
 

1 
 

A globally distributed dataset of coseismic 1 

landslide mapping via multi-source high-resolution 2 

remote sensing images  3 

Chengyong Fang1, Xuanmei Fan1*, Xin Wang1, Lorenzo Nava2, Hao Zhong1,3, Xiujun Dong1, 4 

Jixiao Qi1, Filippo Catani2 5 

1State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 6 
University of Technology, 610059, Chengdu, China 7 
2Machine Intelligence and Slope Stability Laboratory, Department of Geosciences, University 8 
of Padua, 35129 Padua, Italy 9 
3College of Information Science and Technology, Chengdu University of Technology, 610059, 10 
Chengdu, China 11 

Correspondence to: Xuanmei Fan (fxm_cdut@qq.com) 12 

 13 

  14 

https://doi.org/10.5194/essd-2024-239
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



 

2 
 

Abstract 15 

Rapid and accurate landslide mapping following extreme triggering events is critical for 16 

emergency response, hazard prevention, and disaster management. Artificial intelligence-17 

based approaches enable rapid landslide mapping, yet the lack of a high-resolution globally 18 

distributed and event-based dataset poses a severe challenge in developing generalized 19 

machine learning models for landslide detection. This paper addresses this issue by designing 20 

a diverse coseismic landslide dataset, the Globally Distributed Coseismic Landslide Dataset 21 

(GDCLD), which includes multi-source remote sensing images (i.e., PlanetScope, Gaofen-6, 22 

Map World, and Unmanned Aerial Vehicle) encompassing various geographical and geological 23 

backgrounds worldwide. The GDCLD can be accessed through this link: 24 

https://doi.org/10.5281/zenodo.11369484 (Fang et al., 2024). Furthermore, we evaluate the 25 

potential of GDCLD by analyzing mapping performance of the seven most popular semantic 26 

segmentation algorithms. We further validate the generalization capabilities of the dataset by 27 

deploying the models on three types of remote sensing images from four independent regions. 28 

Besides, we also assess the model on rainfall-induced landslide dataset and achieve good 29 

results, demonstrating its applicability in landslide segmentation under other triggering factors. 30 

The results indicate the superiority of the proposed dataset in landslide detection, offering a 31 

robust mapping solution for rapid assessment in future extreme events that trigger landslides 32 

across the globe. 33 
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1. Introduction 36 

Landslides triggered by extreme events such as earthquakes and heavy precipitation are 37 

responsible for most of the damage to mountainous settlements (Huang and Fan, 2013). In 38 

some cases, landslides can be even more disastrous than the triggering events themselves, as 39 

they can render emergency responses ineffective by cutting off roads and other transportation 40 

lifelines (Cigna et al., 2012; Huang et al., 2012; Valagussa et al., 2019; Chau et al., 2004). 41 

Therefore, the rapid and accurate identification of landslides after extreme events is crucial for 42 

timely and quantitative assessment of disasters. This is especially important for emergency 43 

rescue operations and subsequent risk management in mountainous areas with complex 44 

environments and possibly inconvenient transportation routes. (Cigna et al., 2018; Chau et al., 45 

2004; Gorum et al., 2011).  46 

Conventional landslide mapping efforts rely on traditional surveying methods such as 47 

topographic total stations, field observations to collect essential data on slope stability and 48 

terrain morphology (Brardinoni et al., 2003; Coe et al., 2003; Zhong et al., 2020). These 49 

methods may not capture the full extent of terrain dynamics due to their static nature 50 

(Metternicht et al., 2005). Consequently, these methods are not effective for detailed landslide 51 

mapping, especially when traversing the affected and unstable regions for field surveys is not 52 

possible. This was particularly true for the Wenchuan co-seismic landslides, which mobilized 53 

large amounts of material that obstructed roads, complicating disaster response efforts as well 54 

as surveying and mapping activities (Gorum et al., 2011). With the development of remote 55 

sensing technology in the past decades, landslide investigation has been supported by digital 56 

mapping, which reduces time and labor costs (Fiorucci et al., 2011; Fiorucci et al., 2019; Gao 57 

and Maro, 2010; Guzzetti et al., 2012). This mapping has also been enhanced by various 58 

modalities of sensors, such as synthetic aperture radar (Mondini et al., 2021; Nava et al., 2021), 59 

multi-spectral (Udin et al., 2019), and hyper-spectral (Ye et al., 2019). However, visual 60 

identification is highly subjective due to operator experience, and the interpretation of events 61 

involving numerous landslides is still time-consuming. Therefore, this subjectivity and the time-62 
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consuming nature of interpretation hinder the reliability and efficiency of landslide mapping, 63 

especially after major events such as the Wenchuan, China (2008), and Gorkha, Nepal (2015) 64 

earthquakes. 65 

Generally, the ideal solution is to develop automated models or tools that can save time 66 

and costs while ensuring an objective protocol in the mapping process (Casagli et al., 2023). 67 

While some researchers have endeavored to employ machine learning or deep learning in 68 

constructing these models, most of them lack the generalization capability for application across 69 

diverse environmental backgrounds and remote sensing images (Burrows et al., 2019; Bhuyan 70 

et al., 2023; Li et al., 2016; Liu et al., 2022; Lu et al., 2019; Luppino et al., 2022; Meena et al., 71 

2021; Soares et al., 2022; Yang et al., 2022a). To improve such models, more abundant data 72 

that consider the diverse geomorphological and climatic settings where landslides occur are 73 

essential. The Bijie landslide dataset, based on Map World image, presents a small-scale 74 

dataset of mountainous landslides, filling the gap in landslide detection tasks for the first time 75 

(Ji et al., 2020). Landslide4sense, based on Sentinel-2 image, introduces a multispectral 76 

landslide dataset, pioneering semantic-level annotation of landslides (Ghorbanzadeh et al., 77 

2022). The HRGLDD and GVLM datasets, based on PlanetScope and Google Earth image 78 

respectively, propose global-scale high-resolution landslide datasets (Meena et al., 2022; 79 

Zhang et al., 2023). However, these datasets are limited by their reliance on single remote 80 

sensing data sources, restricting the applicability of models across different sensors and 81 

resolutions. The CAS dataset introduces a mountain landslide dataset containing various 82 

remote sensing data sources (Xu et al., 2024). However, due to its limited annotated landslide 83 

quantity, high image overlap, and lack of negative samples (background/non-landslide), it is still 84 

insufficient to effectively generalize to landslide automatic mapping tasks in various complex 85 

environments especially where signatures of landslides often resemble nearby terrain. 86 

