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Abstract 24 

The world is facing an unprecedented loss of biodiversity, with nearly one million species on the 25 
brink of extinction, and the extinction rate accelerating. Conservation efforts are often hindered by 26 
insufficient information on crucial ecosystems. To address this issue, our paper leverages advances 27 
in machine-based pattern recognition to estimate species occurrence maps using georeferenced 28 
data from the Global Biodiversity Information Facility (GBIF). Our algorithms have generated 29 
maps for more than 600,000 species, including vertebrates, arthropods, mollusks, other animals, 30 
vascular plants, fungi, and other organisms. Validation involved comparing these maps with expert 31 
maps for mammals, ants, and vascular plants. We found a close similarity in global distribution 32 
patterns, with regional differences attributed to technical variations or necessary revisions in 33 
existing expert maps based on GBIF data. As a practical application, we identified the global 34 
distributions of approximately 68,000 species with small ranges (25 km x 25 km or less) confined 35 
to a single country. Our maps reveal a skewed international distribution of these species, 36 
identifying 30 countries where 78.2 percent are concentrated. These results highlight the need to 37 
integrate the newly mapped GBIF data into global conservation planning. Our algorithms support 38 
rapid updates and the creation of new maps as GBIF occurrence reports increase. The data are 39 
available on the World Bank Development Data Hub at https://doi.org/10.57966/h21e-vq42 40 
(Dasgupta et al. 2024). 41 

 42 
Keywords: Conservation planning, global biodiversity, species’ occurrence region, endemic and 43 
small-occurrence region, Kunming-Montreal Global Biodiversity Framework. 44 

 45 

500-character non-technical summary including space 46 

 47 
Short Summary 48 

This study leverages recent advances in machine-based pattern recognition to estimate occurrence 49 
maps for over 600,000 species, using georeferenced data from the Global Biodiversity Information 50 
Facility (GBIF). A pilot application for priority-setting identifies 30 nations that host nearly 80 51 
percent of threatened species with small ranges limited to a single country. The algorithms are 52 
designed for rapid map updates and estimating new maps as growth in GBIF species occurrence 53 
reports continues.  54 
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1. Introduction 61 

The world is losing biodiversity at an unprecedented rate. One million plant and animal species 62 
may be near extinction, and the pace of extinction is accelerating. According to Pimm et al. (2014), 63 
the species extinction rate is at least one thousand times the background rate. The Living Planet 64 
Index, which is an indicator of global biodiversity based on population trends for vertebrate species 65 
in terrestrial, freshwater, and marine habitats, provides corroborating evidence, showing a 69 66 
percent decline since 1970 (see https://www.livingplanetindex.org/). In response to such alarming 67 
indicators, 188 governments in the Convention on Biological Diversity (CBD) ratified the 68 
Kunming-Montreal Global Biodiversity Framework (GBF) at the fifteenth meeting of the CBD’s 69 
Conference of the Parties (COP 15) in December 2022. Among other measures, the GBF 70 
committed participants to protecting 30 percent of global biodiversity by 2030 (UNEP, 2022). 71 
Effectively implementing the GBF requires an understanding of (1) the spatial distribution of 72 
global biodiversity to be protected and (2) how protecting 30 percent of the planet can best 73 
conserve this biodiversity, taking the opportunity value of protected areas into account. 74 

Unfortunately, conservation efforts worldwide are often hindered by limited information on 75 
critical ecosystems and biodiversity. Comprehensive species coverage is significantly lacking; 76 
instead, the predominant focus is on vertebrates and vascular plants, neglecting crucial taxa like 77 
invertebrates and other major phyla. This gap creates a policy dilemma for meeting the 2030 GBF 78 
commitment of 30 percent global protection. If global biodiversity assessments are limited to 79 
previously mapped species, policy makers and the conservation community will effectively ignore 80 
the enormous population of other species whose occurrences are reported by the Global 81 
Biodiversity Information Facility (GBIF). In short, policymakers cannot automatically assume that 82 
previously mapped species adequately represent the larger population, a point further discussed by 83 
Kass et al. (2022) in the case of invertebrates. 84 

To help bridge the data gap, this study uses GBIF species occurrence records to revisit global 85 
biodiversity's spatial distribution. GBIF's reporting network has expanded over 15 years to include 86 
over 2 million species' occurrences, with a daily increase of about 1.3 million records in the last 87 
two years. Most of these records include locational coordinates, making it possible to estimate the 88 
spatial distribution of previously unmapped species, as well as improve estimates for those with 89 
existing maps. The algorithm that is presented and implemented in this study generates species 90 
maps directly from the GBIF occurrence data, updating the maps automatically as new occurrence 91 
data become available. Maps are generated for all species whose data satisfy our computational 92 
criteria (currently around 600,000 species). By overlaying the maps with a high-resolution grid, 93 
the view of global biodiversity is broadened from the traditional focus on vertebrate animals to 94 
encompass greater representation for invertebrates, other animals, plants, fungi, and other non-95 
animal and non-plant species. The maps are then used to develop new indicators of species 96 
endemism and identify species with small, vulnerable habitats. Traditionally, species are 97 
considered endemic if they reside 100% in one country; this study examines the effects of lowering 98 
this threshold to 95% and 90%. Additionally, since small-range status lacks a definitive minimum 99 
habitat size, the study explores different area sizes for species with limited occurrence regions. 100 
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The study’s approach should be viewed as complementary to previous biodiversity assessments 101 
and can benefit the policy process in several major ways. For existing mapped species, rapid 102 
updates using the study’s algorithm can help to identify cases where newly reported occurrences 103 
suggest alteration of map boundaries. For unmapped species, the approach can provide new 104 
information useful for global biodiversity assessments. In addition, the mapping exercise can yield 105 
valuable insights on the global distribution of endemic species and small-range species that are 106 
especially vulnerable to human encroachment.   107 

