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Dear Editors and Reviewers, 

 

We sincerely thank the Editor-in-Chief Dr. Yuyu Zhou, the Handling topic Editor Dr. Dalei Hao 

and the Anonymous Reviewers for their precious time and insightful comments. Your 

suggestions and feedbacks are very helpful for us to improve the quality and readability of our 

manuscript.  

In response, we have carefully revised the manuscript and the provided point-by-point 

responses to each of your comments. The comments are presented in bold font, followed by 

our responses in standard font. Any changes/additions to the manuscript are highlighted in 

red text. For example, the notation P2L16~32 refers to line 16~32 on page 2 of the revised 

manuscript. Additionally, following the reviewers' suggestions, we have added a "Future Work" 

section in the GDCLD. This section is dedicated to the ongoing updates of multi-source remote 

sensing data related to landslides triggered by future extreme events. Currently, it includes data 

from earthquake-induced landslides in the Loess region of Gansu, China, earthquake-induced 

landslides in Hualien, China, and rainstorm-induced landslides in Meizhou, China. Detailed 

information can be accessed at https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024).  

 

We hope that the revisions meet the requirments for publication in Earth System Science Data. 

 

Best regards, 

Xuanmei Fan on behalf of all co-authors 

 



The Response to Comments from Review 1 

Comment 1 

Remove link and citation from the abstract of GDCLD dataset. 

Response 1 

Thanks for your careful comment. 

We have removed the links and citations from the abstract. 

Comment 2 

Four independent regions are not clear. Authors must explain it clearly. 

Response 2 

Thank you for your constructive comment. In the first paragraph of Section 5 (Results) of 

the manuscript, we have modeified and provided a detailed introduction of the four 

independent regions.  

“To further assess the generalization ability of this dataset, we chose three types of remote 

sensing images (UAV, PlanetScope, and Map World image) from four independent seismic 

events (Lushan, Mestas, Sumatra, and Palu) as the test dataset. Considering the 

geographical distribution, these four regions, located on different continents and 

characterized by distinct tectonic settings and climatic conditions, ensure complete 

independence from the training dataset. From the perspective of data sources, the four study 

areas represent three major types of remote sensing imagery: PlanetScope, UAV, and Map 

World. Additionally, the UAV sensor used in the Lushan area is different from those used in 

other regions. This data partitioning strategy is designed to rigorously evaluate the 

generalization capability of the GDCLD-trained model.” (P23L461~470) 

Comment 3 

In the proposed work you have collected data for rainfall induced landslides or other 

parameters like topographical, anthropogenic and geological parameters are also 

considered? If yes mention it, if not what results will be observed after evaluating these 

parameters. 

Response 3 

Thanks for your valuable comment and suggestions. 



1. Firstly, the primary objective of this study is to develop a multi-source remote sensing 

dataset for the intelligent recognition of landslides in optical imagery. Consequently, other 

geological factors, including topography and geomorphology, were not considered in this 

research. While the incorporation of high-resolution Digital Elevation Model (DEM) data can 

indeed enhance the model's ability to recognize landslides, the publicly available DEM data 

has a resolution of 30 meters, which is too coarse when compared to high-resolution optical 

data. Therefore, this study has not yet considered incorporating topographic and 

geomorphological information extracted from DEMs. 

2. Furthermore, anthropogenic and geological parameters have not yet been incorporated 

into the dataset, despite their potential to enhance landslide detection accuracy. Regarding 

geological parameters, the currently available public data are too coarse to be directly 

applied to semantic segmentation tasks involving VHR remote sensing imagery. As for 

anthropogenic parameters, during the dataset creation process, we have included 

representations of human engineering activities as negative samples (Figure.5), which can 

contribute to improving the generalization capability of landslide detection models. 