Therefore, there is a pressing need for the development of a carefully curated and diverse 87 

dataset. Such a dataset would facilitate the rapid and accurate mapping of landslides using 88 

available prior knowledge. Hence, we present a comprehensive landslide dataset derived from 89 

nine earthquake-triggered landslide occurrences, encompassing multi-sensor images from 3m-90 
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PlanetScope, 2m-Gaofen-6, 0.5m-Map World, and 0.2m-UAV. This work addresses the 91 

shortcomings of existing datasets in terms of accuracy and generalization for training large and 92 

complex deep-learning models. It is of great significance for accurate, rapid, and automatic 93 

mapping of landslide events occurring anywhere in the world, providing strong support for 94 

efficient geohazard emergency response and investigation. 95 

2. Relate work 96 

The current effective method for landslide mapping involves image segmentation, and 97 

computer vision segmentation tasks heavily rely on effective data to build segmentation models. 98 

Compared to other computer tasks, landslide segmentation tasks have emerged relatively late, 99 

with only a small number of studies constructing datasets for different landslide events. In this 100 

section, we review some landslide segmentation datasets and introduce their specific 101 

information. 102 

The Bijie landslide dataset comprises high-resolution satellite images captured in 103 

landslide-prone areas of Guizhou province, China. The dataset includes 770 landslide samples 104 

and 2,003 non-landslide samples. The positive samples consist of rockfalls, rockslides, and a 105 

small number of debris avalanches, while the negative samples include mountains, villages, 106 

roads, rivers, and farmland, among others. The image resolutions vary from 61×61 pixels to 107 

1,239×1,197 pixels, with RGB channels. There is a total of 7.23×106 pixels assigned for 108 

landslide within the dataset (Ji et al., 2020).  109 

The landslide4sense dataset consists of multispectral satellite images captured across four 110 

distinct regions. This dataset comprises 3,799 images, each with dimensions of 64×64 pixels 111 

and a spatial resolution of 10 meters. Each image contains 14 bands, including 12 bands from 112 

the Sentinel-2 satellite and 2 bands from Digital Elevation Model (DEM) data. The dataset 113 

includes negative background samples such as bare soil, rivers, and buildings. There is a total 114 

of 1.76×106 pixels assigned for landslide within the dataset (Ghorbanzadeh et al., 2022). 115 

The HR-GLDD spans 10 distinct geographic regions, capturing landslide instances across 116 

various geographical environments in South Asia, Southeast Asia, East Asia, South America, 117 
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and Central America. HR-GLDD comprises a total of 1,756 image patches, each standardized 118 

to a size of 128×128 pixels with a spatial resolution of up to 3 meters. The dataset is sourced 119 

from four spectral bands of the PlanetScope satellite. It includes a variety of negative samples, 120 

such as non-landslide terrain features, buildings, and roads, ensuring a comprehensive 121 

representation for model training. There is a total of 2.96×106 pixels assigned for landslide 122 

within the dataset (Meena et al., 2022).  123 

The GVLM dataset spans across six continents and 17 different landslide sites, GVLM 124 

covers a diverse range of geological and climatic conditions, from the lush landscapes of Asia 125 

to the rugged terrain of South America. Comprising 17 pairs of dual-temporal VHR images, 126 

each image pair boasts a spatial resolution of 0.59 meters, ensuring detailed capture of 127 

landslide features and their surrounding environments. GVLM incorporates various negative 128 

samples, including non-landslide landforms, infrastructure such as buildings, and transportation 129 

networks, providing a holistic training ground for models. Image sizes within the GVLM dataset 130 

range from 1,861×1,749 pixels to 10,828×7,424 pixels. There is a total of 3.24×107 pixels 131 

assigned for landslide within the dataset (Zhang et al., 2023). 132 

The CAS Landslide Dataset covers nine different geographic regions spanning South Asia, 133 

Southeast Asia, East Asia, South America, and Central America. Comprising 20,865 image 134 

patches, each standardized to a size of 512×512 pixels, the dataset offers a spatial resolution 135 

ranging from 0.2 to 5 meters. During the cropping process, an overlap setting parameter of 0.5 136 

was used. These images are sourced from unmanned aerial vehicles (UAVs) and satellite 137 

platforms, integrating data from the PlanetScope satellite and other sources. The dataset 138 

removes background images that do not contain landslide pixels and therefore lacks sufficient 139 

background noise as negative samples to enhance the robustness of the model. There is a total 140 

of 1.95×108 pixels assigned for landslide within the dataset (Xu et al., 2024). 141 

In summary, comparing with other remote sensing detection tasks such as land cover/use, 142 

the currently available landslide datasets are exceedingly scarce, predominantly comprising 143 

single remote sensing images with low spatial resolutions. Overall, the available landslide 144 

datasets are exceedingly limited, primarily comprising single remote sensing images with low 145 
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spatial resolution. Most crucially, these datasets lack sufficient annotations of landslide 146 

instances, exhibit high overlap, and suffer from a dearth of diverse negative samples. As a 147 

result, they are ill-equipped to tackle the challenges of mapping landslides in large-scale areas 148 

with complex background objects, especially those sharing spectral and textural characteristics 149 

with landslide surfaces, such as bare soil and rocks. Furthermore, they fail to provide adequate 150 

data sources for effectively training large-scale neural network baseline models. 151 

Table.1 Existing landslide dataset statistics 152 

Dataset Bands Tiles Size Labeling pixels 

Bijie landslide 3 2,773 61×61 ~ 1,197~1,239 7.23×106 

Landslide4sense 14 3,799 64×64 1.76×106 

HR-GLDD 4 1,756 128×128 2.96×106 

GVLM 3 17 
1,861×1,749 ~ 

10,828×7,424 
3.24×107 

CAS Landslide 3 20,865 512×512 1.95×108 

3. Globally Distributed Coseismic Landslide Dataset 153 

(GDCLD) 154 

3.1 Data collection 155 

Our dataset encompasses a catalog of landslides triggered by nine seismic occurrences, 156 

delineated across the Himalayan seismic belt and the Circum-Pacific belt, as depicted in 157 

Figure.1. These regions have witnessed actively seismic events with magnitudes over 5.9, 158 

triggering numerous landslides. We obtained data of these locations from various remote 159 

sensing sources. This section delineates the particulars of the seismic events and the 160 

provenance of the remote sensing data. 161 
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 162 

Figure.1 Location distribution of earthquake-induced landslide events 163 

3.1.1 The 2017 Jiuzhaigou earthquake-triggered landslides 164 

On August 8, 2017, a Mw 6.5 earthquake struck Jiuzhaigou County in Sichuan Province, 165 

China (102.82°E, 33.20°N), triggering 2,498 landslides, predominantly shallow surface slides 166 

and collapses. The largest landslide covered approximately 2.3×105m² (Fan et al., 2018). 167 

Jiuzhaigou, situated on the northeastern margin of the Qinghai-Tibet Plateau within the 168 

tectonically active zone north of the Longmenshan fault, is part of the Mediterranean Himalayan 169 

seismic belt (Fan et al., 2018). The region's average elevation exceeds 3,000m with a maximum 170 

relief of 2,228m and a vegetation cover surpassing 70% (Yi et al., 2020; Chen et al., 2019). 171 

Exposed geological formations include various gray-white sandstones and dolomites from the 172 

