmental science 135 136 data registration and publication system (Xu, 2017). While population data were available for select years (1990, 1995, 2000, 2005, 2010, 2015, and 2019), data for intermediate years were interpolated. Specifically, data for the years 1978-1989 were 137 138 estimated based on available data and observed trends during the period of 1990-2000. Road network data utilized in this study 139 were sourced from OpenStreetMap (https://www.openstreetmap.org/). The widths of various route types in the road network 140 were determined based on classifications provided in the Interim Provisions on Urban Planning Quota Index (MOHURD, 1980). These routes were then converted into areas and subdivided into grids. The gridded routes served as a proxy for the 141 142 spatial distribution of atmospheric mercury emissions from the transportation sector. To develop this long-term anthropogenic 143 mercury emission dataset, software tools such as ArcGIS and Matlab were employed.

144 2.2 Uncertainty analysis

Monte Carlo simulation assessed mercury emission uncertainty using key parameters and their probability distributions. Parameters included activities, mercury concentrations in fuel/raw materials, and mercury removal efficiencies of APCDs. Activities were normally distributed with variation coefficients of 5%-30% (Liu et al., 2019a). Mercury concentrations followed a log-normal distribution and mercury removal efficiencies followed normal or Weibull distributions, which were generated based on field experiments (Zhang et al., 2012; Wu et al., 2012; Liu et al., 2018; Zhang et al., 2016; Zhang, 2012; Chang and Ghorishi, 2003; Omine et al., 2012). MATLAB conducted 10,000 Monte Carlo simulations. Mean values served as best estimates, with 2.5% and 97.5% quantiles establishing lower and upper limits of simulation results.

152 2.3 Simulation and validation comparison

153 To assess the impacts of the point source inventory, we designed two simulation scenarios with different anthropogenic 154 emissions inputs: one using P-CAME and the other relying solely on proxies for emission allocation, referred to as "only 155 proxy-based" thereafter. In the only proxy-based inventory, original point source sectors were initially calculated at the provincial level and then distributed to grids based on secondary GDP and population. Then we compared the simulations 156 from both scenarios with observations of atmospheric mercury concentrations. Observation data in 6 sites including 3 urban 157 observation sites and 3 rural observation sites (Sun et al., 2024; Wu et al., 2023; Shao et al., 2022) were collected in this study, 158 as detailed in Table S4. Atmospheric mercury concentrations were simulated using a global 3-D atmospheric chemistry model 159 160 (GEOS-Chem, v12.6.3, http://geos-chem.org) at a resolution of 0.25°×0.3125°. Considering the availability of observational

data, we ran nested simulation in China at 2021, with a three-year spin-up (2018-2020) was conducted for initialization. Meteorological data were driven by GEOS Forward Processing meteorological data (GEOS-FP). Boundary conditions were obtained from global simulations at a resolution of $2.0^{\circ} \times 2.5^{\circ}$. In addition to our anthropogenic emissions inventory, emissions data included natural emissions from geogenic activities, biomass burning, soil, and ocean, as configured in GEOS-Chem based on the methodology outlined by Selin et al., (2008).

166 **3 Results**

167 3.1 Spatial distribution pattern of atmospheric mercury emissions

This study developed an extensive point source database covering the period from 1978 to 2021. For instance, in the most 168 recent year of 2021, the inventory includes over 26,000 industrial facilities. Atmospheric mercury emissions in 2021 were 169 estimated to be 358 t, with Hg⁰, Hg^{II}, and Hg_P accounting for 55%, 43%, and 2%, respectively. The point source emissions 170 171 accounted for over 85% in 2021. The point sources were unevenly distributed, primarily concentrated in East and South China (Fig. 1). Their emissions exhibited a broad spectrum of orders of magnitude, with 90% of the total emissions budget being 172 dominated by only the top one third large point sources (Fig. 1). Among the top one third large point sources, 68% were cement 173 production (CEM) facilities, widely distributed in North China, East China, South China, Central China and Southwest China 174 as indicated by P-CAME. 175

176

177

Figure 1 Spatial distribution of point source emissions at 2021.

