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Abstract 15 

Rapid and accurate mapping of landslides triggered by extreme events is essential for 16 

effective emergency response, hazard mitigation, and disaster management. However, the 17 

development of generalized machine learning models for landslide detection has been hindered 18 

by the absence of a high-resolution, globally distributed, event-based dataset. To address this 19 

gap, we introduce the Globally Distributed Coseismic Landslide Dataset (GDCLD), a 20 

comprehensive dataset that integrates multi-source remote sensing images, including 21 

PlanetScope, Gaofen-6, Map World, and Unmanned Aerial Vehicle data, with varying 22 

geographical and geological background for nine events across the globe. In this study, we 23 

evaluated the effectiveness of GDCLD by comparing the mapping performance of seven state-24 

of-the-art semantic segmentation algorithms. These models were further tested by three 25 

different types of remote sensing images in four independent regions, while the GDCLD-26 

SegFormer model get the best performance. Additionally, we extended the evaluation to a 27 

rainfall-induced landslide dataset, where the models demonstrated excellent performance as 28 

well, highlighting the dataset's applicability to landslide segmentation triggered by other factors. 29 

Our results confirm the superiority of GDCLD in remote sensing landslide detection modeling, 30 

offering a comprehensive data base for rapid landslide assessment following future unexpected 31 

events worldwide. 32 

 33 

  34 
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1. Introduction 35 

Landslides triggered by extreme events such as earthquakes and heavy precipitation are 36 

responsible for most of the damage to mountainous settlements (Huang and Fan, 2013). In 37 

some cases, landslides can be even more disastrous than the triggering events themselves, as 38 

they can render emergency responses ineffective by cutting off roads and other transportation 39 

lifelines (Cigna et al., 2012; Huang et al., 2012; Valagussa et al., 2019; Chau et al., 2004). 40 

Therefore, the rapid and accurate identification of landslides after extreme events is crucial for 41 

timely and quantitative assessment of disasters. This is especially important for emergency 42 

rescue operations and subsequent risk management in mountainous areas with complex 43 

environments and possibly inconvenient transportation routes. (Cigna et al., 2018; Chau et al., 44 

2004; Gorum et al., 2011).  45 

Conventional landslide mapping efforts rely on traditional surveying methods such as 46 

topographic total stations, field observations to collect essential data on slope stability and 47 

terrain morphology (Brardinoni et al., 2003; Coe et al., 2003; Zhong et al., 2020). These 48 

methods may not capture the full extent of terrain dynamics due to their static nature 49 

(Metternicht et al., 2005). Consequently, these methods are not effective for detailed landslide 50 

mapping, especially when traversing the affected and unstable regions for field surveys is not 51 

possible. This was particularly true for the Wenchuan co-seismic landslides, which mobilized 52 

large amounts of material that obstructed roads, complicating disaster response efforts as well 53 

as surveying and mapping activities (Gorum et al., 2011). With the development of remote 54 

sensing technology in the past decades, landslide investigation has been supported by digital 55 

mapping, which reduces time and labor costs (Fiorucci et al., 2011; Fiorucci et al., 2019; Gao 56 

and Maro, 2010; Guzzetti et al., 2012). This mapping has also been enhanced by various 57 

modalities of sensors, such as synthetic aperture radar (Mondini et al., 2021; Nava et al., 2021), 58 

multi-spectral (Udin et al., 2019), and hyper-spectral (Ye et al., 2019). However, visual 59 

identification is highly subjective due to operator experience, and the interpretation of events 60 

involving numerous landslides is still time-consuming. Therefore, this subjectivity and the time-61 



 

4 
 

consuming nature of interpretation hinder the reliability and efficiency of landslide mapping, for 62 

example, after major events such as the Wenchuan, China (2008), and Gorkha, Nepal (2015) 63 

earthquakes. 64 

Generally, the ideal solution is to develop automated models or tools that can save time 65 

and costs while ensuring an objective protocol in the mapping process (Casagli et al., 2023). 66 

While some researchers have endeavored to employ machine learning or deep learning in 67 

constructing these models, most of them lack the generalization capability for application across 68 

diverse environmental backgrounds and remote sensing images (Burrows et al., 2019; Bhuyan 69 

et al., 2023; Li et al., 2016; Liu et al., 2022; Lu et al., 2019; Luppino et al., 2022; Meena et al., 70 

2021; Soares et al., 2022; Yang et al., 2022a; Mohan et al., 2021; Ss and Shaji, 2022; Li et al., 71 

2024). To improve such models, more abundant data that consider the diverse 72 

geomorphological and climatic settings where landslides occur are essential. The Bijie landslide 73 

dataset, based on Map World image, presents a small-scale dataset of mountainous landslides, 74 

filling the gap in landslide detection tasks for the first time (Ji et al., 2020). Landslide4sense, 75 

based on Sentinel-2 image, introduces a multispectral landslide dataset, pioneering semantic-76 

level annotation of landslides (Ghorbanzadeh et al., 2022). The HRGLDD and GVLM datasets, 77 

based on PlanetScope and Google Earth image respectively, propose global-scale high-78 

resolution landslide datasets (Meena et al., 2022; Zhang et al., 2023). However, these datasets 79 

are limited by their reliance on single remote sensing data sources, restricting the applicability 80 

of models across different sensors and resolutions. The CAS dataset introduces a mountain 81 

landslide dataset containing various remote sensing data sources (Xu et al., 2024). However, 82 

due to its limited annotated landslide quantity, high image overlap, and lack of negative samples 83 

(background/non-landslide), it is still insufficient to effectively generalize to landslide automatic 84 

mapping tasks in various complex environments especially where signatures of landslides often 85 

resemble nearby terrain. 86 

Therefore, there is an urgent need to develop a carefully curated and diverse dataset. Such 87 

a dataset would facilitate the rapid and accurate mapping of landslides using available prior 88 

knowledge. Hence, we present a comprehensive landslide dataset derived from nine 89 
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earthquake-triggered landslide events, encompassing multi-sensor images from 3m-90 

PlanetScope, 2m-Gaofen-6, 0.5m-Map World, and 0.2m-UAV. This work addresses the 91 

shortcomings of existing datasets in terms of accuracy and generalization for training large and 92 

complex deep-learning models. It is of great significance for accurate, rapid, and automatic 93 

mapping of landslides occurring anywhere in the world, providing strong support for efficient 94 

geohazard emergency response and investigation. 95 

The paper is structured as follows: Section 2 reviews existing high-quality landslide 96 

datasets to provide an overview of the current state of research. Section 3 introduces the data 97 

collection and preparation process to showcase the extensive research events and scientific 98 

methodology behind our data production. Section 4 describes the semantic segmentation 99 

algorithms, loss functions, and parameter settings used in this study, and shows their rationality. 100 

Section 5 presents the results, including the training, validation, and testing outcomes of the 101 

dataset, as well as the generalization ability of the GDCLD trained model in independent 102 

regions. Section 6 discusses the innovation and effectiveness of GDCLD, illustrating its 103 

effective application in several landslide events. 104 

2. Related work 105 

The most effective approach for landslide mapping currently involves image segmentation, 106 

and computer vision segmentation tasks depend heavily on high-quality data to build accurate 107 

models. However, landslide segmentation tasks have developed relatively recently compared 108 

to other computer vision applications, resulting in only a limited number of studies that have 109 

constructed datasets for various landslide events. In this section, we review some of these 110 

landslide segmentation datasets and provide detailed information on each (Table.1). 111 