Devonian, Carboniferous, Permian, Triassic, and Tertiary periods  (Fang et al., 2022). Post-173 

earthquake, we acquired multiple remote sensing images: 0.2m-resolution UAV image (Phase 174 

One IXU1000) on September 22, 2017, 3m-resolution PlanetScope image on October 13, 2017, 175 

and 0.5m-resolution from Map World (Figure.S1). 176 

3.1.2 The 2017 Mainling earthquake-triggered landslides 177 

On November 18, 2017, a magnitude 6.4 earthquake struck Mainling County (95.02°E, 178 

29.75°N), resulting in three injuries and affecting 12,000 individuals. The earthquake triggered 179 

over 1,000 landslides, obstructing numerous watercourses and covering a total area of 180 

33.61km², with the largest landslide spanning 4.9km² (Hu et al., 2019). Mainling County, located 181 

on the southeastern margin of the Qinghai-Tibet Plateau within the Yarlung Zangbo Grand 182 
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Canyon, is part of the Mediterranean Himalayan seismic zone. This region, with altitudes 183 

ranging from 800 to 7,782m and an average elevation of 2,500m, features a maximum elevation 184 

differential of 2,000m and a robust vegetation coverage of 60% (Gao et al., 2023; Chen et al., 185 

2019). The monsoonal climate here brings annual rainfall between 1,500 and 2,000mm (Huang 186 

et al., 2021). Following the earthquake, we acquired 3m-resolution PlanetScope images on 187 

December 17, 2017, and April 08, 2018, to interpret the landslides (Figure.S2). 188 

3.1.3 The 2018 Hokkaido earthquake 189 

On September 6, 2018, a Mw 6.6 earthquake struck Hokkaido, Japan (142.01°E, 42.69°N), 190 

resulting in 44 fatalities and over 660 injuries. Approximately 80% of the casualties were due to 191 

coseismic landslides. The earthquake triggered over 7,800 landslides, causing extensive 192 

damage to infrastructure. The total area affected by landslides was 23.77 km², with the largest 193 

individual landslide covering 0.5km² (Wang et al., 2019). The region, which receives an annual 194 

precipitation of 1,200–1,800mm—relatively low compared to other parts of Japan (Yamagishi 195 

and Yamazaki, 2018)—is characterized by sandstone, mudstone, siltstone, and shale 196 

formations, overlain by substantial volcanic sediments (Wang et al., 2019). Following the 197 

Jiuzhaigou earthquake, we acquired PlanetScope image with a 3m resolution on December 12, 198 

2018, and Map World image with a 0.5m resolution (Figure.S3). 199 

3.1.4 The 2018 Palu earthquake 200 

On September 28, 2018, the Palu region of Sulawesi, Indonesia, was struck by a Mw 7.5 201 

earthquake with a focal depth of 10 km (0.18°S, 119.84°E). A detailed analysis by Shao et al. 202 

(2023) identified approximately 15,700 co-seismic landslides across a 14,600km² area, with a 203 

combined landslide area of about 43.0km². These landslides were predominantly concentrated 204 

in the mountainous canyon regions south of the epicenter. This study provides a semantic-level 205 

interpretation of these landslides, which were mainly shallow disruptions (Shao et al., 2023). 206 

However, some larger-scale flow slides, rockfalls, and debris flows were also observed. High-207 

resolution Map World image (1m) was utilized to support this analysis (Figure.S4). 208 

earthquake 209 

3.1.5 The 2019 Mesetas earthquake 210 
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The research site is located in the eastern foothills of the Colombian Eastern Cordillera. 211 

On December 24, 2019, the Mesetas Earthquake, with a magnitude of 6.0, struck this region, 212 

as documented by Poveda et al. (2022). The earthquake's epicenter was located at 76.19°W, 213 

3.45°N, triggering approximately 800 co-seismic landslides. The distribution and predominant 214 

orientation of these landslides were influenced by the shear zone confined within the Guapecito 215 

Fault, a subsidiary offshoot of the Algeciras Fault (Poveda et al., 2022). High-resolution 216 

PlanetScope images (3m) was acquired on January 5 and February 12, 2020, to analyze these 217 

phenomena (Figure.S5). 218 

3.1.6 The 2021 Nippes earthquake 219 

On August 14, 2021, a Mw 7.2 earthquake struck the Nippes Mountains in Haiti (73.45°W, 220 

18.35°N). This seismic event, compounded by heavy rainfall from Tropical Storm Grace on 221 

August 16-17, triggered numerous secondary geological hazards across the Tiburon Peninsula. 222 

The disaster resulted in at least 2,246 fatalities and injured over 12,763 individuals (Calais et 223 

al., 2022). The earthquake-induced landslides totaled 4,893, covering an estimated 45.6km², 224 

with the largest individual landslide spanning 3.1×10⁵ m² (Zhao et al., 2022b). The affected area, 225 

with elevations up to 2,300 m (Alpert, 1942), consists mainly of volcanic rocks, such as basalts, 226 

and sedimentary formations, particularly limestones (Harp et al., 2016). Post-earthquake, we 227 

utilized 3m-resolution PlanetScope image (August 29, 2022) and 0.5m-resolution Map World 228 

image to assess the damage (Supplementary Figure 6). 229 

On August 14, 2021, a seismic event registering Mw 7.2 hit in the Nippes Mountains of 230 

Haiti (73.45°W, 18.35°N). This seismic activity, coupled with substantial rainfall from Tropical 231 

Storm Grace between August 16 and 17, precipitated a significant number of secondary 232 

geological hazards in the Tiburon Peninsula. The calamity resulted in a tragic loss of at least 233 

2,246 lives and inflicted injuries upon more than 12,763 individuals (Calais et al., 2022). The 234 

earthquake triggered a total of 4,893 landslides, covering an estimated area of 45.6km2, with 235 

the maximum individual area reaching 3.1×105m2 (Zhao et al., 2022b). The study area, 236 

characterized by elevations reaching up to 2,300 m above sea level (Alpert, 1942). Comprised 237 

predominantly of volcanic rocks, such as basalts, and sedimentary formations, notably 238 
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limestones (Harp et al., 2016). In addition to obtaining 3m-resolution PlanetScope image after 239 

the Nippes earthquake, we also acquired 0.5m-resolution Map World image (Figure.S6). 240 

3.1.7 The 2022 Sumatra earthquake 241 

On February 25, 2022, a Mw 6.1 earthquake struck West Sumatra, Indonesia, at a shallow 242 

depth of 4.9 km. The epicenter was located approximately 20 km from Mount Talakmau 243 

(100.10°E, 0.22°N), a compound volcano rising to about 3,000m. Mount Talakmau, active 244 

during the Holocene, consists of andesite and basalt from the Pleistocene-Holocene epoch 245 

(Basofi et al., 2016). The earthquake induced extensive landslides over a 6km² area on the 246 

volcano's eastern and northeastern flanks. High-resolution PlanetScope image (3m) from 247 