The integration of point sources in the P-CAME inventories improved the accuracy of the located gridded emissions, compared to the only proxy-based inventory (Fig. 2a & b). To quantify these differences, the normalized mean bias (NMB, Equation S1) and the normalized mean error (NME, Equation S2) were employed. The calculated NMB and NME for all grids stood at 1%

181 and 108%, respectively. The low NMB alongside the high NME indicated a pronounced discrepancy between P-CAME inventories and the only proxy-based inventory, primarily due to misalignment in grids with high and low emissions. Overall, 182 183 proxy method tented to overestimate emissions in densely populated areas, notably in capital cities such as Lanzhou, Xi'an, 184 Kunming, Guizhou and Guangdong, while significantly underestimated emissions in industrial clusters like Jiaozuo, Baoji, 185 Handan, Tangshan and Chenzhou (Fig. 2c). At a more granular grid scale, discrepancies included both overestimations and 186 underestimations. For example, in Handan's grids, emissions using proxy method were overestimated in the eastern parts and 187 underestimated in the west, contributing to the substantial NME value (108%). This illustrated that the emission using the 188 proxy method inaccurately distributed emissions not just between cities but also within individual city grids, causing significant 189 variations.

190

Figure 2 Comparison of spatial distribution between (a) P-CAME and (b) the only proxy-based inventory; (c) absolute difference
 of these two distributions.

193 **3.2 Temporal trends of annual emissions**

194 The analysis of long-term point source emissions enabled a reassessment of historical mercury emission trends and sector 195 contributions from 1978 to 2021. The overall trend showcased an initial rise in emissions, peaking in 580 t, following which 196 the emissions declined. This trend reflecting substantial shifts across key sectors such as coal-fired power plants (CFPP), non-197 ferrous metal smelting (NFMS), CEM, and coal-fired industrial boilers (CFIB) (Fig. 3a). By 1990, emissions nearly doubled 198 from 1978, reaching 267 t, with an average annual rising rate of 5% and CFIB, NFMS, and CFPP being the primary sources. 199 The NFMS emissions peaked in 2004, following which the emissions declined, while the CEM emissions rose faster, and 200 CEM becoming the second-largest contributor by 2010. The decade ending in 2010 saw emissions reaching 555 t, with an 201 average growth rate of 4%, despite a brief period of reduction due to drops in the CFPP and NFMS emissions. The following decade highlighted a general decline in emissions from NFMS, CFIB, and CFPP, but the CEM emissions were still increasing, 202 203 making it the largest contributor to the total emissions since 2011. It was until 2021 that a slight increase in total emissions 204 was noted, driven mainly by rises in municipal solid waste incineration (MSWI) and the CEM emissions.

205

Figure 3 Annual anthropogenic mercury emissions and comparison with other emission inventories. (a) Hg^T; (b) Hg⁰; (c) Hg^{II}; (d)
 Hg_P.

In line with the trend observed in total mercury emissions, annual speciated mercury emissions also followed a pattern of initial 208 increase followed by a decline. Specifically, annual Hg⁰ emissions rose from 87 t to 302 t during the period of 1978-2011, 209 subsequently decreasing to 195 t by 2021 (Fig. 3b). Notably, three peaks occurred during the increasing phase of Hg⁰ emissions: 210 211 the first peak in 1997 due to battery production emissions, the second peak in 2007 resulting from reduced activity levels and enhanced SO₂ control in CFPP, and the third peak in 2011 due to enhanced NO_x control in CFPP. Annual Hg^{II} emissions 212 213 increased from 41 t to 266 t during 1978-2011, followed by a decline to 155 t by 2021 (Fig. 3c). During the increasing phase of Hg^{II} emissions, two peaks occurred: the first peak in 2007 was attributed to a rapid decline in NFMS and CFPP emissions 214 215 during 2007-2009, while the second peak in 2011 was caused by a peak in continuous CEM emissions. Annual Hg_P emissions 216 rose from 17 t to 29 t during 1978-1997, then decreased to 8 t by 2021 (Fig. 3d), with the peak occurring in 1997 mainly 217 dominated by emissions in CFIB.