3. Finally, regarding data on rainfall-induced landslides, this paper did not specifically collect 

such data. The experiments mentioned in the abstract on the intelligent recognition of rainfall-

induced landslides mainly utilized remote sensing data from the GVLM dataset (Zhang et al., 

2023) (P34L619~624), which includes rainfall-induced landslides. Additionally, during the 

revision process, we added a brief discussion in Section 6.4, where we incorporated 

PlanetScope data of rainfall-induced landslides that occurred in Meizhou and Guangzhou, 

China during April 2024. This data can be accessed at 

https://doi.org/10.5281/zenodo.11369484 (Fang et al., 2024). 

“For the Meizhou case, we obtained the image on May 14, 2024, and applied SegFormer 

model trained on GDCLD data to identify landslides triggered by the heavy rainfall. The 

results are shown in Figure.14, demonstrating that the GDCLD-trained model can effectively 

map newly-induced landslides with a total area reached 8.49 km2. The model shows 

excellent performance in avoiding false positives such as buildings, roads, and rivers.” 

(P37L656~660) 



Comment 4 

Abstract written is so general, it must be rewritten highlighting the major objectives, method 

adopted and result achieved. 

Response 4 

Thank you for raising this point. We have rewritten the abstract 

“Rapid and accurate mapping of landslides triggered by extreme events is essential for 

effective emergency response, hazard mitigation, and disaster management. However, the 

development of generalized machine learning models for landslide detection has been 

hindered by the absence of a high-resolution, globally distributed, event-based dataset. To 

address this gap, we introduce the Globally Distributed Coseismic Landslide Dataset 

(GDCLD), a comprehensive dataset that integrates multi-source remote sensing images, 

including PlanetScope, Gaofen-6, Map World, and Unmanned Aerial Vehicle data, with 

varying geographical and geological background for nine events across the globe. In this 

study, we evaluated the effectiveness of GDCLD by comparing the mapping performance of 

seven state-of-the-art semantic segmentation algorithms. These models were further tested 

by three different types of remote sensing images in four independent regions, while the 

GDCLD-SegFormer model get the best performance. Additionally, we extended the 

evaluation to a rainfall-induced landslide dataset, where the models demonstrated excellent 

performance as well, highlighting the dataset's applicability to landslide segmentation 

triggered by other factors. Our results confirm the superiority of GDCLD in remote sensing 

landslide detection modeling, offering a comprehensive data base for rapid landslide 

assessment following future unexpected events worldwide.” (P2L16~32) 

Comment 5 

Too much old citations in the introduction section, it must be updated with latest citations like: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3998 

https://link.springer.com/article/10.1007/s12145-022-00889-2 

https://www.mdpi.com/2072-4292/16/6/992 

https://www.nature.com/articles/s41597-023-02847-z 

Response 5 



Thanks for your careful review. We have updated the latest literature in the introduction 

section of the article.  

Comment 6 

Write paper organization at the end of the introduction section. Also write major objective of 

the paper achieved in the proposed work along with steps taken to accomplish the above 

objective. 

Response 6 

Thanks for your valuable advices. 

We have added the corresponding content at the end of the Introduction.  

“The paper is structured as follows: Section 2 reviews existing high-quality landslide 

datasets to provide an overview of the current state of research. Section 3 introduces the 

data collection and preparation process to showcase the extensive research events and 

scientific methodology behind our data production. Section 4 describes the semantic 

segmentation algorithms, loss functions, and parameter settings used in this study, and 

shows their rationality. Section 5 presents the results, including the training, validation, and 

testing outcomes of the dataset, as well as the generalization ability of the GDCLD trained 

model in independent regions. Section 6 discusses the innovation and effectiveness of 

GDCLD, illustrating its effective application in several landslide events.” 

(P5L96~104). 

Comment 7 

In line 87 to 88 “Therefore, there is a pressing need for the development of a carefully curated 

and diverse dataset”. It must be written properly. 

Response 7 

Thanks for your helpful comment. We have modified this section. 

“Therefore, there is an urgent need to develop a carefully curated and diverse dataset.” 