2. Data and methods  108 

2.1 Data source and tools 109 

Our data source is an international network funded by the world’s governments that provides open 110 
access to data about all types of life on Earth. Other international organizations with which the 111 
GBIF collaborates include the Catalogue of Life partnership, Biodiversity Information Standards, 112 
Consortium for the Barcode of Life (CBOL), Encyclopedia of Life (EOL), and GEOSS. The GBIF 113 
provides a continuously updated, open-source repository of geolocated, date-stamped reports of 114 
species occurrences from many institutions and nongovernmental organizations (NGOs) 115 
worldwide. These reports can be accessed directly from the GBIF’s Occurrence and Maps 116 
application programming interfaces (APIs) at https://www.gbif.org/developer/occurrence and 117 
https://www.gbif.org/developer/maps, respectively. Its georeferenced data for plants, animals, 118 
fungi, and microbes hold the potential for vastly expanding the species domain maps that provide 119 
a critical foundation for global conservation planning. Access to the GBIF’s full database is offered 120 
through Google’s BigQuery, Amazon Web Services (AWS), and other cloud-based services.   121 

In this study, we use BigQuery to download the full GBIF database due to its convenient dataset 122 
size reduction tools. We limit the GBIF occurrence data to geolocated reports since 1970 for 123 
species with at least five unique reporting locations, which our mapping algorithm requires. Since 124 
our mapping algorithm operates reliably on several thousand points at most, we cap the data at a 125 
maximum of 20,000 randomly selected reports per species to ensure reliability. This limit 126 
drastically reduces the size of the download dataset since some species have millions of occurrence 127 
records (e.g., the American robin [Turdus migratorius] currently has 21,258,907 reported 128 
occurrences). We accept the GBIF’s protocols for occurrence report admissibility. Detailed 129 
descriptions of the GBIF’s protocols and database elements can be found at 130 
https://www.gbif.org/data-quality-requirements-occurrences. 131 

 132 

2.2 Analysis 133 

The premise of our analysis is that species maps underpin spatial analyses of global biodiversity. 134 
In theory, if all species are treated equally, a map of global biodiversity could be created by (1) 135 
choosing the best available map for each species; (2) overlaying all chosen maps on a high-136 
resolution global grid; and (3) counting the total species incidence in each grid cell. In practice, 137 
however, global biodiversity analyses can modify species counting in several major ways. For 138 
example, species may be assigned weights, based on the branches they occupy in the “tree of life,” 139 
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which describes overall genetic variation in the global biome. Also, species weights for 140 
conservation priority-setting may vary, based on the species’ widely differing vulnerabilities to 141 
human encroachment. In addition, the distribution of a species may not be uniform in the spaces 142 
enclosed by its maps. If its spatial distribution density is known, its counting weight for each cell 143 
can be made proportional to its likelihood of occurrence in that cell. Abundant scientific literature 144 
offers examples of weighted species counting (e.g., Guo et al., 2022; Jenkins et al., 2015; Pimm et 145 
al., 2014; Veach et al., 2017); however, the requisite research may require detailed genetic and 146 
environmental data, as well as expert analysis of their roles in assigning counting weights. 147 
Inevitably, the intensive processes involved are time-consuming, requiring technical resources that 148 
are in short supply. As a result, a large gap has emerged between the population of species with 149 
GBIF occurrence records and that for which research-driven counting weights are available. 150 

The mapping algorithm utilized in this study is a by-product of recent advances in machine-based 151 
pattern recognition, cluster analysis, and image processing. In terms of computational geometry, 152 
it addresses the problem of efficient bounding of a spatial set, given a subset of actually observed 153 
points. Traditional algorithms that draw simple convex hulls poorly represent sets with irregular 154 
shapes as a polygon is considered convex if none of its corners bend inward and a convex hull is 155 
the smallest convex polygon that encloses all points in a set. In contrast, this study’s alphahull 156 
algorithm, developed by Pateiro-López and Rodríguez-Casal (2010), which is a function in the R 157 
programming language can construct continuous non-convex boundaries for efficient 158 
representation. This powerful feature has motivated alphahull’s rapid adoption for species range 159 
analysis (Guo et al., 2022; Kass et al., 2022). 160 

In our study, alphahull successfully estimates occurrence maps for 92.9 percent (567,464) of the 161 
610,694 species in our database. For each of the remaining 7.1 percent of species in the database, 162 
we employ a standard k-means algorithm to separate occurrence reports into spatial clusters and 163 
draw a convex hull around each. Our algorithms estimate occurrence maps for terrestrial, coastal, 164 
and marine species.  165 

 166 
2.3 Spatial selection bias 167 

We acknowledge that GBIF occurrence reports are often produced by voluntary exercises that do 168 
not utilize scientific sampling methods. As a result, spatial point densities in species occurrence 169 
reports are positively related to physical accessibility, population density, and income (Borgelt et 170 
al., 2022; Garcia-Rosello et al., 2023; Isaac and Pocock, 2015; Reddy and Dávalos, 2003). This 171 
means that (all else being equal) species sightings are more likely to occur in areas (1) near 172 
transport arteries; (2) with a greater number of inhabitants to identify species, and (3) where more 173 
inhabitants have enough disposable income to support species search and reporting costs.    174 