The Bijie landslide dataset comprises high-resolution satellite images captured in 112 

landslide-prone areas of Guizhou province, China. The dataset includes 770 landslide samples 113 

and 2,003 non-landslide samples. The positive samples consist of rockfalls, rockslides, and a 114 

small number of debris avalanches, while the negative samples include mountains, villages, 115 

roads, rivers, and farmland, among others. The image resolutions vary from 61×61 pixels to 116 
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1,239×1,197 pixels, with RGB channels. There is a total of 7.23×106 pixels assigned for 117 

landslide within the dataset (Ji et al., 2020).  118 

The landslide4sense dataset consists of multispectral satellite images captured across four 119 

distinct regions. This dataset comprises 3,799 images, each with dimensions of 64×64 pixels 120 

and a spatial resolution of 10 meters. Each image contains 14 bands, including 12 bands from 121 

the Sentinel-2 satellite and 2 bands from Digital Elevation Model (DEM) data. The dataset 122 

includes negative background samples such as bare soil, rivers, and buildings. There is a total 123 

of 1.76×106 pixels assigned for landslide within the dataset (Ghorbanzadeh et al., 2022). 124 

The HR-GLDD spans 10 distinct geographic regions, capturing landslide instances across 125 

various geographical environments in South Asia, Southeast Asia, East Asia, South America, 126 

and Central America. HR-GLDD comprises a total of 1,756 image patches, each standardized 127 

to a size of 128×128 pixels with a spatial resolution of up to 3 meters. The dataset is sourced 128 

from four spectral bands of the PlanetScope satellite. It includes a variety of negative samples, 129 

such as non-landslide terrain features, buildings, and roads, ensuring a comprehensive 130 

representation for model training. There is a total of 2.96×106 pixels assigned for landslide 131 

within the dataset (Meena et al., 2022).  132 

The GVLM dataset spans across six continents and 17 different landslide sites, GVLM 133 

covers a diverse range of geological and climatic conditions, from the lush landscapes of Asia 134 

to the rugged terrain of South America. Comprising 17 pairs of dual-temporal VHR images, 135 

each image pair boasts a spatial resolution of 0.59 meters, ensuring detailed capture of 136 

landslide features and their surrounding environments. GVLM incorporates various negative 137 

samples, including non-landslide landforms, infrastructure such as buildings, and transportation 138 

networks, providing a holistic training ground for models. Image sizes within the GVLM dataset 139 

range from 1,861×1,749 pixels to 10,828×7,424 pixels. There is a total of 3.24×107 pixels 140 

assigned for landslide within the dataset (Zhang et al., 2023). 141 

The CAS Landslide Dataset covers nine different geographic regions spanning South Asia, 142 

Southeast Asia, East Asia, South America, and Central America. Comprising 20,865 image 143 

patches, each standardized to a size of 512×512 pixels, the dataset offers a spatial resolution 144 
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ranging from 0.2 to 5 meters. During the cropping process, an overlap setting parameter of 0.5 145 

was used. These images are sourced from unmanned aerial vehicles (UAVs) and satellite 146 

platforms, integrating data from the PlanetScope satellite and other sources. The dataset 147 

removes background images that do not contain landslide pixels and therefore lacks sufficient 148 

background noise as negative samples to enhance the robustness of the model. There is a total 149 

of 1.95×108 pixels assigned for landslide within the dataset (Xu et al., 2024). 150 

In summary, comparing with other remote sensing detection tasks such as land cover/use, 151 

the currently available landslide datasets are exceedingly scarce, predominantly comprising 152 

single remote sensing images with low spatial resolutions. Overall, the available landslide 153 

datasets are exceedingly limited, primarily comprising single remote sensing images with low 154 

spatial resolution. Most crucially, these datasets lack sufficient annotations of landslide 155 

instances, exhibit high overlap, and suffer from a dearth of diverse negative samples. As a 156 

result, they are ill-equipped to tackle the challenges of mapping landslides in large-scale areas 157 

with complex background objects, especially those sharing spectral and textural characteristics 158 

with landslide surfaces, such as bare soil and rocks. Furthermore, they fail to provide adequate 159 

data sources for effectively training large-scale neural network baseline models. 160 

Table.1 Existing landslide dataset statistics 161 

Dataset Bands events 
Tiles Landslides 

number 
Labeling pixels 

Bijie landslide 3 1 2773 770 7.23×106 

Landslide4sense 14 4 3799 >30000 1.76×106 

HR-GLDD 4 13 1756 7193 2.96×106 

GVLM 3 17 17 - 3.24×107 

CAS Landslide 3 9 20865 - 1.95×108 
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3. Globally Distributed Coseismic Landslide Dataset 162 

(GDCLD) 163 

The creation of the GDCLD dataset can be broadly divided into two main components: 164 

landslide data collection and remote sensing data processing. In the first part, we compiled 165 

recent landslide events triggered by earthquakes worldwide over the past seven years and 166 

obtained the corresponding remote sensing image. The second part details the process of 167 

annotating landslide labels and the methodology used to create the standard dataset. The 168 

workflow is illustrated in Figure.1. 169 

 170 

Figure.1 The workflow of producing GDCLD 171 

3.1 Data collection 172 

Our dataset encompasses a catalog of landslides triggered by nine seismic occurrences, 173 

delineated across the Himalayan seismic belt and the Circum-Pacific belt, as depicted in 174 

Figure.2. These regions have witnessed actively seismic events with magnitudes over 5.9, 175 

triggering numerous landslides (Table.2). We obtained data of these locations from various 176 

remote sensing sources. This section delineates the particulars of the seismic events and the 177 

provenance of the remote sensing data. 178 
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Table.2 Summary table of landslide event information in GDCLD 179 

Events Mw time 

Geographic 

coordinates 

Landslide 

number 

Total landslide 

area (km2) 

Jiuzhaigou 6.5 2017 (102.82°E, 33.20°N) 2498 14.5 

Mainling 6.4 2017 (95.02°E, 29.75°N) 1448 33.6 

Hokkaido 6.6 2018 (142.01°E, 42.69°N) 7962 23.8 

Palu 7.5 2018 (119.84°E, 0.18°S) 15700 43.0 

Mesetas 6.0 2019 (76.19°W, 3.45°N) 804 8.5 

Nippes 7.2 2021 (73.45°W, 18.35°N) 4893 45.6 

Sumatra 6.1 2022 (100.10°E, 0.22°N) 602 10.6 

Lushan 5.9 2022 (102.94°E, 30.37°N) 1063 7.2 

Luding 6.8 2022 (102.08°E, 29.59°N) 15163 28.53 

 180 

Figure.2 Distribution of earthquake-triggerred landslide events 181 

3.1.1 The 2017 Jiuzhaigou earthquake-triggered landslides 182 

On August 8, 2017, a Mw 6.5 earthquake struck Jiuzhaigou County in Sichuan Province, 183 

China (102.82°E, 33.20°N), triggering 2,498 landslides, predominantly shallow surface slides 184 

and collapses. The largest landslide covered approximately 2.3×105m² (Fan et al., 2018). 185 

Jiuzhaigou, situated on the northeastern margin of the Qinghai-Tibet Plateau within the 186 

tectonically active zone north of the Longmenshan fault, is part of the Mediterranean Himalayan 187 

seismic belt (Fan et al., 2018). The region's average elevation exceeds 3,000m with a maximum 188 
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relief of 2,228m and a vegetation cover surpassing 70% (Yi et al., 2020; Chen et al., 2019). 189 

Exposed geological formations include various gray-white sandstones and dolomites from the 190 

Devonian, Carboniferous, Permian, Triassic, and Tertiary periods  (Fang et al., 2022). Post-191 

earthquake, we acquired multiple remote sensing images: 0.2m-resolution UAV image (Phase 192 

One IXU1000) on September 22, 2017, 3m-resolution PlanetScope image on October 13, 2017, 193 

and 0.5m-resolution from Map World (Figure.S1). 194 

3.1.2 The 2017 Mainling earthquake-triggered landslides 195 

On November 18, 2017, a magnitude 6.4 earthquake struck Mainling County (95.02°E, 196 

29.75°N), resulting in three injuries and affecting 12,000 individuals. The earthquake triggered 197 

over 1,000 landslides, obstructing numerous watercourses and covering a total area of 198 

33.61km², with the largest landslide spanning 4.9km² (Hu et al., 2019). Mainling County, located 199 

on the southeastern margin of the Qinghai-Tibet Plateau within the Yarlung Zangbo Grand 200 