March 5 and April 24, 2022, captured these landslides (Figure.S7). 248 

3.1.8 The 2022 Lushan earthquake 249 

On June 1, 2022, an Mw 5.9 earthquake (102.94°E, 30.37°N) struck Lushan County, China, 250 

resulting in 4 fatalities and 42 injuries, affecting 14,427 individuals. The seismic event triggered 251 

1,063 landslides over a total area of 7.2km², with the largest landslide covering 0.3km² (Zhao 252 

et al., 2022a). This region, located on the southeast margin of the Qinghai-Tibet Plateau, 253 

features an average elevation exceeding 2,000m, with altitudes ranging from 557 to 4,115m 254 

(Tang et al., 2023). It is characterized by lush vegetation covering 80% of the area and 255 

experiences a subtropical monsoon climate with annual rainfall between 1,100 and 1,300mm 256 

(Chen et al., 2019). The geological composition predominantly consists of exposed sandstones 257 

and mudstones (Zhao et al., 2022a). High-resolution imagery, including 3 m-resolution 258 

PlanetScope images, 0.5m-resolution Map World image, and 0.2m-resolution UAV images 259 

acquired on June 13, 2022, using a Sony ILCE-5100, was collected for the affected region 260 

(Figure.S8). 261 

3.1.9 The 2022 Luding earthquake 262 

On September 5, 2022, an Mw 6.8 earthquake struck Luding County, China (102.08°E, 263 

29.59°N), resulting in 93 fatalities. The seismic event triggered approximately 15,000 landslides 264 

over an area of 28.53km², with the largest individual landslide covering 2.4×10⁵m² (Dai et al., 265 

2023). This region lies on the southeastern margin of the Qinghai-Tibet Plateau within the "Y"-266 
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shaped Xianshuihe Fault Zone (Yang et al., 2022b). The geological composition predominantly 267 

includes limestone, sandstone, dolomite, and some intrusive rocks (Dai et al., 2023). In the 268 

aftermath of the earthquake, rapid rescue operations and data collection were undertaken, 269 

utilizing 0.2m-resolution UAV image (acquired on October 7, 2022, via Phase One IXU1000), 270 

3m-PlanetScope image (acquired on September 25, 2022), Map World image (0.5m), and 271 

Gaofen-6 (2m) (Figure.S9). 272 

3.2 Preprocessing of landslide dataset 273 

In the aforementioned nine events, given the focus of public data on geological analysis 274 

rather than semantic segmentation tasks. After performing multi-source data spatial registration, 275 

atmospheric correction and radiometric calibration on remote sensing images, we used QGIS 276 

for landslide interpretation. These labels were delineated with reference to pre-earthquake 277 

remote sensing imagery and post-earthquake multi-source remote sensing image. By 278 

comparing spectral disparities and analyzing morphological attributes between bi-temporal 279 

images, we mapped the semantic landslide labels. (Figure.2).  280 
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 281 

Figure.2 Remote sensing images before and after the earthquake and landslide interpretation 282 

results (landslides marked in red). 283 

Moreover, we actively participated in emergency response and field investigation after 284 

these major earthquakes in China. This further improved the reliability of the landslide 285 

inventories. Figure.3 showcases photographs captured on-site after the Jiuzhaigou earthquake, 286 

Lushan earthquake, and Luding earthquake. Specifically, Figures 3 (A1) and 3 (B1) were taken 287 

in Luding, Sichuan, depicting the extensive devastation caused by concentrated coseismic 288 

landslides, impacting Wandonghe Village and resulting in severe destruction of local 289 

infrastructure. Corresponding aerial photos with a resolution of 0.2m, Figures 3 (A2) and 3 (B2), 290 

offer a comprehensive perspective of the affected area. Figure 3 (C1), taken in Lushan, Sichuan, 291 
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captures the consequences of the earthquake-triggered large landslide dam, which obstructed 292 

the river channel. The corresponding PlanetScope image, Figure 3 (C2), provides an overhead 293 

view of the altered landscape. Furthermore, Figure 3 (D1), taken in the Jiuzhaigou Panda Sea, 294 

illustrates a significant volume of landslide deposits reaching the sea, with the accompanying 295 

UAV image at a resolution of 0.2m, Figure 3 (D2), offering detailed insights. Lastly, Figure 3 (E) 296 

presents a field work photo involved in these surveys. These field investigations serve to 297 

enhance comprehension and subsequent calibration on our remote sensing interpretation. 298 

 299 

Figure.3 Comparison of field survey photos and remote sensing images: A1 and A2 are the 300 

Wandong landslides induced by the 2022 Luding earthquake; B1 and B2 are the Dadu River 301 

Bridge landslide induced by the 2022 Luding earthquake; C1 and C2 are the Baoxing landslides 302 

induce by the 2022 Lushan earthquake; D1 and D2 are the Panda sea landslides induced by 303 

the 2017 Jiuzhaigou earthquake; E is a photo of field work at Jiuzhaigou. 304 

To obtain semantic-level annotations for landslide labels, all remote sensing images were 305 

converted into RGB images (8-bit). the preprocessing stage was conducted through three steps: 306 

binary mask generation, data sampling, and image patching. First, utilizing the Rasterio library 307 

in Python, landslide vector labels for each selected region were transformed into binary masks, 308 

where 1 denoted landslide and 0 represented background. Subsequently, regions densely 309 

populated with landslides were sampled, and both remote sensing images and masks were 310 
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patched and cropped into regular grids, yielding patches of 1,024×1,024 pixels. To mitigate 311 

interference among patches, overlap parameter was set as 0. Given the obvious imbalance 312 

between non-landslide and landslide areas, we manually removed most of the images without 313 

any landslide pixel annotations. The ratios of positive landslide samples and negative non-314 

landslide samples were 8.01% and 91.99%, respectively. Table.2 presents detailed information 315 

regarding different remote sensing data sources for each study case.  316 

Table.2 Detailed information of each event in GDCLD 317 

Events Data sources Resolution Number of tiles 

Jiuzhaigou 2017 (Mw 

6.5) 

UAV 0.2m 2,288 

PlanetScope 3m 176 

Mainling 2017 

(Mw 6.4) 
PlanetScope 3m 118 

Hokkaido 2018 

(Mw 6.6) 

Map World 0.5m 796 

PlanetScope 3m 123 

Palu 2018 

(Mw 7.5) 
Map World 1m 335 

Mesetas 2019 

(Mw 6.0) 
PlanetScope 3m 144 

Haiti 2021 

(Mw 7.2) 

PlanetScope 3m 238 

Map World 0.5m 404 

Sumatra 2022 

(Mw 6.1) 
PlanetScope 3m 110 

Lushan 2022 

(Mw 5.9) 

UAV 0.2m 210 

Map World 0.5m 182 

PlanetScope 3m 110 

Luding 2022 

(Mw 6.6) 