These factors complicate attempts to map species population densities from occurrence reports 175 
(e.g., Kass et al., 2022). Our alphahull and clustered convex hull estimators for boundaries differ 176 
because they focus on exterior points in spatial sets. Even so, accurate representation requires a 177 
critical minimum number of sightings in areas not advantaged by transport access, high population 178 
density, or sufficient disposable income. As the occurrence of sightings in non-advantaged areas 179 
increases, so does the accuracy of boundary estimation (Feeley and Smith, 2011). Given that the 180 
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GBIF occurrence inventory is growing by about 1.3 million new reports per day, one can expect 181 
that, over time, increased sightings will improve the boundary estimates for sparsely reported 182 
species. 183 

3. Results 184 

3.1 Pilot example 185 

To illustrate the results of our mapping algorithm exercise, we take the example of the species 186 
Lagidium viscacia (common name: Mountain Viscacha), whose range extends from areas in 187 
Argentina and Chile to Bolivia and Peru. In Fig. 1, a comparison of panels (a) and (b) shows that 188 
the reported sightings of this species include a few points beyond the northern boundary of the 189 
expert range map (Burgin et al., 2020a), along with many points beyond the southern boundary.  190 
Panel (c), which displays the output of our mapping algorithm, shows that the alphahull boundary 191 
follows the curvilinear north-south orientation of the point set, widening and narrowing as the 192 
point set expands and contracts. As shown, it overlaps heavily with the map of Burgin et al. 193 
(2020a), but extends its northern and southern boundary areas to incorporate these sightings.   194 

  195 
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 196 

Figure 1. Mapping exercise results for Lagidium viscacia (Mountain Viscacha), showing 197 
overlapping boundaries198 

(a) Expert range mapping 
from Burgin et al. (2020) 

(b) Overlay of GBIF 
occurrence report locations 

(c) Added overlay GBIF 
occurrence mapping algorithm 

Lagidium viscacia observed in 
Bolivia by Miglė Montrimaitė 
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3.2 Overall mapping results 199 

Occurrence record maps were computed for 610,694 GBIF species, comprising 52,433 vertebrates 200 
(amphibians, birds, fish, mammals, and reptiles), 213,268 arthropods, 32,355 mollusks, 24,109 201 
other animals, 232,693 plants, 38,122 fungi, and 17,714 other species (the kingdoms Archaea, 202 
Bacteria, Chromista, Protozoa, and Viruses) (Table 1).  203 

Table 1. GBIF species occurrence maps 204 

 205 

 206 

  207 

Species classification Group Count based on presence 
Vertebrates 

Class 

Amphibians 5,055 
Birds 11,064 
Mammals 4,881 
Reptiles 7,644 
Fish 23,789 

Subtotal 52,433 

Arthropods 

Order 

Araneae 10,438 
Coleoptera 44,152 
Diptera 23,567 
Hemiptera 13,272 
Hymenoptera 26,159 
Lepidoptera 50,675 
Other 45,005 

Subtotal 213,268 

Mollusks 
Phylum 32,355 
Other Animals 24,109 
Vascular Plants 

Order 

Asterales 22,978 
Asparagales 17,439 
Caryophyllales 9,554 
Ericales 8,574 
Fabales 16,277 
Gentianales 13,811 
Lamiales 16,545 
Malpighiales 12,790 
Myrtales 10,336 
Poales 16,845 
Other 87,544 

Subtotal 232,693 
Fungi 
Kingdom 38,122 
Other Species 17,714 
Total 610,694 
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The exercise was limited to GBIF species in three kingdoms (Animalia, Plantae, and Fungi) with 208 
at least three unique geolocated occurrences since 1970. To remove spurious observations from 209 
locales (e.g., zoos and botanical gardens), we relied on the following two methods: (1) exclusion 210 
of isolated outlier occurrences before map estimation, which happens automatically in our 211 
mapping algorithms and (2) exclusion of bounded point sets with fewer than three observations 212 
after map estimation. For the many species maps that have multiple bounded areas, we imposed a 213 
conservative interpretation of the evidence, dropping species maps with single-bounded areas 214 
when they contain fewer than three observations. Although this final condition may seem 215 
redundant; it is important to include as a species can pass the initial condition and fail the final one 216 
since our estimation algorithms may exclude an outlier point or two from their computations of 217 
the bounded areas.   218 
 219 

3.3 Case comparisons 220 

To test our species boundary mapping from the current inventory, we ask whether the view of 221 
global biodiversity distribution it provides is consistent with that of existing expert maps. On 222 
comparing our estimated GBIF occurrence maps with expert maps from recently published 223 
research, we find that thousands of species with GBIF maps have been mapped by the research 224 
teams. Using these matched species, each comparison assesses the similarity in global biodiversity 225 
patterns produced by our GBIF maps and the expert research products. Where the patterns diverge, 226 
we explore the technical factors that can explain the differences. The first case comparison retains 227 
the traditional focus on vertebrates, comparing mammal range maps estimated by Marsh et al. 228 
(2022). The second one focuses on a comparison with maps for ants developed by Kass et al. 229 
(2022), while the third centers on a limited set of vascular plants mapped by Borgelt et al. (2022). 230 
Invertebrates are significantly underrepresented in existing expert maps (Kass et al., 2022). At the 231 
outset, it should be noted that this study's major contribution is the expanded coverage of 232 
invertebrates. As shown in Table 1, our work offers more comprehensive representation by 233 
estimating maps for 213,268 arthropods. 234 
3.3.1 Mammals 235 