(P4L87) 

Comment 8 

Line 92 what kind of shortcomings were addressed. Have evaluated the existing dataset on 

the proposed method. If yes then kindly share the result. If not, evaluate it, and add one table 



highlighting the same. 

Response 8 

Thanks for your helpful comments. 

Our study addresses the following key shortcoming: 

1. The GDCLD dataset, constructed from multi-source remote sensing imagery, represents 

the largest publicly available landslide dataset to date. Unlike existing datasets, GDCLD is 

entirely composed of high-resolution remote sensing imagery, with annotated pixels reaching 

a total of 1.39 billion. Furthermore, it incorporates negative samples such as bare land, cloud 

cover, dry riverbeds, and human engineering activities. These features significantly enhance 

the generalization capability of models trained on GDCLD. This aspect is elaborated in 

Section 3.2 and is further substantiated by the model's excellent generalization performance 

as demonstrated in Sections 5 and 6.3. Additionally, compared to other publicly available 

but smaller landslide datasets, GDCLD effectively supports the training of large neural 

networks based on the Transformer architecture, providing a robust data foundation for the 

future development of large vision models for landslide detection. This aspect is further 

discussed in Section 7. 

2. To demonstrate the performance of GDCLD, we have supplemented the study with 

relevant experiments, providing a detailed comparison of existing landslide datasets in 

Section 6.3. As presented in Table 10, the models trained on GDCLD exhibit superior 

performance compared to those trained on other datasets, underscoring the advantages of 

GDCLD. 

 

Comment 9 

Section 2 must be written as “Related Work” 

Response 9 

Thanks for your comment. We have modified “Relate Work” to “Related Work”. （P5L105） 

Comment 10 

In section 3 except “Data Collection” all other subsections must be presented in tabular form 

rather in running text. 



Response 10 

Thank you for your positive and constructive comments. 

In Section 3.1, following your suggestion, we have organized the nine earthquake-induced 

landslide events collected in this study into a table. The table provides a clear overview of 

each event, displaying key information such as the date, magnitude, geographic location, 

number of landslides, and total landslide area. This approach allows for an intuitive 

comparison of all events, enabling readers to easily grasp the critical details. 

Table.2 Summary table of landslide event information in GDCLD 

Events Mw time 

Geographic 

coordinates 

Landslide 

number 

Total landslide 

area (km2) 

Jiuzhaigou 6.5 2017 (102.82°E, 33.20°N) 2498 14.5 

Mainling 6.4 2017 (95.02°E, 29.75°N) 1448 33.6 

Hokkaido 6.6 2018 (142.01°E, 42.69°N) 7962 23.8 

Palu 7.5 2018 (119.84°E, 0.18°S) 15700 43.0 

Mesetas 6.0 2019 (76.19°W, 3.45°N) 804 8.5 

Nippes 7.2 2021 (73.45°W, 18.35°N) 4893 45.6 

Sumatra 6.1 2022 (100.10°E, 0.22°N) 602 10.6 

Lushan 5.9 2022 (102.94°E, 30.37°N) 1063 7.2 

Luding 6.8 2022 (102.08°E, 29.59°N) 15163 28.53 

(P9L179) 

We also retain the detailed descriptions of each event in the main text. These running texts 

provide a more comprehensive understanding of the events, including background 

information, geographic and geological contexts, and specifics regarding the multi-source 

remote sensing imagery. This detailed narrative enriches the reader's perspective and 

enhances their understanding of the study’s context. 

 

Comment 11 

Section 3.2 highlights the preprocessing of the dataset. One detailed fig must be added 

highlighting the steps involved or operations performed on training dataset. 



Response 11 

Thanks for your advice. 

We have drawn a flowchart of the dataset preprocessing and added it Section 3 (Figure.1). 