UAV 0.2m 9,252 

Map World 0.5m 1,540 

GF-6 2m 496 
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PlanetScope 3m 190 

Sum - - 16712 

Additionally, to enhance the robustness and generalization capability of deep learning 318 

models, a subset of background noise elements such as clouds, roads, buildings, bare land, 319 

and rocks were manually selected as negative non-landslide samples. The negative samples 320 

can be outlined as follows: diverse roads (Figure.4: (e), (k), (m), (n), (p), (s)), river channels 321 

(Figure.4: (e), (k), (n), (s), (t)), clouds (Figure.4: (o), (r)), barren land (Figure. 4: (c), (h), (q)). 322 

Additionally, human-engineered structures and buildings are also considered (Figure.4: (e), (k)). 323 
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 324 

Figure.4 Display of landslide sample data from different study areas and different remote 325 

sensing data sources: Jiuzhaigou UAV (a), Jiuzhaigou PlanetScope (b), Mainling PlanetScope 326 

(c), Hokkaido PlanetScope(d), Hokkaido Map World (e), Palu Map World (f), Mesetas 327 
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PlanetScope (g), Haiti Map World (h), Haiti PlanetScope (i), Sumatra PlanetScope (j), Lushan 328 

PlanetScope (k), Lushan UAV (l), Luding UAV(m~q), Luding Map World (r), Luding PlanetScope 329 

(s), and Luding Gaofen-6 (t).  330 

4. Experimental setup 331 

After the completion of dataset construction, the experimental phase follows. In this section, 332 

we will introduce several semantic segmentation algorithms used for validating the dataset, the 333 

loss functions and accuracy evaluation metrics employed in the experiments, as well as various 334 

hyperparameter settings utilized during the experiments. 335 

4.1 Segmentation algorithms 336 

In this section, we have selected seven of the most popular semantic segmentation 337 

networks, including four models based on the CNN architecture and three based on the 338 

Transformer architecture. These seven algorithms have medium to large-scale parameter sizes 339 

and computational complexities, and show excellent performance in a variety of remote sensing 340 

semantic scenarios, making them suitable for precision comparison and validation of novel 341 

datasets. 342 

(1) UNet: As one of the earliest and most renowned semantic segmentation models, UNet 343 

is distinguished by its unique U-shaped architecture (Ronneberger et al., 2015). This design 344 

facilitates efficient learning and precise localization by combining high-resolution features from 345 

the contracting path with up-sampled outputs from the expanding path. Both the encoder and 346 

decoder in UNet are composed purely of CNN structures (O'shea and Nash, 2015). This 347 

simplicity, along with a relatively small number of parameters, allows UNet to achieve 348 

exceptional accuracy and rapid inference on small datasets. Consequently, it is widely utilized 349 

in applications such as small-scale object classification, change detection, and medical imaging. 350 

 (2) ResUNet: ResUNet is an advanced variant of the UNet model, incorporating residual 351 

connections to enhance its performance and learning efficiency (Diakogiannis et al., 2020). The 352 

key innovation in ResUNet is the integration of residual blocks within both the encoder and 353 
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decoder paths, which address the vanishing gradient problem and enable the training of deeper 354 

networks (He et al., 2016). These residual blocks allow the network to learn identity mappings, 355 

facilitating gradient flow through the network and improving convergence rates. Similar to UNet, 356 

ResUNet maintains a U-shaped architecture that combines high-resolution features from the 357 

contracting path with up-sampled outputs from the expanding path, ensuring precise 358 

localization and context capture. The combination of residual connections improves feature 359 

reuse and learning efficiency, enabling ResUNet to effectively improve Recall and small target 360 

detection capabilities in semantic segmentation tasks. 361 

 (3) DeepLabV3: DeepLabV3, is a semantic segmentation model known for its 362 

sophisticated use of atrous convolution, or dilated convolution (Chen et al. 2018). This 363 

technique allows the network to capture multi-scale contextual information without losing spatial 364 

resolution, addressing the limitations of traditional convolutional networks in dense prediction 365 

tasks. DeepLabV3 incorporates atrous spatial pyramid pooling to robustly segment objects at 366 

multiple scales by applying atrous convolution with different rates in parallel. This model also 367 

integrates features from both the encoder and decoder paths, enhancing the precision of 368 

boundary delineation. In addition, the architecture of DeepLabV3 utilizes batch normalization 369 

and depth-separable convolution. This design can effectively reduce the complexity and 370 

computational cost of the model, while enabling the model to have stronger feature extraction 371 

capabilities and generalization than simple networks such as UNet. 372 

 (4) HRNet: High-Resolution Network (HRNet) is noted for its innovative approach to 373 

maintaining high-resolution representations throughout the network (Wang et al., 2020). Unlike 374 

traditional models that gradually down-sample the input to extract features, HRNet preserves 375 

high-resolution features by maintaining parallel high-to-low resolution subnetworks. This design 376 

allows HRNet to integrate multi-scale information effectively, ensuring precise localization and 377 

robust feature representation. The network continuously exchanges information across 378 

different resolutions, resulting in superior accuracy and detailed segmentation results. Due to 379 

its ability to retain fine-grained spatial information and adapt to various scales, HRNet excels in 380 

complex tasks such as fine-grained terrain classification, semantic segmentation in urban 381 
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scenes, and fine-grained visual detection. 382 

(5) UperNet: UperNet employs a pyramid feature extraction method, integrating multi-scale 383 

information to capture contextual details across different resolutions (Xiao et al., 2018; Liu et 384 

al., 2022). It utilizes a Feature Pyramid Network (FPN) backbone for hierarchical feature 385 

extraction, enhanced by a global context integration module to enrich overall scene 386 

understanding. Additionally, UperNet incorporates lateral connections for efficient 387 

communication between feature pyramid levels, ensuring seamless information flow and 388 

accurate segmentation. This sophisticated architecture enables UperNet to achieve superior 389 

segmentation performance, particularly in challenging scenarios with complex scenes and 390 

diverse object scales. 391 

(6) SwinUNet: Built upon the Swin Transformer architecture, SwinUNet blends self-392 

attention mechanisms with UNet for exceptional performance (Cao et al., 2022). It inherits Swin 393 

Transformer's hierarchical feature extraction for capturing both local and global contextual 394 

information efficiently (Liu et al., 2021). The self-attention mechanism enables capturing 395 

nuanced relationships in data. SwinUNet integrates UNet's contracting and expanding paths in 396 

decoding, emphasizing spatial detail preservation. This combination empowers SwinUNet to 397 

excel in tasks requiring precise localization and robust contextual understanding. (7) 398 