Marsh et al. (2022) map the native ranges of mammals globally using the authoritative taxonomy 236 
provided by the Mammal Diversity Database (Burgin et al., 2018). Their exercise harmonizes 237 
species maps from the Checklist of the Mammals of the World (Burgin et al., 2020b, 2020c), and 238 
the Handbook of the Mammals of the World published in nine volumes by Mittermeier, Rylands, 239 
and Wilson (2013), Wilson, Lacher, and Mittermeier (2016, 2017), and Wilson and Mittermeier 240 
(2009, 2011, 2014, 2015, 2018, 2019). In our GBIF occurrence maps database, we identify 3,530 241 
mammals that are also mapped by Marsh. We rasterize both sets of maps using a global grid with 242 
0.05 degree (5 km) resolution. For each species map, rasterization assigns a value of 1 to grid cells 243 
that overlap with the map and 0 to other cells. Next, we compute species densities by cellwise 244 
addition across 3,530 rasters for each set. Figure 2 compares cell counts, which are ranked in 10 245 
groups. The maps’ broad patterns are visibly similar. Both assign ranks in the highest two groups 246 
to Central America, northwest South America, West Africa, East Africa, the northern region of 247 
Central Africa, the eastern region of southern Africa, Western Europe and Southeast Asia. Notably, 248 
they also differ in other regions. The GBIF map assigns higher ranks to large areas of Mexico, 249 
western United States, and eastern Australia and lower ranks to the southeastern Amazon region 250 
and South Asia. 251 

252 
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Figure 2. Matched mammal species densities: Marsh et al. (2022) versus GBIF occurrence 253 
reports 254 

 255 

 256 

 257 

 258 
  259 

Marsh et al. (2022) 

GBIF 
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 260 
Technical differences can explain divergences in the two patterns. For example, the Marsh et al. 261 
(2022) maps estimate native ranges of global mammals, taking into account recorded historical 262 
occurrences and biogeographical factors that correlate with the range of each mammal species. By 263 
contrast, the GBIF mammal maps bound the areas where species occurrences have been reported 264 
since 1970. Regions where GBIF ranks are higher than Marsh et al. (2022) ranks have many 265 
species with reported occurrences beyond their estimated native ranges; regions with lower GBIF 266 
ranks have occurrence reports clustered in subareas within native ranges. This difference could 267 
reflect underreporting for GBIF species in lower-ranked areas, although many higher-ranked areas 268 
appear similarly disadvantaged for species observation. In our view, the more plausible 269 
explanation is that lower-ranked regions are populated by many species whose ranges have 270 
contracted over time. The ongoing accumulation of GBIF species occurrence reports should help 271 
to resolve this issue.  272 

Figure 2 compares 3,530 mammals with maps in both databases, while Fig. 3 does the same for 273 
all mapped terrestrial mammals (4,138 for GBIF and 6,360 for Marsh et al. [2022]). Comparison 274 
with Fig. 2 reveals almost no difference for GBIF; however, Marsh et al. (2022) have generally 275 
higher rankings for Indonesia and Papua New Guinea. Mammal species may be underrepresented 276 
in GBIF occurrence reports from the two countries, although this seems more likely for sparsely 277 
populated Papua New Guinea than densely populated Indonesia. The more likely explanation, in 278 
our view, is that the areas populated by many mammals have contracted.   279 

 280 

  281 
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Figure 3. Full mammal species densities: Marsh et al. (2022) versus GBIF occurrence 282 
reports 283 

 284 

  285 

Marsh et al. (2022) 
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 286 
 287 

3.3.2 Ants 288 

Clark and May (2002) identified a severe taxonomic bias in conservation research, finding that  289 
vertebrates accounted for only 3 percent of described species but 69 percent of published papers. 290 
Conversely, invertebrates accounted for 79 percent of described species and just 11 percent of 291 
published papers (Leather, Basset, and Hawkins, 2008). Kass et al. (2022) address this problem 292 
for ants using a variety of datasets and techniques, including the alphahull algorithm, to estimate 293 
the range maps. In our GBIF occurrence maps database, we identify 5,445 ant species also mapped 294 
by Kass et al. (2022). We rasterize both sets of maps using a global grid with 0.05 degree (5 km) 295 
resolution and compute species densities by cellwise addition across 5,445 rasters for each set.   296 

Figure 4 compares the cell counts, which are ranked in 10 groups. Many areas exhibit similar 297 
patterns, including northern North America, Mexico, Central America, northwest South America, 298 
Eastern and Western Europe, West Africa, southern Africa, Madagascar, and eastern Australia. 299 
However, there are three notable differences. First, both maps identify a large high-ranking region 300 
in the Western Hemisphere, which is further north for GBIF than for Kass et al. (2022). Second, 301 
both maps identify a band of relatively high ranks across West and northern Central Africa, linking 302 
to a north-south band in East and southern Africa; however, the rankings for GBIF are generally 303 
lower than those for Kass et al. (2022). Third, Southeast Asia ranks uniformly higher for Kass et 304 
al. (2022) than for GBIF. 305 

Since Kass et al. (2022) also rely heavily on the alphahull methodology, we attribute these 306 
differences to two technical factors. First, their database comes from intensive processing and error 307 
checking of records drawn from the Global Ant Biodiversity Informatics (GABI) database in July 308 
2020. In our study, by contrast, the records are drawn from GBIF occurrence data, as of July 2023. 309 
Second, our approach is significantly more conservative. For example, we exclude unique species 310 
occurrences that number fewer than three, while Kass et al. (2022) include them; since alphahulls 311 
cannot be estimated for these 5,168 ant species, Kass et al. (2022) estimate their ranges by drawing 312 
30 km buffer zones around the occurrence locations. Given this difference, comparing full database 313 
results for GBIF and Kass et al. (2022) would be, in effect, comparing apples and oranges. 314 

 315 

  316 
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Figure 4. Matched ant species densities: Kass et al. (2022) versus GBIF occurrence reports 317 
 318 

 319 

  320 

Kass et al. (2022) 

GBIF 
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  3.3.3 Vascular plants 321 