Canyon, is part of the Mediterranean Himalayan seismic zone. This region, with altitudes 201 

ranging from 800 to 7,782m and an average elevation of 2,500m, features a maximum elevation 202 

differential of 2,000m and a robust vegetation coverage of 60% (Gao et al., 2023; Chen et al., 203 

2019). The monsoonal climate here brings annual rainfall between 1,500 and 2,000mm (Huang 204 

et al., 2021). Following the earthquake, we acquired 3m-resolution PlanetScope images on 205 

December 17, 2017, and April 08, 2018, to interpret the landslides (Figure.S2). 206 

3.1.3 The 2018 Hokkaido earthquake 207 

On September 6, 2018, a Mw 6.6 earthquake struck Hokkaido, Japan (142.01°E, 42.69°N), 208 

resulting in 44 fatalities and over 660 injuries. Approximately 80% of the casualties were due to 209 

coseismic landslides. The earthquake triggered over 7,800 landslides, causing extensive 210 

damage to infrastructure. The total area affected by landslides was 23.77 km², with the largest 211 

individual landslide covering 0.5km² (Wang et al., 2019). The region, which receives an annual 212 

precipitation of 1,200–1,800mm—relatively low compared to other parts of Japan (Yamagishi 213 

and Yamazaki, 2018)—is characterized by sandstone, mudstone, siltstone, and shale 214 

formations, overlain by substantial volcanic sediments (Wang et al., 2019). Following the 215 

Hokkaido earthquake, we acquired PlanetScope image with a 3m resolution on December 12, 216 
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2018, and Map World image with a 0.5m resolution (Figure.S3). 217 

3.1.4 The 2018 Palu earthquake 218 

On September 28, 2018, the Palu region of Sulawesi, Indonesia, was struck by a Mw 7.5 219 

earthquake with a focal depth of 10 km (0.18°S, 119.84°E). A detailed analysis by Shao et al. 220 

(2023) identified approximately 15,700 co-seismic landslides across a 14,600km² area, with a 221 

combined landslide area of about 43.0km². These landslides were predominantly concentrated 222 

in the mountainous canyon regions south of the epicenter. This study provides a semantic-level 223 

interpretation of these landslides, which were mainly shallow disruptions (Shao et al., 2023). 224 

However, some larger-scale flow slides, rockfalls, and debris flows were also observed. High-225 

resolution Map World image (1m) was utilized to support this analysis (Figure.S4). 226 

earthquake 227 

3.1.5 The 2019 Mesetas earthquake 228 

The research site is located in the eastern foothills of the Colombian Eastern Cordillera. 229 

On December 24, 2019, the Mesetas Earthquake, with a magnitude of 6.0, struck this region, 230 

as documented by Poveda et al. (2022). The earthquake's epicenter was located at 76.19°W, 231 

3.45°N, triggering approximately 800 co-seismic landslides. The distribution and predominant 232 

orientation of these landslides were influenced by the shear zone confined within the Guapecito 233 

Fault, a subsidiary offshoot of the Algeciras Fault (Poveda et al., 2022). High-resolution 234 

PlanetScope images (3m) was acquired on January 5 and February 12, 2020, to analyze these 235 

phenomena (Figure.S5). 236 

3.1.6 The 2021 Nippes earthquake 237 

On August 14, 2021, a Mw 7.2 earthquake struck the Nippes Mountains in Haiti (73.45°W, 238 

18.35°N). This seismic event, compounded by heavy rainfall from Tropical Storm Grace on 239 

August 16-17, triggered numerous secondary geological hazards across the Tiburon Peninsula. 240 

The disaster resulted in at least 2,246 fatalities and injured over 12,763 individuals (Calais et 241 

al., 2022). The earthquake-induced landslides totaled 4,893, covering an estimated 45.6km², 242 

with the largest individual landslide spanning 3.1×10⁵ m² (Zhao et al., 2022b). The affected area, 243 

with elevations up to 2,300 m (Alpert, 1942), consists mainly of volcanic rocks, such as basalts, 244 
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and sedimentary formations, particularly limestones (Harp et al., 2016). Post-earthquake, we 245 

utilized 3m-resolution PlanetScope image (August 29, 2022) and 0.5m-resolution Map World 246 

image to assess the damage (Supplementary Figure 6). 247 

On August 14, 2021, a seismic event registering Mw 7.2 hit in the Nippes Mountains of 248 

Haiti (73.45°W, 18.35°N). This seismic activity, coupled with substantial rainfall from Tropical 249 

Storm Grace between August 16 and 17, precipitated a significant number of secondary 250 

geological hazards in the Tiburon Peninsula. The calamity resulted in a tragic loss of at least 251 

2,246 lives and inflicted injuries upon more than 12,763 individuals (Calais et al., 2022). The 252 

earthquake triggered a total of 4,893 landslides, covering an estimated area of 45.6km2, with 253 

the maximum individual area reaching 3.1×105m2 (Zhao et al., 2022b). The study area, 254 

characterized by elevations reaching up to 2,300 m above sea level (Alpert, 1942). Comprised 255 

predominantly of volcanic rocks, such as basalts, and sedimentary formations, notably 256 

limestones (Harp et al., 2016). In addition to obtaining 3m-resolution PlanetScope image after 257 

the Nippes earthquake, we also acquired 0.5m-resolution Map World image (Figure.S6). 258 

3.1.7 The 2022 Sumatra earthquake 259 

On February 25, 2022, a Mw 6.1 earthquake struck West Sumatra, Indonesia, at a shallow 260 

depth of 4.9 km. The epicenter was located approximately 20 km from Mount Talakmau 261 

(100.10°E, 0.22°N), a compound volcano rising to about 3,000m. Mount Talakmau, active 262 

during the Holocene, consists of andesite and basalt from the Pleistocene-Holocene epoch 263 

(Basofi et al., 2016). The earthquake induced extensive landslides over a 6km² area on the 264 

volcano's eastern and northeastern flanks. High-resolution PlanetScope image (3m) from 265 

March 5 and April 24, 2022, captured these landslides (Figure.S7). 266 

3.1.8 The 2022 Lushan earthquake 267 

On June 1, 2022, an Mw 5.9 earthquake (102.94°E, 30.37°N) struck Lushan County, China, 268 

resulting in 4 fatalities and 42 injuries, affecting 14,427 individuals. The seismic event triggered 269 

1,063 landslides over a total area of 7.2km², with the largest landslide covering 0.3km² (Zhao 270 

et al., 2022a). This region, located on the southeast margin of the Qinghai-Tibet Plateau, 271 

features an average elevation exceeding 2,000m, with altitudes ranging from 557 to 4,115m 272 
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(Tang et al., 2023). It is characterized by lush vegetation covering 80% of the area and 273 

experiences a subtropical monsoon climate with annual rainfall between 1,100 and 1,300mm 274 

(Chen et al., 2019). The geological composition predominantly consists of exposed sandstones 275 

and mudstones (Zhao et al., 2022a). High-resolution imagery, including 3 m-resolution 276 

PlanetScope images, 0.5m-resolution Map World image, and 0.2m-resolution UAV images 277 

acquired on June 13, 2022, using a Sony ILCE-5100, was collected for the affected region 278 

(Figure.S8). 279 

3.1.9 The 2022 Luding earthquake 280 

On September 5, 2022, an Mw 6.8 earthquake struck Luding County, China (102.08°E, 281 

29.59°N), resulting in 93 fatalities. The seismic event triggered approximately 15,000 landslides 282 

over an area of 28.53km², with the largest individual landslide covering 2.4×10⁵m² (Dai et al., 283 

2023). This region lies on the southeastern margin of the Qinghai-Tibet Plateau within the "Y"-284 

shaped Xianshuihe Fault Zone (Yang et al., 2022b). The geological composition predominantly 285 

includes limestone, sandstone, dolomite, and some intrusive rocks (Dai et al., 2023). In the 286 

aftermath of the earthquake, rapid rescue operations and data collection were undertaken, 287 

utilizing 0.2m-resolution UAV image (acquired on October 7, 2022, via Phase One IXU1000), 288 