Overall, mercury emissions in China have experienced three distinct phases: an increase from 1978 to 2007, stabilization from 2008 to 2012, and a decrease from 2013 onwards. These phases reflect varying emission and control characteristics. The first 2008 to 2012, and a decrease from 2013 onwards. These phases reflect varying emission and control characteristics. The first 2019 phase (1978-2007) was marked by rapid growth in activity levels, leading to a significant increase and peak in emissions. The 2011 second phase (2008-2012) saw the combined effects of continued growth in activity levels and the implementation of emission 2012 controls, resulting in relatively stable changes. The third phase (2013-2021) was characterized by a reduction in emissions 2013 driven by more stringent emission controls. These three phases were also clearly delineated in the patterns of gridded emissions 2014 depicted across three rows in Fig. S1. During the first period, there was an average 5% increase in annual emissions,

225 particularly noticeable in the border areas of North China, Central China, and the Yangtze River Delta (first row of Fig. S1).

Throughout the second period (2008-2012), the emissions remained relatively unchanged, with an average 0.5% increase in annual emissions (second row of Fig. S1). In the subsequent third period (2013-2021), a noticeable reduction with an average 5% decrease in annual emissions was observed, particularly in area increased during the growth period (third row of Fig. S1).

229 **3.3** Comparison with previous emissions inventories

The P-CAME emission inventory was evaluated against prior long-term inventories in China, demonstrating good alignment 230 with our earlier findings reported by Wu et al., (2016) and closely matching the estimates by Tian et al., (2015) until 1995 (Fig. 231 232 3a). A detailed sectoral comparison (Fig. S2) revealed that the congruence with Tian et al., (2015) was somewhat coincidental. This study reported lower emissions from the NFMS and intentional mercury use, but higher emissions from mercury 233 production than Tian et al., (2015) before 1995. Post-1995, the primary discrepancies with prior studies stemmed from the 234 235 zinc, lead, copper sectors, and the CFPP. Differences with the Zhang et al., (2023) study was in two periods-before and after 1998—based on total mercury emissions (Fig. 3a). Before 1998, our study reported lower emissions, mainly attributed to a 236 reduced estimate from the CFIB by approximately 40 t. A higher reported utilization of air pollution control devices (APCDs) 237 238 accounted for the underestimation. After 1998, our study reported higher emissions, particularly in the CEM and NFMS sectors, 239 attributed to differences in mercury concentration in fuels or raw materials and the application of APCDs. The uncertainty of 240 P-CAME emission inventory was subjected to (-16.1%, 15.9%) in 2021, but reached (-21.8%, 21.5%) in 1978 due to the higher uncertainty of parameters after data fusion (Fig. S3). The uncertainty ranges were among the lowest reported in existing studies 241 242 (Wu et al., 2016; Liu et al., 2019b; Zhang et al., 2023).

243 4 Discussions

244 4.1 Impacts on the simulation of atmospheric mercury concentrations

245 Comparisons between both simulation scenarios and observations were shown in Fig. 4. For each site, we compared monthly 246 average concentrations and evaluated them using NME and NMB, as shown in Table S4. Our findings indicated that P-CAME 247 inventory significantly enhanced GEM simulation in urban areas when compared to non-point source layers. For instance, at 248 the observation site in Hohhot, simulations incorporating point sources resulted in a 23% reduction in both NMB and NME when compared to simulations without point sources (Fig. 4 & Table S4). At the Nanjing site, NMB and NME decreased by 249 20% and 15%, respectively (Fig. 4 & Table S4). However, the calibration results from the three rural observation stations 250 revealed no significant difference in NMB and MNE between simulations with and without point sources (Fig. 4 & Table S4). 251 252 The improved calibration of urban stations was primarily attributed to the use of point source emissions, which enables more 253 accurate localization of emissions sources. This approach mitigated the issue of overestimation of emissions in urban areas

due to high population density in emission allocation using the proxy method.