Borgelt et al. (2022) have recently developed spatial density maps for vascular plants in the 322 
International Union for Conservation of Nature (IUCN) Red List (IUCN, 2021). They utilize 323 
maximum entropy (Maxent) models that predict the likelihood of species occurrences from the 324 
values of several environmental variables. For each species, they identify native regions from a 325 
web-scraping exercise using the Plants of the World Online (POWO) database, with regional 326 
identification standardized from the World Geographical Scheme for Recording Plant 327 
Distributions (WGSRPD). Typically, the resulting native regions are the boundaries of small 328 
countries or provinces (GADM level-1 administrative units) in large countries. Borgelt et al. 329 
(2022) estimate the models using GBIF occurrence data with restrictive prior conditions. To 330 
preserve compatibility with the environmental variables used for Maxent estimation, the data are 331 
confined to the 2000–20 period. For each species, georeferenced occurrence reports exclude all 332 
observations outside pre-identified native regions, and Maxent-estimated species distributions are 333 
also confined to native regions. The advantage of this approach is that it guarantees the exclusion 334 
of spurious observations from such entities as botanical gardens and private collections in other 335 
regions. One drawback, however, is that it incurs the cost of excluding potentially large numbers 336 
of occurrence observations that lie outside pre-identified native regions that are arbitrarily defined 337 
by national or provincial boundaries. 338 

Unlike Borgelt et al. (2022), our exercise is not constrained by the need for compatibility with 339 
environmental modeling variables; therefore, we draw on a longer time period (1970–2023). Also, 340 
we impose no prior geographic restrictions on the data. As previously explained, our 341 
methodologies estimate occurrence map boundaries after eliminating spurious single outliers and 342 
small, isolated occurrence clusters. We identify 32,339 vascular plant species found in both 343 
databases, and, as before, rasterize our occurrence maps and compute cell counts at 5 km 344 
resolution. As Borgelt et al. (2022) provide species maps in a raster stack with much coarser 345 
resolution (50 km), we next extract raster layers for these 32,339 common species and add across 346 
layers to obtain relative incidence scores for the 50-km grid cells. Finally, we use mean smoothing 347 
to approximate the effect of higher resolution.  348 

Figure 5 displays the comparative results as ranks in 10 groups; the two maps share essentially the 349 
same density pattern, except for the somewhat more extensive high-ranking areas in South and 350 
Southeast Asia for the Borgelt et al. (2022) maps and the United States for our study’s maps.   351 

  352 
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Figure 5. Matched vascular-plant species densities: Borgelt et al. (2022) versus GBIF 353 
occurrence reports 354 

 355 

 356 

357 
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3.4 Summing up 362 
In all three case comparisons, we find quite similar global patterns of species density. Where the 363 
patterns diverge, the discrepancies can be traced to technical differences. In the case of mammals, 364 
differences between the GBIF and expert native-range maps can be attributed to either 365 
undershooting, where expert map boundaries exclude many GBIF occurrences, or overshooting, 366 
where GBIF occurrences are persistently absent in parts of the native-range maps. In the case of 367 
ants, where the research also utilizes alphahull estimation, differences are attributable to 368 
differences in source databases and our relatively conservative approach to map estimation. 369 
Finally, in the case of vascular plants, where the research employs GBIF occurrences and the 370 
global pattern similarity is most striking, the few discrepancies are attributable to temporal and 371 
spatial restrictions imposed by the expert research team. 372 

4. Priority-setting applications 373 

The effectiveness of biodiversity conservation plans will require identification of occurrence 374 
regions for species with elevated extinction risks. Using the maps developed with GBIF data, we 375 
explored (1) species endemic to a single country and (2) species under continuous threat owing to 376 
their small occurrence regions. Our database reflects GBIF-sourced occurrence maps for 377 
previously unmapped species, as well as revised estimates for those with existing maps.  378 

4.1 Endemic species distribution by group and country 379 

With the new dataset, we explored the endemic status assigned to species that are 100 percent 380 
resident in a single country. By this criterion, 44.6 percent (272,189) of the 610,694 species maps 381 
tabulated by country are classed as endemic. The incidence of endemism differs widely by species 382 
group (e.g., 54.5 percent for mollusks, 48.7 percent for vascular plants, 47 percent for other 383 
animals, 44 percent for arthropods, 37.1 percent for vertebrates, and 29.5 percent for fungi). 384 

We also count endemic species by country and species group. Country scale plays a major role in 385 
raw counts, so we standardize by total country species to highlight the relative importance of 386 
endemicity in each country and species group. Table 2 provides a summary for the top 30 countries 387 
in each species group, sorted in descending order by average ranking for the seven groups. Overall, 388 
the top 30 have 86.6 percent (235,706 out of 272,189 species); and our results assign overall top 389 
10 status to Australia, United States, Brazil, Mexico, South Africa, China, New Zealand, 390 
Madagascar, Japan, and Costa Rica. Even for the top 30 countries, endemicity varies enormously 391 
by species group. In terms of vertebrates, for example, 62 percent are endemic in Australia versus 392 
only 3 percent in the United Kingdom. For plants, the endemicity in Madagascar, Australia, and 393 
New Zealand is extremely high, at 89.6 percent, 88.1 percent, and 84.4 percent, respectively. For 394 
arthropods, the maximum endemicity is even higher in New Zealand and Australia, at 92.8 percent 395 
and 91.2 percent, respectively. Mollusks, fungi, and other species more closely resemble 396 
arthropods and vascular plants in the relative compactness of their ranges. 397 

 398 

 399 
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Table 2. Top 30 countries for species endemism, by group 400 