(P8L164~171) 

“The creation of the GDCLD dataset can be broadly divided into two main components: 

landslide data collection and remote sensing data processing. In the first part, we compiled 

recent landslide events triggerred by earthquakes worldwide over the past seven years and 

obtained the corresponding remote sensing image. The second part details the process of 

annotating landslide labels and the methodology used to create the standard dataset. The 

workflow is illustrated in Figure.1. 

 

Figure.1 The workflow of producing GDCLD” 

Comment 12 

Mention the technical novelty of the paper other than creating the generalized dataset. 

Response 12 

Thank you for the suggestion. 

This study primarily focuses on innovation in dataset development, aiming to provide a high-

quality landslide dataset for research on intelligent landslide recognition, contributing to 

disaster prevention and mitigation efforts alongside researchers worldwide. Therefore, we 

have integrated state-of-the-art remote sensing and computational techniques that are 



currently open-source, with a particular emphasis on the contributions and innovations of the 

GDCLD dataset. 

1. GDCLD is a landslide dataset based on multi-source, multi-sensor, and cross-resolution 

high-precision remote sensing imagery, entirely annotated manually. It is suitable for 

intelligent landslide recognition tasks across a wide range of scenarios. 

2. The dataset encompasses multiple global events, spanning various climate zones, 

tectonic settings, and geomorphological landscapes, and features an extended temporal 

resolution. 

3. We have manually incorporated a rich set of negative samples, such as bare land, 

exposed rock, dry riverbeds, cloud cover, and human engineering activities, which are prone 

to confusion with landslides. This work was carried out to enhance the generalization 

capability of models trained on this dataset. 

4. During the manual annotation process, we meticulously cross-referenced the spectral 

characteristics of pre- and post-event remote sensing imagery with the morphological 

features of landslides. Additionally, we conducted field surveys for certain landslide events. 

5. In terms of intelligent recognition, we conducted the first comparative analysis of different 

neural network architectures on a multi-source remote sensing landslide dataset, confirming 

the superiority of the Transformer architecture for landslide recognition. 

6. Regarding remote sensing data sources, we compared the effectiveness of single-source 

versus multi-source remote sensing imagery in landslide recognition, demonstrating the 

effectiveness of multi-source imagery in such tasks. 

We mentioned the technical innovations of this study in the conclusion: 

“Finally, we demonstrate the superiority of the Transformer architecture over 

conventional CNN architecture in the task of landslide identification using multi-source 

remote sensing image. The GDCLD-S model further highlights the enhanced generalization 

capabilities of multi-source data compared to single-source data.” (P42L740~743) 

Comment 13 

How can the GDCLD and the trained models be integrated into current emergency response 

and disaster management systems? Are there any case studies or real-world applications 



that demonstrate their effectiveness? 

Response 13 

Thanks for your valuable questions. 

Regarding the geological disaster emergency identification system, we integrated this 

identification model into the our institute, the laboratory's emergency system (SKLGP-LDD). 

In order to show the applications of GDCLD in landslides triggered by real events, we added 

a discussion section 6.4 “Practical Applications of GDCLD” and conducted rapid mapping 

of two landslide events that occurred in 2024. 

“To evaluate the practical applicability of the CDCLD, we selected two significant landslide-

triggering events that occurred in April 2024 for rapid landslide identification. These events 

include landslides induced by a heavy rainfall in Meizhou, China and landslides triggered by 

an earthquake in Hualien, China. In both cases, PlanetScope image was employed for 

experimentation. For the Meizhou case, we obtained the image on May 14, 2024, and applied 

SegFormer model trained on GDCLD data to identify landslides triggered by the heavy 

rainfall. The results, shown in Figure 14, demonstrate that the GDCLD-trained model 

effectively mapped newly-induced landslides with a total area of 8.49 km2. The model 

exhibited excellent accuracy in avoiding false positives such as buildings, roads, and rivers. 