255

257 4.2 Identifying cumulative emission hotspots

258 Atmospheric mercury emissions can affect human health through air inhalation; however, their deposition on surfaces and prolonged retention pose even greater risks by causing cross-media impacts and persistent threats. The continuous, high-259 resolution, and spatially detailed P-CAME inventories enable the identification of hotspots for cumulative atmospheric 260 mercury emissions since 1978, marking the start of China's economic expansion with its reform and opening-up policy. Over 261 this period, total mercury emissions reached 16,422 t, with Hg⁰ accounting for 9,074 tons (55.3%), Hg^{II} for 6,478 t (39.4%), 262 and Hg_P for 869 t (5.3%). The cumulative emissions map, as depicted in Fig. 5a, identifies critical hotspots that, despite 263 264 covering only 0.3% of the grids, contributed to 20% of the total emissions. These hotspots, where cumulative emissions exceeded 44 t (averaging more than 1 t annually), were chiefly found in Gansu, Yunnan, and Hunan Provinces. Emission 265 266 sources within these hotspots fall into two primary categories based on sectoral contributions: those predominantly influenced 267 by NFMS and those influenced by sectors other than NFMS, as shown in Fig.5b. Grids dominated by NFMS represented 76% of the areas with high cumulative emissions, where NFMS's contributions averaged 96%. These areas also exhibited a 268 significant presence of HgII and HgP, averaging 51%, as indicated in Fig. 5c. Conversely, grids primarily affected by other 269 sectors-such as CFPP, CFIB, CEM, Iron and steel production (ISP)-were located in Hebei, Henan, Hubei, Jiangsu, and 270 271 Shanghai. The sectoral contribution to the hotspots of cumulative emissions indicated that grids with NFMS tends to cause severe cross-media mercury pollution due to their high emission intensity and Hg^{II} proportion. 272

273

Figure 5 Spatial distribution of cumulative mercury emissions. (a) Total mercury emissions; (b) Sectors contribution for total
 mercury emissions in hotspots; (c) Speciation profiles in hotspots.

To further inform future pollution control strategies, we analyzed the atmospheric mercury emission hotspots for 2021, defined 276 by emissions exceeding 1 t. Remarkably, half of the hotspots identified in 2021 coincided with those identified through 277 278 cumulative emission analyses (Fig. S5). These overlapping hotspots were predominantly found in Gansu, Shaanxi, Henan, and Hebei provinces. In detail, Gansu and Shaanxi's hotspots were mainly attributed to emissions from NFMS, whereas Henan and 279 280 Hebei's hotspots were largely due to emissions from the CEM. These areas warrant heightened focus, as addressing pollution 281 here involved not only mitigating the impact of historical emissions but also urgently implementing controls on current 282 emissions to prevent further environmental degradation. Moreover, new hotspots emerging in 2021 that did not coincide with historical cumulative emission hotspots were primarily located in Hebei, Henan, and Anhui Provinces (Fig. S5), with CEM 283 emissions contributing an average of 82% to these areas. While grids in Yunnan, Hunan, and Guangxi Provinces had high 284 285 cumulative emissions, their 2021 emissions did not reach similar levels. Therefore, it is clear that future efforts in pollution 286 prevention and control should prioritize areas with both significant cumulative emissions and high recent emissions, especially those impacted predominantly by cement industry activities. This focused approach is essential to simultaneously tackle the 287 challenges of accumulated historical pollution and prevent the exacerbation of current emission levels, ensuring targeted and 288 289 effective pollution control measures.