SegFormer: SegFormer, represents a significant advancement in semantic segmentation by 399 

leveraging a transformer-based architecture (Xie et al., 2021). Unlike traditional CNN 400 

approaches, SegFormer employs a hierarchical transformer encoder to capture multi-scale 401 

contextual information effectively, without relying on complex designs such as positional 402 

encodings or large pre-training datasets. The decoder in SegFormer integrates features from 403 

different scales using lightweight multi-layer perceptron, ensuring efficient and precise 404 

segmentation. This innovative design enables SegFormer to achieve excellent segmentation 405 

results with medium-sized parameters and fast inference speed in high-resolution complex 406 

scenes.4.2 Model training 407 
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4.2 Loss function and accuracy evaluation 408 

Since the landslide detection is a two-class semantic segmentation task, we choose the 409 

Binary Cross-Entropy (De Boer et al., 2005) as the loss function for model training, whose 410 

mathematical expression is shown as follow: 411 

L(y,y�)=-
1
N
� [yi log�y� i�+�1-yi�log(1-y� i)]

N

i=1
(1) 412 

where L is the loss function, N is the number of samples, 𝑦𝑦𝑖𝑖 is the true label (0 or 1) of the i-th 413 

sample, and 𝑦𝑦�𝑖𝑖 is the predicted probability of the i-th sample. 414 

For accuracy evaluation, the following accuracy indicators are calculated through 415 

confusion matrices (Townsend, 1971): precision, recall, F1 score (Chicco and Jurman, 2020) 416 

and mean intersection over union (mIoU) (Rezatofighi et al., 2019). Their calculation formulas 417 

are as follows: 418 

Precision=
TP

TP+FP
(2) 419 

Recall=
TP

TP+FN
(3) 420 

F1=
2×Precision×Recall

Precision+Recall
(4) 421 

mIoU=
1
N
�

TPi

TPi+FPi+FNi

N

i=1
(5) 422 

where the TP is the True Positive, FP is the False Positive, TN is the True Negative and FN is 423 

the False Negative. 424 

4.3 Equipment and Parameter 425 

The deep learning framework employed in this study is conducted based on PaddlePaddle 426 

2.3.2 (Ma et al., 2019), with the environment configured for Python 3.8, CUDA 11.2, and CuDNN 427 

8.3.0. The experimental setup encompasses Intel Xeon CPU, W2255, 3.7GHz, equipped with 428 

256GB of system memory. The GPU infrastructure consists of Tesla V100, with 32GB of video 429 

memory. The operating system employed is Ubuntu 20.04. The model's optimizer is selected 430 

as AdamW (Loshchilov and Hutter, 2017), with an initial learning rate of 0.0006, beta1 set to 431 

0.9, beta2 to 0.999, weight decay to 0.01 and epoch to 100.  432 
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5. Results 433 

To validate the accuracy of the GDCLD dataset, this study will select four types of remote 434 

sensing images (UAV, PlanetScope, Map World image, and Gaofen-6) from five seismic events 435 

(Luding, Jiuzhaigou, Hokkaido, Mainling, and Nippes) as training and validation datasets for 436 

model construction and accuracy evaluation. The ratio of training dataset to validation dataset 437 

is 3:1. Subsequently, to assess the excellent generalization ability of this landslide dataset, we 438 

will choose three types of remote sensing images (UAV, PlanetScope, and Map World image) 439 

from the independent four seismic events (Lushan, Mestas, Sumatra, and Palu) as the test 440 

dataset for generalization testing. 441 

We conducted evaluations on our dataset utilizing the aforementioned seven semantic 442 

segmentation algorithms. After each model is trained for 100 epochs, we meticulously 443 

examined the performance of the GDCLD dataset in landslide identification. we present the 444 

performance of the seven algorithms on the validation dataset in Table.3. 445 

Among these seven algorithms, UNet, ResUNet, DeeplabV3, and HRNet serve as neural 446 

network models with convolutional structures, whereas UperNet, SwinUNet, and SegFormer 447 

are based on transformer-based neural network architectures. From Table.3, it is evident that 448 

Transformer-based semantic segmentation models exhibit superior performance compared to 449 

models based on convolutional structures. Overall, the mIoU of the seven algorithms on 450 

GDCLD validation set spans from 71.07% to 85.06%. Notably, UNet demonstrates the least 451 

detection with the mIoU and F1 score of 71.07% and 79.54%. In contrast, SegFormer yields 452 

the best performance with the accuracy of 91.35%, recall of 91.70%, F1 score of 91.52%, and 453 

mIoU of 85.06%. Figure.5 illustrates the detection results of different models across various 454 

remote sensing data sources. it can be seen that transformer-based semantic segmentation 455 

models achieve superior segmentation outcomes. 456 

 457 

 458 

 459 
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Table.3 Comparison of result on GDCLD validation dataset 460 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 77.05 82.01 79.54 71.07 

ResUNet ResNet-50 78.17 86.48 82.11 71.94 

DeepLabV3 ResNet-50 81.27 86.96 84.02 74.61 

HRNet HRNet-48 81.88 87.21 84.46 75.19 

UperNet ViT-B16 88.18 90.64 89.39 81.97 

SwinUNet - 89.78 92.01 90.72 83.68 

SegFormer MiT-B4 91.35 91.70 91.52 85.06 
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 461 

Figure.5 Comparative results of different algorithms on validation dataset 462 
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To demonstrate the robustness and generalization capability of the dataset-trained models 463 

in other environment, we conducted testing by using four independent events, as illustrated in 464 

Table.4. Overall, the mIoU performance of the algorithms trained on GDCLD ranges from 56.09% 465 

to 72.84%. SegFormer exhibits the best performance, achieving precision of 77.09%, recall of 466 

87.09%, F1 score of 81.88%, and mIoU of 72.84%. we present detailed results of six types of 467 

remote sensing images in these four events in Table.5. The overall mIoU ranges from 69.01% 468 

to 82.31%, while the F1 ranges from 80.63% to 89.30%. Furthermore, we noticed a remarkable 469 

imbalance between Recall and Precision in the predicted results. The recall is always higher 470 

than the precision, as it is crucial to not miss any important landslides for disaster assessment 471 

and rescue operations. From the perspective of remote sensing sensors, except for the 472 

Sumatra incident, higher resolution was directly related to better landslide detection 473 

performance.  474 

Table.4 Comparison of result on test dataset 475 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 61.69 61.22 61.45 56.09 

ResUNet ResNet-50 66.56 64.46 65.49 57.06 

DeepLabV3 ResNet-50 65.26 67.75 66.48 59.73 

HRNet HRNet-48 65.52 72.03 68.62 61.79 

UperNet ViT-B16 69.96 78.08 73.80 65.42 

SwinUNet - 71.56 82.26 76.54 67.18 

SegFormer MiT-B4 77.09 87.09 81.88 72.84 

Table.5 Detection results of SegFormer in different events 476 

Events Image type Precision (%) Recall (%) F1 (%) mIoU (%) 