In terms of the Hualien event, we acquired post-event images from April 17 to 29, 2024. The 

rapid identification results, displayed in Figure.15, indicate that the GDCLD-trained model 

effectively eliminates false positives, such as roads, buildings, bare ground, and rivers, with 

the identified landslide area of 90.9 km2. The original PlanetScope images and landslide 

recognitions of the two events are available at https://doi.org/10.5281/zenodo.13612636 

(Fang et al., 2024)”(P36~39L652~671) 



 

Figure.14 Detection results of rainfall landslides for Meizhou, China. (a) is the aerial view of 

the whole area, (b), (c) and (d) is the partial details. 

 



Figure.15 Detection results of earthquake-triggered landslides for Hualien, China. (a) is the 

aerial view of the whole area, (b), (c) and (d) is the partial details. 

Comment 14 

What are the challenges and considerations for scaling this approach to cover larger areas 

or more diverse regions? Are there any technological or infrastructural requirements? 

Response 14 

Thanks for your valuable comment. 

1. At first, the GDCLD dataset is currently most effective in research areas with moderate 

vegetation cover, as it successfully mitigates interference based on negative samples such 

as clouds, bare land, and dried riverbeds. However, its application in detecting loess 

landslides, such as those triggered by the Mw 6.2 earthquake in Jishishan, Gansu, China, 

on December 18, 2023, exhibits certain limitations in our approach. As we mentioned in 

section 7, we will continue to expand our dataset in the future to enable it to meet the needs 

of a wider range of landslide identification tasks.  

“The current GDCLD primarily comprises landslide samples from regions with significant 

vegetation coverage, with limited representation from areas with low vegetation cover, such 

as loess landslides. To address this, we have updated the database with high-resolution UAV 

data (0.1m resolution) of loess landslides triggered by the Mw 6.2 earthquake in Jishishan, 

Gansu, China, in December 2023. Incorporating these loess landslide samples would 

enhance the dataset's diversity and improve the generalization capability of landslide 

detection models. Ongoing efforts to track and integrate data from landslides triggered by 

future extreme events including strong earthquakes, heavy rainfall, and hurricanes, will 

further enrich the dataset.” 

(P39~40L673~680)  

2. In addition, to meet the needs of automatic landslide identification in a larger area, a larger 

neural network model is needed. This requires not only accurate training data from geological 

researchers, but also sufficient computing power and computer science. We also mentioned 

in section 7 that we will train a large visual model based on GDCLD in the future. 

“In addition to expanding the GDCLD dataset, developing a large-scale vision model for 



landslide detection, such as a Segment Anything Model tailored for landslide identification 

and trained on GDCLD, is an crucial step forward in advancing AI-based landslide detection. 

This model will be used for the intelligent recognition of landslides in multi-source remote 

sensing image on a global scale” (P40L681~685) 

Comment 15 

What are the potential future enhancements or expansions planned for the GDCLD? Are 

there any ongoing efforts to continuously update and improve the dataset? 

Response 15 

Thanks for your questions. 

In Section.7, we outline several future research directions, including the expansion of the 

dataset. We plan to track landslide events triggered by future extreme events and incorporate 

them into our multi-source landslide dataset. During the current revision stage, we have 

already added PlanetScope data for two landslide events in Hualien and Meizhou, China. 

Notably, for dataset expansion, we have also included a UAV-based (0.1m resolution) 

dataset of earthquake-induced landslides in the Loess region, which will significantly 

enhance the richness and diversity of the GDCLD dataset. The dataset and detailed data 

description can be download from https://doi.org/10.5281/zenodo.13612636 (Fang et al., 

2024).  

Comment 16 

What specific characteristics of the GDCLD-trained model enable it to effectively map rainfall-

induced landslides? Are there any limitations or areas for improvement in this application? 

Response 16 

We thank the reviewer for raising these points. 

1. Models trained on the GDCLD dataset are capable of distinguishing landslides from 

surrounding objects by learning differences in spatial morphology, spectral characteristics, 

etc. Given that both earthquake- and rainfall-induced landslides are typically newly induced 

landslides, they often exhibit significant spectral and spatial contrasts with their surrounding 

environment, making them feasible to be identified.  