 401 

It should be noted that Table 2 excludes small island territories that rank high in at least one group, 402 
including South Georgia, French Polynesia, Heard and McDonald Islands, Norfolk Island, and the 403 
Malvinas/Falklands disputed territory.  404 

 405 
  406 

Country 

 Endemic species (%) 

Vertebrates Arthropods Mollusks 
Other 

animals 
Vascular 

plants Fungi 
Other 
species 

Australia 62.3 91.2 76.5 71.5 88.1 59.8 57.3 

United States 41.3 41.7 57.5 49.5 48.4 27.9 26.3 

Brazil 38.5 46.1 70 67.9 51.6 30.1 45.5 

Mexico 45.1 47.7 41.4 48 58.1 44.1 40.7 

South Africa 37 41.5 81.9 71 67.2 46.1 36.5 

China 29.6 56.5 58.1 55.9 34 38.9 16.3 

New Zealand 57.5 92.8 89.6 66.2 84.4 81.8 58.9 

Madagascar 77.4 85.3 81.6 27.5 89.6 25.7 11.8 

Japan 41 55.5 67 65.8 59.2 66.8 28.1 

Costa Rica 33.7 48.6 50.2 63.8 42 43.2 35.7 

Colombia 37.7 32.7 49.7 40 32.9 35.7 73.7 

France 19.9 22 50.4 33.1 25.2 6 7.1 

Spain 24.8 39.6 47.8 40.5 43.9 29.4 27.7 

New Caledonia 50.8 64.1 54.2 49.1 94.7 76.9 55.6 

Ecuador 51.9 60.5 65.6 72.4 46.8 56 80 

Papua New Guinea 40.7 53.3 37.4 24.4 61.4 48.8 6.2 

Indonesia 29 38.9 13.6 13.9 24.4 10.9 17.7 

Peru 32.5 35.3 53.4 44.4 36 39.5 48.3 

Canada 7.1 29.7 17.4 34.5 11.3 25.4 19.7 

India 39.8 38.7 43.8 66.1 49.4 34.1 28.5 

Chile 44.6 62.3 45.5 47.1 50.3 44.8 44.3 

Russian Federation 14.1 15.5 27.5 48.5 22.2 12.3 51.8 

Philippines 66.7 72.7 57 37.4 57.9 0 15.4 

Sweden 13 10.1 10 51 42.1 5.1 23.4 

United Kingdom 3 23.1 5.2 11.1 39.7 29.3 21.9 

Argentina 26.7 40.5 28.9 56.5 32.4 28 10 

Cuba 31.2 32 10 0 70.4 4.5 6.9 

Sri Lanka 95.9 88.9 63.2 100 89.3 72.7 88.1 

Malaysia 34.2 41.1 61.3 44.4 25.3 51.9 80 

Bolivia 27.4 53.6 50 28.6 50.3 46.4 50 
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4.2 Distribution of small-region species 407 

Small range size has been studied extensively in the empirical literature (Jenkins et al., 2015; Kraus 408 
et al., 2023; Manne, Brooks, and Pimm, 1999; Manne and Pimm, 2001; Purvis et al., 2000; Veach 409 
et al., 2017). Jenkins et al. (2015), for example, note that “small range size is the best predictor of 410 
extinction risk and, thus, the first metric for conservation priority.” It has particular significance 411 
since it is a widely recognized indicator of extinction risk that is computable for any species that 412 
can be mapped.   413 

However, it should be noted that small-range status is not determinate; there is no single, critical 414 
minimum habitat size, given the myriad interactions between species and habitat characteristics 415 
that affect extinction risks. Therefore, we examined the size and global distribution of species with 416 
small occurrence regions in our GBIF maps database, considering the effects of changing the 417 
criteria for small-occurrence-region status. Table 3 displays the cumulative global count for 418 
species groups as the occurrence region increases from 5 km x 5 km to 200 km x 200 km. Even 419 
for occurrence regions of 10 km x 10 km or less, 57,765 species are identified; this number 420 
increases to 85,310 at 25 km x 25 km or less. Differences across species groups reflect their varying 421 
representation in the database and group-specific factors.   422 

Table 3. Species counts by group and grid scale 423 

Occurrence 
region 
category (km) Vertebrates Arthropods Mollusks 

Other  
animals 

Vascular 
plants Fungi 

Other 
species 

5 x 5  3,029  17,587  3,336  2,843  12,908  3,410  2,046 
10 x 10  3,897  22,245  4,502  3,611  17,234  3,921  2,355 
20 x 20  5,385  29,016  6,166  4,575  24,611  4,674  2,948 
25 x 25  6,020  31,734  6,748  4,931  27,785  4,936  3,156 
50 x 50  8,580  42,894  8,976  6,214  41,285  6,125  3,872 
100 x 100  12,215  60,914  12,169  8,149  63,173  8,248  5,213 
200 x 200  17,522  88,204  16,425  10,927  94,036  11,755  7,303 

 424 
We believe that an upper bound of 25 km x 25 km on critical scale for small-range species is 425 
appropriately conservative. The small-range species count increases to 117,946 at 50 km x 50 km 426 
or less, 170,081 at 100 km x 100 km or less, and 246,172 at 200 km x 200 km. From a policy 427 
perspective, the feasibility and sustainability of species protection tend to decline as the number 428 
of species protected increases. Since even the 25 km x 25 km limit qualifies nearly 85,310 species 429 
as having a small occurrence region, we retain it here, recognizing that other analyses may well 430 
opt for higher limits.  431 