3m-PlanetScope image (acquired on September 25, 2022), Map World image (0.5m), and 289 

Gaofen-6 (2m) (Figure.S9). 290 

3.2 Preprocessing of landslide dataset 291 

In the aforementioned nine events, the available public data primarily focuses on geological 292 

analysis rather than tasks related to semantic segmentation. After performing multi-source data 293 

spatial registration, atmospheric correction and radiometric calibration on remote sensing 294 

images, we used QGIS for landslide interpretation. These labels were delineated with reference 295 

to pre-earthquake remote sensing imagery and post-earthquake multi-source remote sensing 296 

image. By comparing spectral disparities and analyzing morphological attributes between bi-297 

temporal images, we mapped the semantic landslide labels. (Figure.3). The mapping of 298 

landslide polygons for these nine events was primarily conducted by a team of five researchers, 299 
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including the authors. All team members possess expertise in geology or remote sensing and 300 

were involved in a year-long process of detailed interpretation. 301 

 302 

Figure.3 Remote sensing images before and after the earthquake and landslide interpretation 303 

results (landslides marked in red). 304 

Moreover, we actively participated in emergency response and field investigation after 305 

these major earthquakes in China. This further improved the reliability of the landslide 306 

inventories. Figure.4 showcases photographs captured on-site after the Jiuzhaigou earthquake, 307 

Lushan earthquake, and Luding earthquake. Specifically, Figure.4 (A1) and 4 (B1) were taken 308 

in Luding, Sichuan, depicting the extensive devastation caused by concentrated coseismic 309 

landslides, impacting Wandonghe Village and resulting in severe destruction of local 310 
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infrastructure. Corresponding aerial photos with a resolution of 0.2m, Figure.4 (A2) and 4 (B2), 311 

offer a comprehensive perspective of the affected area. Figure.4 (C1), taken in Lushan, Sichuan, 312 

captures the consequences of the earthquake-triggered large landslide dam, which obstructed 313 

the river channel. The corresponding PlanetScope image, Figure.4 (C2), provides an overhead 314 

view of the altered landscape. Furthermore, Figure.4 (D1), taken in the Jiuzhaigou Panda Sea, 315 

illustrates a significant volume of landslide deposits reaching the sea, with the accompanying 316 

UAV image at a resolution of 0.2m, Figure.4 (D2), offering detailed insights. Lastly, Figure.4 (E) 317 

presents a field work photo involved in these surveys. These field investigations serve to 318 

enhance comprehension and subsequent calibration on our remote sensing interpretation. 319 

 320 

Figure.4 Comparison of field survey photos and remote sensing images: A1 and A2 are the 321 

Wandong landslides induced by the 2022 Luding earthquake; B1 and B2 are the Dadu River 322 

Bridge landslide induced by the 2022 Luding earthquake; C1 and C2 are the Baoxing landslides 323 

induce by the 2022 Lushan earthquake; D1 and D2 are the Panda sea landslides induced by 324 

the 2017 Jiuzhaigou earthquake; E is a photo of field work at Jiuzhaigou. 325 

To obtain semantic-level annotations for landslide labels, all remote sensing images were 326 

converted into RGB images (8-bit). the preprocessing stage was conducted through three steps: 327 

binary mask generation, data sampling, and image patching. First, utilizing the Rasterio library 328 

in Python, landslide vector labels for each selected region were transformed into binary masks, 329 
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where 1 denoted landslide and 0 represented background. Subsequently, regions densely 330 

populated with landslides were sampled, and both remote sensing images and masks were 331 

patched and cropped into regular grids, yielding patches of 1,024×1,024 pixels. To mitigate 332 

interference among patches, overlap parameter was set as 0. Given the obvious imbalance 333 

between non-landslide and landslide areas, we manually removed most of the images without 334 

any landslide pixel annotations. The ratios of positive landslide samples and negative non-335 

landslide samples were 8.01% and 91.99%, respectively. Table.3 presents detailed information 336 

regarding different remote sensing data sources for each study case.  337 

Table.3 Detailed information of each event in GDCLD 338 

Events Data sources Resolution Number of tiles 

Jiuzhaigou 2017 (Mw 

6.5) 

UAV 0.2m 2,288 

PlanetScope 3m 176 

Mainling 2017 

(Mw 6.4) 

PlanetScope 3m 118 

Hokkaido 2018 

(Mw 6.6) 

Map World 0.5m 796 

PlanetScope 3m 123 

Palu 2018 

(Mw 7.5) 

Map World 1m 335 

Mesetas 2019 

(Mw 6.0) 

PlanetScope 3m 144 

Haiti 2021 

(Mw 7.2) 

PlanetScope 3m 238 

Map World 0.5m 404 

Sumatra 2022 

(Mw 6.1) 

PlanetScope 3m 110 

Lushan 2022 

(Mw 5.9) 

UAV 0.2m 210 

Map World 0.5m 182 

PlanetScope 3m 110 

Luding 2022 UAV 0.2m 9,252 
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(Mw 6.6) Map World 0.5m 1,540 

GF-6 2m 496 

PlanetScope 3m 190 

Sum - - 16712 

Additionally, to enhance the robustness and generalization capability of deep learning 339 

models, a subset of background noise elements such as clouds, roads, buildings, bare land, 340 

and rocks were manually selected as negative non-landslide samples. The negative samples 341 

can be outlined as follows: diverse roads (Figure.5: (e), (k), (m), (n), (p), (s)), river channels 342 

(Figure.5: (e), (k), (n), (s), (t)), clouds (Figure.5: (o), (r)), barren land (Figure.5: (c), (h), (q)). 343 

Additionally, human-engineered structures and buildings are also considered (Figure.5: (e), (k)). 344 
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 345 

Figure.5 Display of landslide sample data from different study areas and different remote 346 

sensing data sources: Jiuzhaigou UAV (a), Jiuzhaigou PlanetScope (b), Mainling PlanetScope 347 

(c), Hokkaido PlanetScope(d), Hokkaido Map World (e), Palu Map World (f), Mesetas 348 
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PlanetScope (g), Haiti Map World (h), Haiti PlanetScope (i), Sumatra PlanetScope (j), Lushan 349 

PlanetScope (k), Lushan UAV (l), Luding UAV(m~q), Luding Map World (r), Luding PlanetScope 350 

(s), and Luding Gaofen-6 (t). The "label" refers to the binary landslide mask, whereas the 351 

"Ground Truth" illustrates the concordance between the annotated and actual landslide in 352 

images. 353 

4. Experimental setup 354 

After the completion of dataset construction, the experimental phase follows. In this section, 355 

we will introduce several semantic segmentation algorithms used for validating the dataset, the 356 

loss functions and accuracy evaluation metrics employed in the experiments, as well as various 357 

hyperparameter settings utilized during the experiments. 358 

4.1 Segmentation algorithms 359 

In this section, we have selected seven of the most popular semantic segmentation 360 

networks, including four models based on the CNN architecture and three based on the 361 

Transformer architecture. These seven algorithms have medium to large-scale parameter sizes 362 

and computational complexities, and show excellent performance in a variety of remote sensing 363 

semantic scenarios, making them suitable for Precision comparison and validation of novel 364 

datasets. 365 

(1) UNet: As one of the earliest and most renowned semantic segmentation models, UNet 366 

is distinguished by its unique U-shaped architecture (Ronneberger et al., 2015). This design 367 

facilitates efficient learning and precise localization by combining high-resolution features from 368 

the contracting path with up-sampled outputs from the expanding path. Both the encoder and 369 

decoder in UNet are composed purely of CNN structures (O'shea and Nash, 2015). This 370 

simplicity, along with a relatively small number of parameters, allows UNet to achieve 371 

exceptional accuracy and rapid inference on small datasets. Consequently, it is widely utilized 372 

in applications such as small-scale object classification, change detection, and medical imaging. 373 