290 **5 Data availability**

Integrating point source emission inventory (P-CAME) can be accessed from <u>http://doi.org/10.6084/m9.figshare.26076907</u>
(Cui et al., 2024).

293 6 Conclusions and implications

In this study, we introduce an annual speciated mercury emission inventories (1978-2021), P-CAME inventory. By using this 294 295 novel inventory, the modelled bias of mercury concentrations in urban sites were significantly reduced, which will significantly 296 improve the understanding of mercury cycling, and thus facilitate the assessment of potential health impacts resulting from 297 exposure to mercury in the environment. Crucially, our inventory's accurate, annual, high-resolution emission maps can 298 identify cumulative emission hotspots. The identification of hotspots where cumulative mercury emissions are exceptionally 299 high suggests that targeted pollution control measures could be highly effective. By focusing on these critical areas, which 300 contribute disproportionately to total emissions despite covering a small fraction of the land area, policymakers can allocate 301 resources more efficiently and achieve significant reductions in overall mercury pollution. The substantial presence of Hg^{II} 302 and Hgp in areas dominated by NFMS and CEM points to the potential for severe cross-media mercury pollution. This form 303 of pollution affects not only the air but also water bodies and soils, leading to broader environmental degradation and health 304 risks. Strategies to mitigate mercury emissions areas such as Gansu, Shaanxi, and Hunan Provinces must therefore consider 305 the cross-media implications of mercury pollution.

306 This publicly accessible inventory, characterized by its temporal and spatial consistency and detailed emission information, 307 provides a critical foundation for nuanced discussions on anthropogenic emissions, atmospheric pollution, and their implications for human health and environmental integrity. The comprehensive nature of the data allows for a deep dive into 308 309 the sources, distribution, and trends of mercury emissions, facilitating a better understanding of the global mercury cycle and identifying key areas for intervention. Moreover, the inventory's robustness and reliability are instrumental in supporting the 310 initial evaluation of the Minamata Convention's effectiveness. As the first global treaty aimed at protecting human health and 311 312 the environment from anthropogenic emissions and releases of mercury and mercury compounds, the Convention's success hinges on accurate and comprehensive data. The inventory not only aids in assessing progress towards the Convention's 313 314 objectives but also highlights areas where further efforts are needed. By providing a solid empirical basis, it enables policymakers, researchers, and environmental advocates to craft more targeted and effective strategies for reducing mercury 315 316 emissions, ultimately contributing to the global endeavour to mitigate atmospheric pollution and safeguard public health.

317 Owing to constraints in data availability, this study limited its scope to reviewing anthropogenic mercury emissions in China 318 from 1978 onwards, with an incomplete point source coverage. To improve percentage of point sources emissions, future 319 research can incorporate data such as satellite images and visual identity to enhance the accuracy of identification of industrial 320 point sources, thereby refining the inventory of industrial emissions. Additionally, more studies should be conducted across 321 multiple dimensions, including time, space, and emission impacts, potentially incorporating machine learning techniques and 322 AI techniques to expand the temporal and spatial scope of anthropogenic emissions analysis. Those innovative methods could 323 facilitate investigation and assessment of the long-term environmental implications of historical anthropogenic mercury 324 emissions.

325 Author contributions

- 326 Y.C. established the emission inventories and wrote the draft. Q.W. supervised the study, helped conduct data analysis, and
- wrote and edited the manuscript. S.W. helped conceive the idea for this article and edited the manuscript. K.L., S.L., Z.S., D.O.,
 Z.L. helped to collect and provided basic data for calculation. Q.C. polished the draft. C.L., F.X., Y.T., Y.W. provided GEM
- 329 concentration data for validation. J.H. helped conceive the idea for this article. All the co-authors revised the manuscript.

330 Competing interests

331 The authors declare that they have no conflict of interest.

332 Disclaimer

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps andinstitutional affiliations.