Lushan 

UAV 74.72 90.35 81.80 72.96 

Map World 76.18 87.35 81.38 71.92 

PlanetScope 81.50 82.28 81.78 69.05 

Palu Map World 73.48 91.24 81.40 71.12 

Mesetas PlanetScope 80.26 80.97 80.63 69.01 

Sumatra PlanetScope 83.57 97.45 89.30 82.31 

Figures.6 to 9 respectively illustrate the detection results for Mesetas (PlanetScope), 477 
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Sumatra (PlanetScope), Palu (Map World image), and Lushan (UAV). The F1 score of the 478 

Mesetas event model is 80.63%, with recall and precision exhibiting relative balance. As 479 

observed in Figure.6, our model demonstrates strong capabilities in detecting and segmenting 480 

the majority of landslides, particularly in regions of mountainous slopes (Figure.6 (d)). In areas 481 

affected by mountain shadows (Figure.6 (b, c, e)), as expected, since, pixel signatures of 482 

shadows are very different than those of landslides. The model effectively identifies most large 483 

landslides but exhibits some omissions in detecting small landslides. In the Sumatra event, we 484 

attained remarkably excellent detection results, with F1 score of 89.30%, Recall of 97.45%, and 485 

Precision of 83.57%, Recall is 13.88% higher than Precision. As illustrated in Figure.7, the 486 

model effectively identifies nearly all landslides (Figure.7 (b, c)). However, there are instances 487 

of missed landslide detection in the lower-right corner of Figure.7 (a). This is due to the apparent 488 

confusion between the landslide accumulation area and river channels, resulting in sub-optimal 489 

detection. In the Palu event, our F1 score yielded a result of 81.40%, with Recall reaching 91.24% 490 

and Precision by 73.48%, Recall is 17.76% higher than Precision. As depicted in Figure.8, the 491 

detection outcomes effectively discriminate between numerous cloud obscuration, bare lands, 492 

and buildings, underscoring the positive efficacy of augmenting negative samples in our dataset 493 

to improve the model's detection capabilities. Similarly, for the Lushan event captured by UAV, 494 

we achieved the F1 score of 81.80%, with Recall and Precision of 90.35% and 74.72%, Recall 495 

exceeding Precision by 15.63%. As shown in Figure.9, in the UAV data, the model 496 

demonstrates exceptional segmentation capabilities for large-scale landslides (Figure.9 (b, c, 497 

d)), while its detection performance for some small-scale disasters is less satisfactory. Overall, 498 

the model trained based on GDCLD demonstrated excellent generalization capabilities across 499 

four independent test datasets. It successfully detected all major landslides and effectively 500 

segmented landslide boundaries. More importantly, the model effectively excluded background 501 

noise from river channels, bare ground in residential areas, and cloud region, showcasing its 502 

remarkable robustness. 503 
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 504 

Figure.6 Mesetas PlanetScope dataset. (a) Regional aerial view. (b-e) Detection results of four 505 

magnified areas. 506 

 507 

Figure.7 Sumatra PlanetScope dataset. (a) Regional aerial view. (b-c) Detection results of two 508 

magnified areas. 509 

https://doi.org/10.5194/essd-2024-239
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



 

28 
 

 510 
Figure.8 Palu Map World dataset. (a) Regional aerial view. (b-c) Detection results of two 511 

magnified areas. 512 

 513 

 514 

Figure.9 Lushan UAV dataset. (a) Regional aerial view. (b-d) Detection results of three 515 

magnified areas. 516 
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6. Discussion 517 

6.1 Sample richness of GDCLD 518 

The GDCLD dataset stands out as the most extensive and comprehensive repository of 519 

landslide data currently available, encompassing landslide data from various geographic 520 

environments and multiple remote sensing sources. the annotated landslide labels within this 521 

dataset tally up to approximately 1.39×109 pixels, roughly six times as many annotations as all 522 

the other publicly accessible landslide datasets (Figure.10). Additionally, this dataset includes 523 

a variety of negative samples with optical characteristics similar to landslides which can 524 

significantly enhance the model's generalization capability. In contrast to other datasets, which 525 

are limited to training small-scale semantic segmentation models like UNet and DeepLabV3 526 

(Xu et al., 2024; Meena et al., 2022; Ghorbanzadeh et al., 2022), the GDCLD dataset can 527 

effectively train large-scale semantic segmentation models such as Transformers. Moreover, 528 

unlike Sentinel-2 and Landsat satellite image, where moderate spatial resolutions can limit the 529 

accurate delineation of landslide boundaries, GDCLD provides remarkably high spatial 530 

resolutions (0.2m~3m) and diverse spectral characteristics. This dataset not only performs well 531 

in landslide mapping across diverse geographical settings, but also serves as a baseline 532 

dataset for transfer learning in landslide detection. 533 

 534 
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Figure.10 Statistical comparison of landslide pixels in different landslide datasets. 535 

6.2 Enhancement in model generalization 536 

In the GDCLD dataset, a general selection of remote sensing data from multiple sources 537 

enhances the overall generalization capability of the landslide identification model. To 538 

substantiate this assertion, we conduct a comparative analysis between models trained by 539 

single- and multi-source datasets. The datasets from different sensors are segregated, and the 540 

SegFormer, which is an advanced and widely used transformer-based algorithm, is applied to 541 

train the landslide models. Their performance was verified by their respective test dataset as 542 

well as an independent event of Lushan earthquake.  543 

The accuracy metrics for the validation dataset are presented in Table.6. Across four 544 

remote sensing sources—PlanetScope, Gaofen-6, Map World, and UAV—models trained on 545 

single-source datasets consistently demonstrate higher performance on test samples, with 546 

mIoU indices surpassing those of multi-source datasets by 2.26%, 1.63%, 0.64%, and 0.13%, 547 

respectively. However, a noteworthy observation emerges when models are transferred to the 548 

independent Lushan earthquake case (Table.7). The model trained on the multi-source dataset 549 

achieves significantly enhanced performance compared to the model derived from single-550 

source counterpart. The mIoU of UAV-, Map World- and PlanetScope based datasets are 551 

improved by 8.16%, 7.95% and 0.09%. As depicted in Figure.11, the models trained by multi-552 

source images exhibit higher recalls, accurate landslide boundaries, and robust resistance to 553 

interference. The yellow circle highlights the enhancements of models trained by multi-source 554 

images compared to single-source images. From the perspective of data sources, Map World 555 

contains different types of images (such as Maxer and Worldview), encompassing multitude of 556 

spectral responses across these sensors. the UAV image in the Lushan event utilize the sensor 557 

different from those in the Luding and Jiuzhaigou event, resulting in noticeable spectrum 558 

differences in images. Consequently, compared to a single remote sensing source, the 559 

generalization capability of the models trained by multi-source images demonstrate a more 560 

pronounced improvement. In contrast, the PlanetScope image, obtaining from the same 561 

https://doi.org/10.5194/essd-2024-239
Preprint. Discussion started: 18 July 2024
c© Author(s) 2024. CC BY 4.0 License.