 (2) ResUNet: ResUNet is an advanced variant of the UNet model, incorporating residual 374 
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connections to enhance its performance and learning efficiency (Diakogiannis et al., 2020). The 375 

key innovation in ResUNet is the integration of residual blocks within both the encoder and 376 

decoder paths, which address the vanishing gradient problem and enable the training of deeper 377 

networks (He et al., 2016). These residual blocks allow the network to learn identity mappings, 378 

facilitating gradient flow through the network and improving convergence rates. Similar to UNet, 379 

ResUNet maintains a U-shaped architecture that combines high-resolution features from the 380 

contracting path with up-sampled outputs from the expanding path, ensuring precise 381 

localization and context capture. The combination of residual connections improves feature 382 

reuse and learning efficiency, enabling ResUNet to effectively improve Recall and small target 383 

detection capabilities in semantic segmentation tasks. 384 

 (3) DeepLabV3: DeepLabV3, is a semantic segmentation model known for its 385 

sophisticated use of atrous convolution, or dilated convolution (Chen et al. 2018). This 386 

technique allows the network to capture multi-scale contextual information without losing spatial 387 

resolution, addressing the limitations of traditional convolutional networks in dense prediction 388 

tasks. DeepLabV3 incorporates atrous spatial pyramid pooling to robustly segment objects at 389 

multiple scales by applying atrous convolution with different rates in parallel. This model also 390 

integrates features from both the encoder and decoder paths, enhancing the Precision of 391 

boundary delineation. In addition, the architecture of DeepLabV3 utilizes batch normalization 392 

and depth-separable convolution. This design can effectively reduce the complexity and 393 

computational cost of the model, while enabling the model to have stronger feature extraction 394 

capabilities and generalization than simple networks such as UNet. 395 

 (4) HRNet: High-Resolution Network (HRNet) is noted for its innovative approach to 396 

maintaining high-resolution representations throughout the network (Wang et al., 2020). Unlike 397 

traditional models that gradually down-sample the input to extract features, HRNet preserves 398 

high-resolution features by maintaining parallel high-to-low resolution subnetworks. This design 399 

allows HRNet to integrate multi-scale information effectively, ensuring precise localization and 400 

robust feature representation. The network continuously exchanges information across 401 

different resolutions, resulting in superior accuracy and detailed segmentation results. Due to 402 
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its ability to retain fine-grained spatial information and adapt to various scales, HRNet excels in 403 

complex tasks such as fine-grained terrain classification, semantic segmentation in urban 404 

scenes, and fine-grained visual detection. 405 

(5) UperNet: UperNet employs a pyramid feature extraction method, integrating multi-scale 406 

information to capture contextual details across different resolutions (Xiao et al., 2018; Liu et 407 

al., 2022). It utilizes a Feature Pyramid Network (FPN) backbone for hierarchical feature 408 

extraction, enhanced by a global context integration module to enrich overall scene 409 

understanding. Additionally, UperNet incorporates lateral connections for efficient 410 

communication between feature pyramid levels, ensuring seamless information flow and 411 

accurate segmentation. This sophisticated architecture enables UperNet to achieve superior 412 

segmentation performance, particularly in challenging scenarios with complex scenes and 413 

diverse object scales. 414 

(6) SwinUNet: Built upon the Swin Transformer architecture, SwinUNet blends self-415 

attention mechanisms with UNet for exceptional performance (Cao et al., 2022). It inherits Swin 416 

Transformer's hierarchical feature extraction for capturing both local and global contextual 417 

information efficiently (Liu et al., 2021). The self-attention mechanism enables capturing 418 

nuanced relationships in data. SwinUNet integrates UNet's contracting and expanding paths in 419 

decoding, emphasizing spatial detail preservation. This combination empowers SwinUNet to 420 

excel in tasks requiring precise localization and robust contextual understanding. (7) 421 

SegFormer: SegFormer, represents a significant advancement in semantic segmentation by 422 

leveraging a transformer-based architecture (Xie et al., 2021). Unlike traditional CNN 423 

approaches, SegFormer employs a hierarchical transformer encoder to capture multi-scale 424 

contextual information effectively, without relying on complex designs such as positional 425 

encodings or large pre-training datasets. The decoder in SegFormer integrates features from 426 

different scales using lightweight multi-layer perceptron, ensuring efficient and precise 427 

segmentation. This innovative design enables SegFormer to achieve excellent segmentation 428 

results with medium-sized parameters and fast inference speed in high-resolution complex 429 

scenes. 430 
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4.2 Loss function and accuracy evaluation 431 

Since the landslide detection is a two-class semantic segmentation task, we choose the 432 

Binary Cross-Entropy (De Boer et al., 2005) as the loss function for model training, whose 433 

mathematical expression is shown as follow: 434 

L(y,ŷ)=-
1

N
∑ [y

i
log(ŷ

i
)+(1-y

i
)log(1-ŷ

i
)]

N

i=1

(1) 435 

where L is the loss function, N is the number of samples, 𝑦𝑖 is the true label (0 or 1) of the i-th 436 

sample, and �̂�𝑖 is the predicted probability of the i-th sample. 437 

For accuracy evaluation, the following accuracy indicators are calculated through 438 

confusion matrices (Townsend, 1971): Precision, Recall, F1 score (Chicco and Jurman, 2020) 439 

and mean intersection over union (mIoU) (Rezatofighi et al., 2019). Their calculation formulas 440 

are as follows: 441 

Precision=
TP

TP+FP
(2) 442 

Recall=
TP

TP+FN
(3) 443 

F1=
2×Precision×Recall

Precision+Recall
(4) 444 

mIoU=
1

N
∑

TPi

TPi+FPi+FNi

N

i=1

(5) 445 

where the TP is the True Positive, FP is the False Positive, TN is the True Negative and FN is 446 

the False Negative. 447 

4.3 Equipment and Parameter 448 

The deep learning framework employed in this study is conducted based on PaddlePaddle 449 

2.3.2 (Ma et al., 2019), with the environment configured for Python 3.8, CUDA 11.2, and CuDNN 450 

8.3.0. The experimental setup encompasses Intel Xeon CPU, W2255, 3.7GHz, equipped with 451 

256GB of system memory. The GPU infrastructure consists of Tesla V100, with 32GB of video 452 

memory. The operating system employed is Ubuntu 20.04. The model's optimizer is selected 453 

as AdamW (Loshchilov and Hutter, 2017), with an initial learning rate of 0.0006, beta1 set to 454 

0.9, beta2 to 0.999, weight decay to 0.01 and epoch to 100.  455 
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5. Results 456 

To validate the accuracy of the GDCLD dataset, this study selected four types of remote 457 

sensing images (UAV, PlanetScope, Map World image, and Gaofen-6) from five seismic events 458 

(Luding, Jiuzhaigou, Hokkaido, Mainling, and Nippes) as training and validation datasets for 459 

model construction and accuracy evaluation. The ratio of training dataset to validation dataset 460 

is 3:1. To further assess the generalization ability of this dataset, we chose three types of remote 461 

sensing images (UAV, PlanetScope, and Map World image) from four independent seismic 462 

events (Lushan, Mestas, Sumatra, and Palu) as the test dataset. Considering the geographical 463 

distribution, these four regions, located on different continents and characterized by distinct 464 

tectonic settings and climatic conditions, ensure complete independence from the training 465 

dataset. From the perspective of data sources, the four study areas represent three major types 466 

of remote sensing imagery: PlanetScope, UAV, and Map World. Additionally, the UAV sensor 467 

used in the Lushan area is different from those used in other regions. This data partitioning 468 

strategy is designed to rigorously evaluate the generalization capability of the GDCLD-trained 469 

model. 470 

We conducted evaluations on our dataset utilizing the aforementioned seven semantic 471 

segmentation algorithms. After each model is trained for 100 epochs, we meticulously 472 

examined the performance of the GDCLD dataset in landslide identification. we present the 473 

performance of the seven algorithms on the validation dataset in Table.4. 474 

Among these seven algorithms, UNet, ResUNet, DeepLabV3, and HRNet serve as neural 475 

network models with convolutional structures, whereas UperNet, SwinUNet, and SegFormer 476 

are based on transformer-based neural network architectures. From Table.4, it is evident that 477 