Using GIS overlays of GBIF maps and country boundaries, we count species with small occurrence 432 
regions by country, finding that their international distribution is skewed. The top 30 countries 433 
account for 75.5 percent of them (64,443 out of 85,310 species). Our overall results assign top 10 434 
status to Australia, United States, Brazil, Mexico, France, South Africa, Costa Rica, China, 435 
Colombia, and Japan. Australia leads with 8,673 species, followed by the United States (7,791), 436 
Brazil (4,434), Mexico (4,217), and France (3,732). Comparing Table 3 with Table 4 suggests that 437 
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small-occurrence-region species are endemic in most cases, so the dominant country is chosen by 438 
default. In other cases (e.g., Panama, Venezuela, RB, Thailand, and Italy), it is the country with 439 
greatest area share in the species’ GBIF occurrence map. Among species groups, the top 30 440 
countries’ global share varies from 66 percent (vertebrates) to 78 percent (arthropods) (Table 4). 441 

Table 4. Top 30 countries for species with small occurrence regions, by group 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 
 463 
 464 
 465 
 466 
 467 
 468 
4.3 Distribution of endemic species with small occurrence regions  469 

  
 Country 

Species (%) 

Vertebrates Arthropods Mollusks 
Other 

animals 
Vascular 

plants Fungi 
Other 
species 

Australia 6.5 11.7 13.8 15.9 7.6 8.8 10.4 

United States 7 11 13.1 14.1 5.2 12.2 7.2 

Brazil 7.8 3.2 1.4 2.4 8.8 4.1 2.2 

Mexico 5.3 4.2 3.6 5.7 6.2 4 3.8 

France 0.6 6.7 6 4.3 1.9 6.9 2.9 

South Africa 2 2.2 1.8 2.9 7.5 0.9 0.8 

Costa Rica 1.1 6.9 1.1 1.1 1.6 2.2 0.1 

China 2.5 3.1 1.6 1 3.2 2.1 3.3 

Colombia 3.9 1.8 0.5 1.1 3.2 5 6.9 

Madagascar 2.5 1.1 5.9 0.2 4.4 0.2 0.1 

Japan 1.4 3.1 3.9 2 1.3 2.2 1.5 

Spain 0.4 2.9 2.1 1.4 2.2 2 0.5 

Canada 0.2 3.9 0.5 2 0.3 3.6 1.1 

New Zealand 0.6 2.1 1.9 4.2 1 4.9 1.9 

Indonesia 5.5 1.2 1.9 1.3 1.6 0.5 1.6 
Russian 
Federation 0.5 1.7 0.3 1.2 1.6 2.9 5.4 

Ecuador 2.1 1.2 0.3 0.4 2.9 0.5 0.3 

New Caledonia 0.7 0.9 2.8 2.4 2.1 0.1 0.1 
Papua New 
Guinea 1.7 0.8 2.2 0.6 2 0.3 0.1 

Sweden 0 1.1 0 2.1 0.7 3.2 9.9 

Peru 2.1 0.6 0.1 0.1 2.2 0.2 0.5 

India 2.6 1.1 0.3 0.4 0.9 0.8 2.4 

Malaysia 1.2 1.2 0.8 0.2 1.2 0.2 0 

Panama 1.3 0.5 2 1 1.3 0.2 0.1 

Chile 1.3 0.7 0.7 0.9 1.1 0.8 0.6 
United 
Kingdom 0.1 0.7 0.5 1.9 0.7 3 1.8 

Philippines 2.6 0.4 4 1 0.3 0.1 0.1 

Venezuela, RB 0.8 0.3 0.1 0.4 1.7 0.6 0.5 

Italy 0.3 0.8 0.5 1.5 0.8 0.7 1.7 

Thailand 1.3 0.9 0.5 0.1 0.6 0.6 1 

Total 65.9 78 74.2 73.8 76.1 73.8 68.8 
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We also explored the geographical distribution of endemic species with small occurrence regions 470 
(25 km x 25 km size limit). Our results identified 67,941 species in a single country (Table 5). 471 

Table 5. Top 30 countries for endemic species with small occurrence regions, by group 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

Country 

Species (%) 

Vertebrates Arthropods Mollusks 
Other 

animals 
Vascular 

plants Fungi 
Other 
species 

Australia 6.7 14.1 15.2 17.8 8.7 10.8 12.7 

United States 7.1 10.6 13.5 14.3 5.1 11 6.2 

Brazil 7.9 3.3 1.5 2.7 8.9 3.4 2.6 

Mexico 5.7 4.6 3.5 6 6.5 4.8 4.9 

South Africa 2 2.3 2 3.3 8.3 1 1.2 

Costa Rica 1.1 7.6 1.2 1.2 1.6 2.8 0.1 

France 0.5 6 5.6 4.2 1.4 4.1 2 

Madagascar 3 1.3 6.8 0.1 5.1 0.1 0 

Colombia 3.9 1.7 0.5 1.1 3.1 6.7 10.2 

Japan 1.4 3.4 4.1 2.1 1.3 3.2 1.4 

China 2 3.3 1.6 0.9 2.3 2.1 1.5 

Spain 0.3 3.1 2.1 1.4 2.2 2 0.4 

New Zealand 0.7 2.5 2.3 4.6 1.1 7.2 2.3 

Ecuador 2.4 1.4 0.3 0.5 2.9 0.6 0.4 

Canada 0.1 3.7 0.4 1.7 0.2 4.3 0.9 

New Caledonia 0.8 1.1 3 2.5 2.5 0.1 0.1 

Indonesia 4.9 1.3 0.9 0.8 1.5 0.2 0.6 
Papua New 
Guinea 1.7 0.9 2 0.4 2.1 0.3 0 
Russian 
Federation 0.4 1.3 0.2 1.2 1.2 2.4 7.5 