335 Acknowledgements

- 336 We express our gratitude to the authors of the articles for providing the observation data utilized in this article. And we extend
- 337 our gratitude to numerous staff members at the Environmental Protection Key Laboratory of Sources and Control of Air
- 338 Pollution Complex for their invaluable contributions to supplementing the data on point sources.

339 Financial support

- 340 This work was supported by the National Natural Science Foundation of China (No. 2222604, No. 42394094), and National
- 341 Key Research and Development Program (No. 2022YFC3700602).

342 References

- 343 AMAP/UNEP: AMAP/UNEP geospatially distributed mercury emissions dataset 2010v1 [dataset], 2013.
- 344 AMAP/UNEP Technical Background Report to the Global Mercury Assessment 2018, Geneva, Switzerland, 2019.
- Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy impacts of all-time anthropogenic emissions on the global mercury cycle, Global Biogeochemical Cycles, 27, 410-421, <u>https://doi.org/10.1002/gbc.20040</u>, 2013.
- 347 Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and
- 348 Zhu, W.: Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling, Science of The Total
- 349 Environment, 721, 137647, <u>https://doi.org/10.1016/j.scitotenv.2020.137647</u>, 2020.

- Chang, J. C. S. and Ghorishi, S. B.: Simulation and Evaluation of Elemental Mercury Concentration Increase in Flue Gas Across a Wet
 Scrubber, Environmental Science & Technology, 37, 5763-5766, 10.1021/es034352s, 2003.
- 352 Corbitt, E. S., Jacob, D. J., Holmes, C. D., Streets, D. G., and Sunderland, E. M.: Global Source-Receptor Relationships for Mercury
- 353 Deposition Under Present-Day and 2050 Emissions Scenarios, Environmental Science & Technology, 45, 10477-10484, 10.1021/es202496y,
- 354 2011.
- Cui, Y., Wu, Q., Wang, S., Liu, K., Li, S., Shi, Z., Ouyang, D., Li, Z., CHen, Q., Lv, C., Xie, F., Tang, Y., Wang, Y., and Hao, J.: Integrating
 Point Sources to Map Anthropogenic Atmospheric Mercury Emissions in China, 1978–2021 [dataset], 10.6084/m9.figshare.26076907.v1,
 2024.
- Giang, A. and Selin, N. E.: Benefits of mercury controls for the United States, Proceedings of the National Academy of Sciences of the
 United States of America, 113, 286-291, 10.1073/pnas.1514395113, 2016.
- Latitude and longitude query positioning: http://jingweidu.757dy.com/, last access: 30 Octorber 2023.
- Li, Y., Chen, L., Liang, S., Zhou, H., Liu, Y.-R., Zhong, H., and Yang, Z.: Looping Mercury Cycle in Global Environmental–Economic
 System Modeling, Environmental Science & Technology, 56, 2861-2879, 10.1021/acs.est.1c03936, 2022.
- Liu, K., Wang, S., Wu, Q., Wang, L., Ma, Q., Zhang, L., Li, G., Tian, H., Duan, L., and Hao, J.: A Highly Resolved Mercury Emission
 Inventory of Chinese Coal-Fired Power Plants, Environmental Science & Technology, 52, 2400-2408, 10.1021/acs.est.7b06209, 2018.