Transformer-based semantic segmentation models exhibit superior performance compared to 478 

models based on convolutional structures. Overall, the mIoU of the seven algorithms on 479 

GDCLD validation set spans from 71.07% to 85.06%. Notably, UNet demonstrates the least 480 

detection with the mIoU and F1 score of 71.07% and 79.54%. In contrast, SegFormer yields 481 

the best performance with the accuracy of 91.35%, Recall of 91.70%, F1 score of 91.52%, and 482 
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mIoU of 85.06%. Figure.6 illustrates the detection results of different models across various 483 

remote sensing data sources. it can be seen that transformer-based semantic segmentation 484 

models achieve superior segmentation outcomes. 485 

Table.4 Comparison of result on GDCLD validation dataset 486 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 77.05 82.01 79.54 71.07 

ResUNet ResNet-50 78.17 86.48 82.11 71.94 

DeepLabV3 ResNet-50 81.27 86.96 84.02 74.61 

HRNet HRNet-48 81.88 87.21 84.46 75.19 

UperNet ViT-B16 88.18 90.64 89.39 81.97 

SwinUNet - 89.78 92.01 90.72 83.68 

SegFormer MiT-B4 91.35 91.70 91.52 85.06 
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 487 

Figure.6 Comparative results of different algorithms on validation dataset 488 



 

26 
 

To demonstrate the robustness and generalization capability of the dataset-trained models 489 

in other environment, we conducted testing by using four independent events, as illustrated in 490 

Table.5. Overall, the mIoU performance of the algorithms trained on GDCLD ranges from 56.09% 491 

to 72.84%. SegFormer exhibits the best performance, achieving Precision of 77.09%, Recall of 492 

87.09%, F1 score of 81.88%, and mIoU of 72.84%. we present detailed results of six types of 493 

remote sensing images in these four events in Table.6. The overall mIoU ranges from 69.01% 494 

to 82.31%, while the F1 ranges from 80.63% to 89.30%. Furthermore, we noticed a remarkable 495 

imbalance between Recall and Precision in the predicted results. The Recall is always higher 496 

than the Precision, as it is crucial to not miss any important landslides for disaster assessment 497 

and rescue operations. From the perspective of remote sensing sensors, except for the 498 

Sumatra incident, higher resolution was directly related to better landslide detection 499 

performance.  500 

Table.5 Comparison of result on test dataset 501 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 61.69 61.22 61.45 56.09 

ResUNet ResNet-50 66.56 64.46 65.49 57.06 

DeepLabV3 ResNet-50 65.26 67.75 66.48 59.73 

HRNet HRNet-48 65.52 72.03 68.62 61.79 

UperNet ViT-B16 69.96 78.08 73.80 65.42 

SwinUNet - 71.56 82.26 76.54 67.18 

SegFormer MiT-B4 77.09 87.09 81.88 72.84 

Table.6 Detection results of SegFormer in different events 502 

Events Image type Precision (%) Recall (%) F1 (%) mIoU (%) 

Lushan 

UAV 74.72 90.35 81.80 72.96 

Map World 76.18 87.35 81.38 71.92 

PlanetScope 81.50 82.28 81.78 69.05 

Palu Map World 73.48 91.24 81.40 71.12 

Mesetas PlanetScope 80.26 80.97 80.63 69.01 

Sumatra PlanetScope 83.57 97.45 89.30 82.31 

Figures.7 to 10 respectively illustrate the detection results for Mesetas (PlanetScope), 503 
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Sumatra (PlanetScope), Palu (Map World image), and Lushan (UAV). The F1 score of the 504 

Mesetas event model is 80.63%, with Recall and Precision exhibiting relative balance. As 505 

observed in Figure.7, our model demonstrates strong capabilities in detecting and segmenting 506 

the majority of landslides, particularly in regions of mountainous slopes (Figure.7 (d)). In areas 507 

affected by mountain shadows (Figure.7 (b, c, e)), as expected, since, pixel signatures of 508 

shadows are very different than those of landslides. The model effectively identifies most large 509 

landslides but exhibits some omissions in detecting small landslides. In the Sumatra event, we 510 

attained remarkably excellent detection results, with F1 score of 89.30%, Recall of 97.45%, and 511 

Precision of 83.57%, Recall is 13.88% higher than Precision. As illustrated in Figure.8, the 512 

model effectively identifies nearly all landslides (Figure.8 (b, c)). However, there are instances 513 

of missed landslide detection in the lower-right corner of Figure.8 (a). This is due to the apparent 514 

confusion between the landslide accumulation area and river channels, resulting in sub-optimal 515 

detection. In the Palu event, our F1 score yielded a result of 81.40%, with Recall reaching 91.24% 516 

and Precision by 73.48%, Recall is 17.76% higher than Precision. As depicted in Figure.9, the 517 

detection outcomes effectively discriminate between numerous cloud obscuration, bare lands, 518 

and buildings, underscoring the positive efficacy of augmenting negative samples in our dataset 519 

to improve the model's detection capabilities. Similarly, for the Lushan event captured by UAV, 520 

we achieved the F1 score of 81.80%, with Recall and Precision of 90.35% and 74.72%, Recall 521 

exceeding Precision by 15.63%. As shown in Figure.10, in the UAV data, the model 522 

demonstrates exceptional segmentation capabilities for large-scale landslides (Figure.10 (b, c, 523 

d)), while its detection performance for some small-scale disasters is less satisfactory. Overall, 524 

the model trained based on GDCLD demonstrated excellent generalization capabilities across 525 

four independent test datasets. It successfully detected all major landslides and effectively 526 

segmented landslide boundaries. More importantly, the model effectively excluded background 527 

noise from river channels, bare ground in residential areas, and cloud region, showcasing its 528 

remarkable robustness. 529 
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 530 

Figure.7 Mesetas PlanetScope dataset. (a) Regional aerial view. (b-e) Detection results of four 531 

magnified areas. 532 

 533 

Figure.8 Sumatra PlanetScope dataset. (a) Regional aerial view. (b-c) Detection results of two 534 

magnified areas. 535 
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 536 

Figure.9 Palu Map World dataset. (a) Regional aerial view. (b-c) Detection results of two 537 

magnified areas. 538 

 539 

 540 

Figure.10 Lushan UAV dataset. (a) Regional aerial view. (b-d) Detection results of three 541 

magnified areas. 542 
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6. Discussion 543 

6.1 Sample richness of GDCLD 544 

The GDCLD dataset stands out as the most extensive and comprehensive repository of 545 

landslide data currently available, encompassing landslide data from various geographic 546 

environments and multiple remote sensing sources. the annotated landslide labels within this 547 

dataset tally up to approximately 1.39×109 pixels, roughly six times as many annotations as all 548 

the other publicly accessible landslide datasets (Figure.11). Additionally, this dataset includes 549 

a variety of negative samples with optical characteristics similar to landslides which can 550 

significantly enhance the model's generalization capability. In contrast to other datasets, which 551 

are limited to training small-scale semantic segmentation models like UNet and DeepLabV3 552 

(Xu et al., 2024; Meena et al., 2022; Ghorbanzadeh et al., 2022), the GDCLD dataset can 553 

effectively train large-scale semantic segmentation models such as Transformers. Moreover, 554 

unlike Sentinel-2 and Landsat satellite image, where moderate spatial resolutions can limit the 555 

accurate delineation of landslide boundaries, GDCLD provides remarkably high spatial 556 

resolutions (0.2m~3m) and diverse spectral characteristics. This dataset not only performs well 557 

in landslide mapping across diverse geographical settings, but also serves as a baseline 558 

dataset for transfer learning in landslide detection. 559 

 560 

Figure.11 Statistical comparison of landslide pixels in different landslide datasets. 561 
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6.2 Enhancement in model generalization 562 

In the GDCLD dataset, a general selection of remote sensing data from multiple sources 563 

enhances the overall generalization capability of the landslide identification model. To 564 

substantiate this assertion, we conduct a comparative analysis between models trained by 565 

single- and multi-source datasets. The datasets from different sensors are segregated, and the 566 