Peru 2.2 0.7 0.2 0.1 2.3 0.2 0.6 

Malaysia 1.4 1.3 0.9 0.2 1.1 0.3 0 

India 2.5 1.1 0.3 0.5 0.8 0.8 2.2 

Chile 1.3 0.8 0.7 1 1.2 1 0.7 

Sweden 0 0.6 0 2.4 0.7 1.2 10.5 

Panama 1.1 0.5 2 1 1.3 0.2 0.1 

Philippines 2.9 0.5 4 0.9 0.4 0 0.1 

Venezuela, RB 0.7 0.3 0.1 0.4 1.7 0.2 0.5 

Cuba 0.6 0.2 0.4 0 1.9 0 0 

French Polynesia 0.9 0.6 1.9 1 0.8 0 0.4 

Portugal 0.1 1.1 1.1 1 0.4 0.8 1.5 

Total  66.3 81.2 78.3 75.3 78.6 71.8 71.6 
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As before, we find that the international distribution is skewed, with 78.2 percent (53,114) of the 492 
67,941 species found in 30 countries. The overall results assign top 10 status to Australia, United 493 
States, Brazil, Mexico, South Africa, Costa Rica, France, Madagascar, Colombia, and Japan. 494 
Australia leads with by 8,072 species, followed by the United States (6,003), Brazil (3,629), 495 
Mexico (3,621) and South Africa (2,911). Among species groups, the top 30 countries have the 496 
following global shares: arthropods (81.2 percent), vascular plants (78.6 percent), mollusks (78.3 497 
percent), other animals (75.3 percent), fungi (71.8 percent), other non-animal and non-plant 498 
species (71.6 percent), and vertebrates (66.3 percent). 499 

 Figure 6. Regional distribution (percentage) of endemic species with small occurrence 500 
regions 501 

 502 

Among endemic species with small occurrence regions, the largest share is found in Oceania (28 503 
percent), followed by North America (23 percent). Four regions are in the mid-range—South 504 
America (15 percent), Asia (13 percent), Africa (11 percent), and Europe (9 percent)—and 505 
Antarctica has small representation, at 1 percent (Fig. 6). 506 
4.4 Candidate hotspot areas for protection 507 

Limited resources for biodiversity conservation make it critical to prioritize protection efforts in 508 
regions inhabited by many unique, at-risk species. Endemism and small occurrence regions, as 509 
identified by our maps, can inform conservation policy priority-setting. This study’s findings 510 
indicate that 40 countries have significant opportunities for protecting areas with concentrations 511 
of endemic species, species with small occurrence regions, and species with both features. 512 

0

5

10

15

20

25

30

35

North
 America

South
 America

Oceania Africa Europe Asia Antarctica

Vertebrates

Arthropods

Mollusks

Other Animals

Vascular Plants

Fungi

Other Species

https://doi.org/10.5194/essd-2024-241
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



23 
 

Aligning countries with World Bank income groups reveals an encouraging trend for conservation. 513 
While over 4,000 endemic species with small ranges are in low and lower-middle-income 514 
countries, the majority, 82.7 percent, are in high and upper-middle-income countries (Fig. 7), 515 
which generally have substantial conservation resources. Many such areas may already be 516 
protected. Although a global assessment was beyond this study's scope, it would be a valuable 517 
future application of our GBIF species maps database. 518 

Figure 7. Percent distribution of endemic species with small occurrence regions, by income 519 
class 520 

 521 
 522 
It should be noted that the maps constructed with processed data also provide opportunities for 523 
understanding the geographic distribution of the species within countries.  524 

5. Code and Data availability 525 

These data are available at the World Bank’s Development Data Hub under Global Biodiversity 526 
Species Occurrence Gridded Data and Global Biodiversity Species Occurrence Endemism and 527 
Small Range Data. The datasets can be accessed at https://doi.org/10.57966/h21e-vq42 528 
(Dasgupta et al. 2024). The authors software to process the data and the scripts will be available 529 
upon request. 530 
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7. Conclusion  532 

Implementing the ambitious goal of protecting 30 percent of the planet’s biodiversity by 2030 to 533 
meet the commitment of the 188 governments that ratified the 2022 Kunming-Montreal Global 534 
Biodiversity Framework necessitates the precise identification of areas critical for global 535 
biodiversity and suitable for cost-effective protection. Using occurrence data for more than 536 
600,000 species from the Global Biodiversity Information Facility (GBIF), this study has aimed 537 
to inform that process. To our knowledge, this represents the largest set of species maps that has 538 
been estimated from open-source data. 539 

The GBIF’s database, which is growing by approximately 1.3 million new reports each day, 540 
enables fast expansion of occurrence maps for numerous, previously unmapped species and 541 
improves estimates for those already mapped. The estimation algorithm introduced in this study is 542 
designed to support the continued growth of GBIF species maps in response to this influx of data. 543 

Our algorithm also provides area estimates for all mapped species, serving as a cost-effective 544 
supplement to traditional risk indicators, which are often constrained by their resource demands. 545 
In this study’s applications, we have used the newly estimated maps to gain fresh perspectives on 546 
the worldwide distribution of endemic species and those with small occurrence regions. Both 547 
features have policy significance because they highlight the stewardship responsibilities of 548 
countries for species that live entirely within their borders and for those with small habitats facing 549 
high extinction risks. Our maps, which reveal the skewed distribution of these species, have 550 
allowed us to identify 40 candidate countries for biodiversity protection, where 86.6 percent of 551 
endemic species, 75.5 percent of small-occurrence-region species, and 78.2 percent of species that 552 
are both endemic and have small occurrence regions are concentrated. 553 

It is our hope that many more applications of our estimation algorithm will accompany the 554 
continued increase in open-source GBIF occurrence reports.  555 
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