2. However, since some rainfall-induced landslides are shallow and do not fully disrupt the 



vegetation cover, the model's performance in detecting this type of landslides may be 

suboptimal (Wang et al., 2022). In future work, we plan to specifically address this limitation 

by augmenting the dataset with more samples of rainfall-induced landslides, aiming at 

improving the generalization capability of the GDCLD model. 

Comment 17 

How does the performance of the GDCLD-trained model compare to existing models and 

datasets in quantitative terms? Can you include specific performance metrics or visual 

comparisons? 

Response 17 

Thanks for your valuable comments. 

In order to further demonstrate the advantages of GDCLD over other landslide datasets, we 

modified section 6.3 by adding the GVLM- and CAS-trained models based on the 

SegFormer algorithm. Futhermore, we also reproduced the CAS-D model trained with 

DeepLabV3 in the CAS data paper (Xu et al., 2024). These models were implemented for 

landslide identification task with three different remote sensing data sources in the 

independent 2022 Lushan case study in this paper. In Section 6.3, we have supplemented 

the discussion with relevant experimental data: 

1. As observed in Table 10, the CAS-D model demonstrates mIoU results of 57.91% on UAV 

image, 52.86% on PlanetScope image, and 58.11% on Map World image within the Lushan 

dataset. Overall, these results are inferior to the performance of GDCLD-S on the Lushan 

dataset. Additionally, CAS-D's performance lags behind that of CAS-S, which is based on 

the Transformer architecture. 

2. Table 10 also highlights the performance of landslide detection models trained with the 

SegFormer architecture on the GVLM, CAS, and GDCLD datasets. Among them, GDCLD-S 

exhibits the highest performance, with mIoU results of 72.96% for UAV, 69.05% for 

PlanetScope, and 71.92% for MapWorld image, underscoring the superior competitiveness 

of the GDCLD dataset. 

The overall changes to section 6.3 are as follows: （P33~36L602~650） 

“6.3 Comparison with existing landslide datasets and models 



To assess the robustness and generalization capabilities of the GDCLD dataset, we 

employ SegFormer trained on the GDCLD dataset (GDCLD-S model) to identify landslides 

within three distinct datasets: HR-GLDD, GVLM, and CAS. Initially, we standardize the data 

from these three datasets into 1024×1024 remote sensing tiles. Subsequently, utilizing the 

MGDCLD-S model, we conduct landslide identification across all these datasets. Table.8 9 

demonstrates favorable performance of the model across these diverse datasets. For 

instance, in the HR-GLDD dataset, which shares similarities with the PlanetScope image 

within GDCLD, the model achieves an mIoU of 76.97%, indicating a balance between 

Precision and Recall metrics. Similarly, when applied to the GVLM dataset, leveraging Map 

World image, our dataset exhibits robust predictive outcomes, resulting in a comprehensive 

mIoU of 70.07%. Likewise, for the CAS dataset, GDCLD demonstrates strong generalization 

capabilities, yielding an outstanding comprehensive metric with mIoU = 76.91%, alongside 

balanced Recall and Precision metrics. 

Although all landslide samples contained in GDCLD are induced by seismic activity, our 

model demonstrates good detection capabilities for rainfall-induced landslides. These two 

categories exhibit distinct spectral characteristics from their surrounding environments. 