SegFormer, which is an advanced and widely used transformer-based algorithm, is applied to 567 

train the landslide models. Their performance was verified by their respective test dataset as 568 

well as an independent event of Lushan earthquake.  569 

The accuracy metrics for the validation dataset are presented in Table.7. Across four 570 

remote sensing sources—PlanetScope, Gaofen-6, Map World, and UAV—models trained on 571 

single-source datasets consistently demonstrate higher performance on test samples, with 572 

mIoU indices surpassing those of multi-source datasets by 2.26%, 1.63%, 0.64%, and 0.13%, 573 

respectively. However, a noteworthy observation emerges when models are transferred to the 574 

independent Lushan earthquake case (Table.8). The model trained on the multi-source dataset 575 

achieves significantly enhanced performance compared to the model derived from single-576 

source counterpart. The mIoU of UAV-, Map World- and PlanetScope based datasets are 577 

improved by 8.16%, 7.95% and 0.09%. As depicted in Figure.12, the models trained by multi-578 

source images exhibit higher recalls, accurate landslide boundaries, and robust resistance to 579 

interference. The yellow circle highlights the enhancements of models trained by multi-source 580 

images compared to single-source images. From the perspective of data sources, Map World 581 

contains different types of images (such as Gaofen and Jilin), encompassing multitude of 582 

spectral responses across these sensors. the UAV image in the Lushan event utilize the sensor 583 

different from those in the Luding and Jiuzhaigou event, resulting in noticeable spectrum 584 

differences in images. Consequently, compared to a single remote sensing source, the 585 

generalization capability of the models trained by multi-source images demonstrate a more 586 

pronounced improvement. In contrast, the PlanetScope image, obtaining from the same 587 

satellite sensors, exhibits smaller spectral variations in various images. As a result, the model 588 

trained on both single and multi-source datasets achieve similar performance. This highlights 589 
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the importance of datasets with diverse images sources for enhanced model performance in 590 

landslide mapping. This indicate that the utilization of multi-source remote sensing datasets 591 

enables the model to learn the spectral characteristics of the images from diverse sensors. 592 

Hence, the model trained by GDCLD possesses enhanced generalization ability and 593 

robustness, enabling it to effectively perform landslide mapping in independent cases without 594 

prior knowledge. 595 

Table.7 GDCLD performances on validation dataset through single- and multi-source dataset 596 

Data source Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

Single source 

UAV 92.20 92.90 92.54 87.07 

PlanetScope 87.98 87.81 87.89 80.11 

Map World 86.49 90.01 88.21 80.66 

Gaofen-6 91.25 88.04 89.62 83.61 

Multiple source 

UAV 91.91 92.64 92.27 86.94 

PlanetScope 85.01 87.79 86.37 77.85 

Map World 86.42 89.12 87.74 80.02 

Gaofen-6 90.49 85.20 87.77 81.98 

Table.8 GDCLD performances on unseen dataset through single- and multi-source dataset 597 

Data source Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

Single source 

UAV 64.92 90.68 75.67 64.80 

PlanetScope 81.25 82.29 81.75 68.96 

Map World 68.39 80.16 73.81 63.97 

Multiple source 

UAV 74.72 90.35 81.80 72.96 

PlanetScope 81.50 82.28 81.78 69.05 

Map World 76.18 87.35 81.38 71.92 
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 598 

Figure.12 Comparative results of ablation experiments between multi- and single-source (a). 599 

UAV, (b). Map World, (c). PlanetScope 600 

6.3 Comparison with existing landslide datasets and models 601 

To assess the robustness and generalization capabilities of the GDCLD dataset, we 602 

employ SegFormer trained on the GDCLD dataset (GDCLD-S model) to identify landslides 603 

within three distinct datasets: HR-GLDD, GVLM, and CAS. Initially, we standardize the data 604 

from these three datasets into 1024×1024 remote sensing tiles. Subsequently, utilizing the 605 

GDCLD-S model, we conduct landslide identification across all these datasets. Table.9 606 

demonstrates favorable performance of the model across these diverse datasets. For instance, 607 

in the HR-GLDD dataset, which shares similarities with the PlanetScope image in GDCLD, the 608 

model achieves an mIoU of 76.97%, indicating a balance between Precision and Recall metrics. 609 

Similarly, when applied to the GVLM dataset, leveraging Map World image, our dataset exhibits 610 

robust predictive outcomes, resulting in a comprehensive mIoU of 70.07%. Likewise, for the 611 

CAS dataset, GDCLD demonstrates strong generalization capabilities, yielding an outstanding 612 



 

34 
 

comprehensive metric with mIoU = 76.91%, alongside balanced Recall and Precision metrics. 613 

Although all landslide samples contained in GDCLD are induced by seismic activity, our 614 

model demonstrates good detection capabilities for rainfall-induced landslides. These two 615 

categories exhibit distinct spectral characteristics from their surrounding environments. 616 

Consequently, models trained on GDCLD exhibit proficient detection capabilities for rainfall-617 

induced landslides. We present the identification performance of GDCLD-based model for 618 

rainfall-induced landslides from the GVLM dataset in Table.9 and Figure.13. Figure.13 619 

underscores the excellent detection performance of the GDCLD-S model on rainfall-induced 620 

landslides in the GVLM dataset. Despite occasional misclassifications of small-size targets, the 621 

model effectively delineates the majority of rain-induced landslides. the Precision metrics in 622 

Table.8 affirm this observation with an mIoU reaching 78.22% and both Recall and Precision 623 

exceeding 85%. This highlights the robust generalization capability of the model trained by our 624 

dataset, enabling effective identification of rainfall-induced landslides. 625 

Table.9 Validation results of other public datasets 626 

Dataset Precision (%) Recall (%) F1 (%) mIoU (%) 

HR-GLDD 84.88 86.81 85.84 76.97 

GVLM 72.83 87.54 80.68 70.07 

CAS 82.95 86.35 84.62 76.91 

GVLM-rainfall 85.88 86.71 86.29 78.22 
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 627 

Figure.13 Detection results of rainfall landslides by GDCLD-S model. Map credits: GVLM.  628 

In addition to the aforementioned analyses, we compare the performance of GDCLD with 629 

other two datasets, GVLM and CAS. Specifically, we train landslide detection models using the 630 

SegFormer algorithm on the GVLM and CAS datasets, denoted as GVLM-S and CAS-S, 631 

respectively, with identical training parameters as previously described. Furthermore, we also 632 

use the DeepLabV3 to train the CAS-D model based on the CAS dataset and use it for 633 

comparison of landslide detection (Xu et al., 2024). Subsequently, the GDCLD-S, CAS-S, CAS-634 

D and GVLM-S models were applied to identify landslides in the Lushan area using three 635 

distinct remote sensing data sources: UAV, PlanetScope, and Map World. The results of this 636 

comparison are presented in Table 10. From Table 10, it is evident that the GDCLD-S model 637 

outperformed CAS-S, CAS-D and GVLM-S across all three remote sensing datasets, achieving 638 

mIoU of 72.96%, 69.05%, and 71.92% on UAV, PlanetScope, and Map World. In contrast, CAS-639 