- Liu, K., Wu, Q., Wang, L., Wang, S., Liu, T., Ding, D., Tang, Y., Li, G., Tian, H., and Duan, L.: Measure-Specific Effectiveness of Air
 Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013-2017, Environmental Science & Technology,
 53, 8938-8946, 2019a.
- Liu, K., Wu, Q., Wang, L., Wang, S., Liu, T., Ding, D., Tang, Y., Li, G., Tian, H., Duan, L., Wang, X., Fu, X., Feng, X., and Hao, J.:
 Measure-Specific Effectiveness of Air Pollution Control on China's Atmospheric Mercury Concentration and Deposition during 2013–2017,
 Environmental Science & Technology, 53, 8938-8946, 10.1021/acs.est.9b02428, 2019b.
- Meng, B., Feng, X., Qiu, G., Liang, P., Li, P., Chen, C., and Shang, L.: The process of methylmercury accumulation in rice (Oryza sativa
 L.), Environmental Science & Technology, 45, 2711-2717, 2011.
- MOHURD (Ministry of Housing and Urban-Rural Development of the People's Republic of China): Interim Provisions on Urban Planning
 Quota Index, 1980.
- Muntean, M., Janssens-Maenhout, G., Song, S., Selin, N. E., Olivier, J. G. J., Guizzardi, D., Maas, R., and Dentener, F.: Trend analysis from
 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions, Science of The Total Environment, 494 495, 337-350, <u>https://doi.org/10.1016/j.scitotenv.2014.06.014</u>, 2014.
- Muntean, M., Janssens-Maenhout, G., Song, S., Giang, A., Selin, N. E., Zhong, H., Zhao, Y., Olivier, J. G. J., Guizzardi, D., Crippa, M.,
 Schaaf, E., and Dentener, F.: Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled
 global and regional wet deposition patterns, Atmospheric Environment, 184, 56-68, https://doi.org/10.1016/j.atmosenv.2018.04.017, 2018.
- 381 Omine, N., Romero, C. E., Kikkawa, H., Wu, S., and Eswaran, S.: Study of elemental mercury re-emission in a simulated wet scrubber, Fuel, 382 91, 93-101, https://doi.org/10.1016/j.fuel.2011.06.018, 2012.
- 383 OpenStreetMap: <u>https://www.openstreetmap.org/</u>, last access: 30 October 2023.
- 384 Qichacha: <u>https://www.qcc.com/</u>, last access: 30 October 2023.
- Selin, N. E.: Global Biogeochemical Cycling of Mercury: A Review, Annual Review of Environment and Resources, 34, 43-63,
 10.1146/annurev.environ.051308.084314, 2009.
- Selin, N. E., Jacob, D. J., Yantosca, R. M., Strode, S., Jaeglé, L., and Sunderland, E. M.: Global 3-D land-ocean-atmosphere model for
 mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochemical Cycles, 22,
 2008.
- 390 Shao, L., Wang, Y., Liu, X., Liu, R., Han, K., and Zhang, Y.: Temporal variation of gaseous elemental mercury in a northern coastal city in
- Shao, L., Walg, T., Eld, X., Eld, K., Hali, K., and Zhang, T.: Temporal variation of gaseous elemental inercury in a normeric coastarcity in
 China: Monsoon and COVID-19 lockdown effects, Atmospheric Pollution Research, 13, 101436, <u>https://doi.org/10.1016/j.apr.2022.101436</u>,
 2022.