 

31 
 

satellite sensors, exhibits smaller spectral variations in various images. As a result, the model 562 

trained on both single and multi-source datasets achieve similar performance. This highlights 563 

the importance of datasets with diverse images sources for enhanced model performance in 564 

landslide mapping. This indicate that the utilization of multi-source remote sensing datasets 565 

enables the model to learn the spectral characteristics of the images from diverse sensors. 566 

Hence, the model trained by GDCLD possesses enhanced generalization ability and 567 

robustness, enabling it to effectively perform landslide mapping in independent cases without 568 

prior knowledge. 569 

Table.6 GDCLD performances on validation dataset through single- and multi-source dataset 570 

Data source Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

Single source 

UAV 92.20 92.90 92.54 87.07 

PlanetScope 87.98 87.81 87.89 80.11 

Map World 86.49 90.01 88.21 80.66 

Gaofen-6 91.25 88.04 89.62 83.61 

Multiple source 

UAV 91.91 92.64 92.27 86.94 

PlanetScope 85.01 87.79 86.37 77.85 

Map World 86.42 89.12 87.74 80.02 

Gaofen-6 90.49 85.20 87.77 81.98 

Table.7 GDCLD performances on unseen dataset through single- and multi-source dataset 571 

Data source Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

Single source 

UAV 64.92 90.68 75.67 64.80 

PlanetScope 81.25 82.29 81.75 68.96 

Map World 68.39 80.16 73.81 63.97 

Multiple source 

UAV 74.72 90.35 81.80 72.96 

PlanetScope 81.50 82.28 81.78 69.05 

Map World 76.18 87.35 81.38 71.92 
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 572 

Figure.11 Comparative results of ablation experiments between multi- and single-source (a). 573 

UAV, (b). Map World, (c). PlanetScope 574 

6.3 Model based on GDCLD performance on existing datasets 575 

To assess the robustness and generalization capabilities of the GDCLD dataset, we 576 

employ SegFormer trained on the GDCLD dataset (G-S model) to identify landslides within 577 

three distinct datasets: HR-GLDD, GVLM, and CAS. Initially, we standardize the data from 578 

these three datasets into 1024×1024 remote sensing tiles. Subsequently, utilizing the M-S 579 

model, we conduct landslide identification across all these datasets. Table.8 demonstrates 580 

favorable performance of the model across these diverse datasets. For instance, in the HR-581 

GLDD dataset, which shares similarities with the PlanetScope image within GDCLD, the model 582 

achieves an mIoU of 76.97%, indicating a balance between Precision and Recall metrics. 583 

Similarly, when applied to the GVLM dataset, leveraging Map World image, our dataset exhibits 584 

robust predictive outcomes, resulting in a comprehensive mIoU of 70.07%. Likewise, for the 585 

CAS dataset, GDCLD demonstrates strong generalization capabilities, yielding an outstanding 586 
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comprehensive metric with mIoU = 76.91%, alongside balanced Recall and Precision metrics. 587 

Although all landslide samples contained in GDCLD are induced by seismic activity, our 588 

model demonstrates good detection capabilities for rainfall-induced landslides. These two 589 

categories exhibit distinct spectral characteristics from their surrounding environments. 590 

Consequently, models trained on GDCLD exhibit proficient detection capabilities for rainfall-591 

induced landslides (cite). We present the identification performance of GDCLD-based model 592 

for rainfall-induced landslides from the GVLM dataset in Table.8 and Figure.12. Figure.12 593 

underscores the excellent detection performance of the M-S model on rainfall-induced 594 

landslides in the GVLM dataset. Despite occasional misclassifications of small-size targets, the 595 

model effectively delineates the majority of rain-induced landslides. the precision metrics in 596 

Table.8 affirm this observation with an mIoU reaching 78.22% and both recall and precision 597 

exceeding 85%. This highlights the robust generalization capability of the model trained by our 598 

dataset, enabling effective identification of rainfall-induced landslides. 599 

Table.8 Validation results of other public datasets 600 

Dataset Precision (%) Recall (%) F1 (%) mIoU (%) 

HR-GLDD 84.88 86.81 85.84 76.97 

GVLM 72.83 87.54 80.68 70.07 

CAS 82.95 86.35 84.62 76.91 

GVLM-rainfall 85.88 86.71 86.29 78.22 
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 601 

Figure.12 Detection results of rainfall landslides by G-S model in GVLM dataset 602 

7. Data availability 603 

The data is freely available at https://doi.org/10.5281/zenodo.11369484 (Fang et al., 2024). 604 

There are compressed folders, namely train_dataset.zip, val_dataset.zip and test_dataset.zip. 605 

The train_dataset.zip file contains 11,162 TIFF-format RGB images and their corresponding 606 

binary label data, with each image having dimensions of 1024×1024 pixels. The val_dataset.zip 607 

file comprises 4,459 TIFF-format RGB images and binary label data, with each image also 608 

sized at 1024×1024 pixels. The test_data.zip file includes seven original remote sensing 609 

images from four landslide events, with images in TIFF-format RGB and labels in TIFF-format 610 

binary data, though the image dimensions vary. For each label, "0" indicates the background, 611 

while "1" denotes the landslide. In addition, the other original data of UAV, Map World and 612 

Gaofen-6 are non-public data. If you need to use them, please contact the corresponding author. 613 
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The original PlanetScope imageries can be found at https://www.planet.com/ (Planet Team, 614 

2019).  615 

8. Code availability 616 

Code used to produce data described in this paper, as well as to create figures and tables, 617 

can be accessed at https://github.com/PaddlePaddle/PaddleSeg. 618 

9. Conclusion 619 

Landslide mapping across extensive geographic areas using remote sensing proves to be 620 

a significant challenge. Although previous attempts have produced landslide datasets and 621 

advanced automation and intelligence, they have not been able to overcome limitations of 622 

specific events and data sources. In this research, we proposed the Globally Distributed 623 

Coseismic Landslide Dataset (GDCLD), an innovative resource crafted to autonomously and 624 

precisely tackle the intricacies of landslide mapping. We made two significant contributions in 625 

this word. Firstly, we meticulously interpreted multi-source remote sensing data to create a 626 

comprehensive dataset for landslide detection. This dataset contains 1.39×109 annotated 627 

landslide pixels and remote sensing image at four different resolutions, spanning nine global 628 

regions. It successfully addresses the crucial lack of large-scale datasets in current landslide 629 

identification research. Secondly, we utilized GDCLD -trained model to showcase its robustness 630 

and generalization in landslide identification across diverse geographical contexts. Our 631 

proposed dataset shows a great potential in rapid response and emergency management of 632 

geological hazards. Although the landslide samples are obtained from seismic events, the 633 

trained model enable to capture and learn the characteristic differences between landslides 634 

and the surroundings, making them suitable for landslide mapping beyond seismic-triggered 635 

events, such as those caused by rainfall. The comparative analyses with existing datasets 636 

highlight its effectiveness as the data base of deep learning model in mapping landslides across 637 

various global regions. This work has great practical implications for prevention and mitigation 638 

of geological hazard worldwide.  639 
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