S records mIoU values of 62.03%, 56.86%, and 60.35% for the same datasets, respectively, 640 
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which is better than the CAS-D model trained with DeepLabV3, and also illustrates the 641 

advantages of the transformer architecture over the CNN architecture. Notably, GDCLD-S 642 

exhibited a significantly higher Recall than the other two models and also demonstrated an 643 

advantage in Precision. Overall, GDCLD-S, along with CAS-S, exhibited superior performance 644 

compared to the single-source data model GVLM-S, particularly in handling multisource remote 645 

sensing images. The extensive landslide data and negative samples included in GDCLD-S 646 

further contributed to its enhanced robustness against noise and improved Recall in landslide 647 

detection. 648 

Table.10 Performance comparison of GDCLD-S, GVLM-S, CAS-S, CAS-D on the Lushan 649 

dataset 650 

Model Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

 UAV 72.73 55.34 62.88 57.91 

CAS-D PlanetScope 52.07 56.05 53.93 52.86 

 Map World 61.79 70.50 64.9 58.11 

 UAV 73.03 54.84 57.67 53.41 

GVLM-S PlanetScope 60.13 53.40 54.82 51.52 

 Map World 77.71 66.40 71.56 63.97 

 UAV 74.08 67.05 69.95 62.03 

CAS-S PlanetScope 58.56 76.57 66.40 56.86 

 Map World 75.02 64.65 68.37 60.35 

 UAV 74.72 90.35 81.80 72.96 

GDCLD-S PlanetScope 81.50 82.28 81.78 69.05 

6.4 Practical Applications of GDCLD 651 

To evaluate the practical applicability of the CDCLD, we selected two significant landslide-652 

triggering events that occurred in April 2024 for rapid landslide identification. These events 653 

include landslides induced by a heavy rainfall in Meizhou, China and landslides triggered by an 654 

earthquake in Hualien, China. In both cases, PlanetScope image was employed for 655 
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experimentation. For the Meizhou case, we obtained the image on May 14, 2024, and applied 656 

SegFormer model trained on GDCLD data to identify landslides triggered by the heavy rainfall. 657 

The results, shown in Figure.14, demonstrate that the GDCLD-trained model effectively 658 

mapped newly-induced landslides with a total area of 8.49 km2. The model exhibited excellent 659 

accuracy in avoiding false positives such as buildings, roads, and rivers. In terms of the Hualien 660 

event, we acquired post-event images from April 17 to 29, 2024. The rapid identification results, 661 

displayed in Figure.15, indicate that the GDCLD-trained model effectively eliminates false 662 

positives, such as roads, buildings, bare ground, and rivers, with the identified landslide area 663 

of 90.9 km2. The original PlanetScope images and landslide recognitions of the two events are 664 

available at https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024) 665 
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 666 

Figure.14 Detection results of rainfall-induced landslides for Meizhou, China. (a) is the aerial 667 

view of the whole area, (b), (c) and (d) is the partial details. Map credits: PlanetScope.  668 
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 669 

Figure.15 Detection results of earthquake-triggered landslides for Hualien, China. (a) is the 670 

aerial view of the whole area, (b), (c) and (d) is the partial details. Map credits: PlanetScope. 671 

7. Future research directions 672 

The current GDCLD primarily comprises landslide samples from regions with significant 673 

vegetation coverage, with limited representation from areas with low vegetation cover, such as 674 

loess landslides. To address this, we have updated the database with high-resolution UAV data 675 

(0.1m resolution) of loess landslides triggered by the Mw 6.2 earthquake in Jishishan, Gansu, 676 

China, in December 2023. Incorporating these loess landslide samples would enhance the 677 

dataset's diversity and improve the generalization capability of landslide detection models. 678 

Ongoing efforts to track and integrate data from landslides triggered by future extreme events 679 
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including strong earthquakes, heavy rainfall, and hurricanes, will further enrich the dataset. 680 

In addition to expanding the GDCLD dataset, developing a large-scale vision model for 681 

landslide detection, such as a Segment Anything Model tailored for landslide identification and 682 

trained on GDCLD, is a crucial step forward in advancing AI-based landslide detection. This 683 

model will be used for the intelligent recognition of landslides in multi-source remote sensing 684 

image on a global scale. 685 

Note that GDCLD is generally more applicable to semantic segmentation rather than 686 

instance segmentation for landslide identification task. Unlike other instance segmentation 687 

tasks, landslide segmentation presents unique challenges due to the frequent mixing of the 688 

"deposit" areas of adjacent landslide bodies (Hungr et al., 2014). In most cases, we can only 689 

intuitively identify the "source" area of a landslide. This phenomenon is commonly observed in 690 

events such as the landslides triggered by the 2022 Luding earthquake in China (Figure.S10). 691 

Under these circumstances, it is often not feasible to separate individual landslides directly from 692 

2D optical images. Instead, it is necessary to consider the movement characteristics of each 693 

object from a 3D perspective (Bhuyan et al., 2024; Marc and Hovius, 2015) and combine this 694 

with topographic data to create accurate landslide labels for instance segmentation. However, 695 

generating such datasets requires high-resolution digital elevation models (DEM) and UAV or 696 

direct use of point cloud data. Given the global limitations in publicly available DEM (30m), 697 

achieving such fine distinctions is challenging. Therefore, our current study primarily focuses 698 

on semantic segmentation tasks. In future research, we plan to prepare landslide labels for 699 

instance segmentation based on LiDAR observation, and to develop specialized algorithms to 700 

address this complex issue. 701 

8. Code and data availability 702 

The data is freely available at https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024). 703 

There are compressed folders, namely train_dataset.zip, val_dataset.zip and test_dataset.zip. 704 

The train_dataset.zip file contains 11,162 TIFF-format RGB images and their corresponding 705 

binary label data, with each image having dimensions of 1024×1024 pixels. The val_dataset.zip 706 

https://doi.org/10.5281/zenodo.13612636
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file comprises 4,459 TIFF-format RGB images and binary label data, with each image also 707 

sized at 1024×1024 pixels. The test_data.zip file includes seven original remote sensing 708 

images from four landslide events, with images in TIFF-format RGB and labels in TIFF-format 709 

binary data, though the image dimensions vary. The Future work folder contains some remote 710 

sensing data that will be added later. For each label, "0" indicates the background, while "1" 711 

denotes the landslide. In addition, the other original data of UAV, Map World and Gaofen-6 are 712 

non-public data. Both the Map World and GF-6 datasets were accessed under an image license 713 

acquired by our team. The UAV data are under the usage rights of the laboratory affiliated with 714 

our team. If you need to use them, please contact the corresponding author. The original 715 

PlanetScope data were obtained through the Planet Education and Research Program. You 716 

can get original imageries at https://www.planet.com/ (Planet Team, 2019). And the code used 717 

to produce data described in this paper, as well as to create figures and tables, can be accessed 718 

at https://github.com/PaddlePaddle/PaddleSeg. 719 

9. Conclusion 720 

Landslide mapping across extensive geographic areas using remote sensing proves to be 721 

a significant challenge. Although previous attempts have produced landslide datasets and 722 

advanced automation and intelligence, they have not been able to overcome limitations of 723 

specific events and data sources. In this research, we proposed the Globally Distributed 724 

Coseismic Landslide Dataset (GDCLD), an innovative resource crafted to autonomously and 725 

precisely tackle the intricacies of landslide mapping. We made three significant contributions in 726 

this word. Firstly, we meticulously interpreted multi-source remote sensing data to create a 727 

comprehensive dataset for landslide detection. This dataset contains 1.39×109 annotated 728 

landslide pixels and remote sensing image at four different resolutions, spanning nine global 729 

regions. It successfully addresses the crucial lack of large-scale datasets in current landslide 730 

identification research. Secondly, we utilized GDCLD -trained model to showcase its robustness 731 

and generalization in landslide identification across diverse geographical contexts. Our 732 

proposed dataset shows a great potential in rapid response and emergency management of 733 

https://github.com/PaddlePaddle/PaddleSeg


 

42 
 

geological hazards. Although the landslide samples are obtained from seismic events, the 734 

trained model enable to capture and learn the characteristic differences between landslides 735 

and the surroundings, making them suitable for landslide mapping beyond seismic-triggered 736 

events, such as those caused by rainfall. The comparative analyses with existing datasets 737 

highlight its effectiveness as the data base of deep learning model in mapping landslides across 738 

various global regions. Finally, we demonstrate the superiority of the Transformer architecture 739 

over conventional CNN architecture in the task of landslide identification using multi-source 740 

remote sensing image. The GDCLD-S model further highlights the enhanced generalization 741 

capabilities of multi-source data compared to single-source data. This work has great practical 742 

implications for prevention and mitigation of geological hazard worldwide.  743 
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