- 393 Smith-Downey, N. V., Sunderland, E. M., and Jacob, D. J.: Anthropogenic impacts on global storage and emissions of mercury from 394 terrestrial soils: Insights from a new global model, Journal of Geophysical Research, 115, 10.1029/2009jg001124, 2010.
- Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., and Jacob, D. J.: All-Time Releases of Mercury to the Atmosphere from Human Activities, Environmental Science & Technology, 45, 10485-10491, 10.1021/es202765m, 2011.
- Streets, D. G., Horowitz, H. M., Lu, Z., Levin, L., Thackray, C. P., and Sunderland, E. M.: Global and regional trends in mercury emissions
 and concentrations, 2010-2015, ATMOSPHERIC ENVIRONMENT, 201, 417-427, 10.1016/j.atmosenv.2018.12.031, 2019.
- Sun, P., Song, Z., Qin, Y., Xu, Z., Zhang, Y., Zhong, S., and Yu, J.: Declines of gaseous element mercury concentrations at an urban site in eastern China caused by reductions of anthropogenic emission, Atmospheric Environment, 317, 10.1016/j.atmosenv.2023.120199, 2024.
- Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., and Hao, J. M.: Trend and characteristics of atmospheric emissions of
 Hg, As, and Se from coal combustion in China, 1980–2007, Atmos. Chem. Phys., 10, 11905-11919, 10.5194/acp-10-11905-2010, 2010.
- 403 Tian, H. Z., Zhu, C. Y., Gao, J. J., Cheng, K., Hao, J. M., Wang, K., Hua, S. B., Wang, Y., and Zhou, J. R.: Quantitative assessment of 404 atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and 405 control policies, Atmos. Chem. Phys., 15, 10127-10147, 10.5194/acp-15-10127-2015, 2015.
- Wu, Q., Wang, S., Li, G., Liang, S., Lin, C.-J., Wang, Y., Cai, S., Liu, K., and Hao, J.: Temporal Trend and Spatial Distribution of Speciated
 Atmospheric Mercury Emissions in China During 1978–2014, Environmental Science & Technology, 50, 13428-13435,
 10.1021/acs.est.6b04308, 2016.
- Wu, Q. R., Wang, S. X., Zhang, L., Song, J. X., Yang, H., and Meng, Y.: Update of mercury emissions from China's primary zinc, lead and
 copper smelters, 2000–2010, Atmos. Chem. Phys., 12, 11153-11163, 10.5194/acp-12-11153-2012, 2012.
- 411 Wu, X., Fu, X., Zhang, H., Tang, K., Wang, X., Zhang, H., Deng, Q., Zhang, L., Liu, K., Wu, Q., Wang, S., and Feng, X.: Changes in
- 412 Atmospheric Gaseous Elemental Mercury Concentrations and Isotopic Compositions at Mt. Changbai During 2015–2021 and Mt. Ailao
- During 2017–2021 in China, Journal of Geophysical Research: Atmospheres, 128, e2022JD037749, https://doi.org/10.1029/2022JD037749,
 2023.
- Wu, Y., Wang, S., Streets, D. G., Hao, J., Chan, M., and Jiang, J.: Trends in Anthropogenic Mercury Emissions in China from 1995 to 2003,
 Environmental Science & Technology, 40, 5312-5318, 10.1021/es060406x, 2006.
- 417 Xu, X.: China population spatial distribution kilometer grid dataset. Resource and environmental science data registration and publication 418 system (http://www.resdc.cn/DOI) [dataset], 10.12078/2017121101, 2017.
- 419 Zhang, L.: Emission characteristics and synergistic control strategies of atmospheric mercury from coal combustion in China, School of 420 Environment, Tsinghua University, Beijing, 2012.
- Zhang, L., Wang, S., Meng, Y., and Hao, J.: Influence of Mercury and Chlorine Content of Coal on Mercury Emissions from Coal-Fired
 Power Plants in China, Environmental Science & Technology, 46, 6385-6392, 10.1021/es300286n, 2012.
- Zhang, L., Wang, S., Wu, Q., Wang, F., Lin, C. J., Zhang, L., Hui, M., Yang, M., Su, H., and Hao, J.: Mercury transformation and speciation
 in flue gases from anthropogenic emission sources: a critical review, Atmos. Chem. Phys., 16, 2417-2433, 10.5194/acp-16-2417-2016, 2016.
- Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H., Hao, J., and Liu, X.: Updated Emission Inventories
 for Speciated Atmospheric Mercury from Anthropogenic Sources in China, Environmental Science & Technology, 49, 3185-3194,
 10.1021/es504840m, 2015.
- Zhang, Y., Zhang, L., Cao, S., Liu, X., Jin, J., and Zhao, Y.: Improved Anthropogenic Mercury Emission Inventories for China from 1980
 to 2020: Toward More Accurate Effectiveness Evaluation for the Minamata Convention, Environmental Science & Technology, 57, 86608670, 10.1021/acs.est.3c01065, 2023.
- Zhao, Y., Zhong, H., Zhang, J., and Nielsen, C. P.: Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties
 of atmospheric mercury emissions, Atmos. Chem. Phys., 15, 4317-4337, 10.5194/acp-15-4317-2015, 2015.
- 433