Consequently, models trained on GDCLD exhibit proficient detection capabilities for rainfall-

induced landslides. We present the identification performance of GDCLD-based model for 

rainfall-induced landslides from the GVLM dataset in Table.8 9 and Figure.1213. Figure.12 

13 underscores the excellent detection performance of the GDCLD-S model on rainfall-

induced landslides in the GVLM dataset. Despite occasional misclassifications of small-size 

targets, the model effectively delineates the majority of rain-induced landslides. the Precision 

metrics in Table.8 affirm this observation with an mIoU reaching 78.22% and both Recall and 

Precision exceeding 85%. This highlights the robust generalization capability of the model 

trained by our dataset, enabling effective identification of rainfall-induced landslides 

Table.9 Validation results of other public datasets 

Dataset Precision (%) Recall (%) F1 (%) mIoU (%) 

HR-GLDD 84.88 86.81 85.84 76.97 

GVLM 72.83 87.54 80.68 70.07 

CAS 82.95 86.35 84.62 76.91 



GVLM-rainfall 85.88 86.71 86.29 78.22 

 

Figure.13 Detection results of rainfall landslides by GDCLD-S model in GVLM dataset 

In addition to the aforementioned analyses, we compare the performance of GDCLD 

with other two datasets, GVLM and CAS. Specifically, we train landslide detection models 

using the SegFormer algorithm on the GVLM and CAS datasets, denoted as GVLM-S and 

CAS-S, respectively, with identical training parameters as previously described. 

Furthermore, we also use the DeepLabV3 to train the CAS-D model based on the CAS 

dataset and use it for comparison of landslide detection (Xu et al., 2024). Subsequently, the 

GDCLD-S, CAS-S, CAS-D and GVLM-S models were applied to identify landslides in the 

Lushan area using three distinct remote sensing data sources: UAV, PlanetScope, and Map 

World. The results of this comparison are presented in Table 10. From Table 10, it is evident 

that the GDCLD-S model outperformed CAS-S, CAS-D and GVLM-S across all three remote 

sensing datasets, achieving mIoU of 72.96%, 69.05%, and 71.92% on UAV, PlanetScope, 



and Map World. In contrast, CAS-S records mIoU values of 62.03%, 56.86%, and 60.35% 

for the same datasets, respectively, which is better than the CAS-D model trained with 

DeepLabV3, and also illustrates the advantages of the transformer architecture over the 

CNN architecture. Notably, GDCLD-S exhibited a significantly higher Recall than the other 

two models and also demonstrated an advantage in Precision. Overall, GDCLD-S, along 

with CAS-S, exhibited superior performance compared to the single-source data model 

GVLM-S, particularly in handling multisource remote sensing images. The extensive 

landslide data and negative samples included in GDCLD-S further contributed to its 

enhanced robustness against noise and improved Recall in landslide detection. 

Table.10 Performance of the GDCLD-S, GVLM-S, CAS-S, and CAS-D models on the 

Lushan case 

Model Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

 UAV 72.73 55.34 62.88 57.91 

CAS-D PlanetScope 52.07 56.05 53.93 52.86 

 Map World 61.79 70.50 64.9 58.11 

 UAV 73.03 54.84 57.67 53.41 

GVLM-S PlanetScope 60.13 53.40 54.82 51.52 

 Map World 77.71 66.40 71.56 63.97 

 UAV 74.08 67.05 69.95 62.03 

CAS-S PlanetScope 58.56 76.57 66.40 56.86 

 Map World 75.02 64.65 68.37 60.35 

 UAV 74.72 90.35 81.80 72.96 

GDCLD-S PlanetScope 81.50 82.28 81.78 69.05 

 Map World 76.18 87.35 81.38 71.92 

” 

Comment 18 

Which seven semantic segmentation algorithms were evaluated, and what were the criteria 

for their selection? How do these algorithms differ in their approach to landslide detection? 

Response 18 



Thanks for your comments. 

1. In this study, we selected seven semantic segmentation algorithms—UNet, ResUNet, 

DeepLabV3, HRNet, UperNet, SwinUNet, and SegFormer (Tang et al., 2022; Meena et al., 

2022; He et al., 2022; Li et al., 2022) (Section 4.1). The first four algorithms are based on a 

pure CNN architecture, while the latter three are based on a Transformer architecture. These 

algorithms have been among the most popular for semantic segmentation tasks during 

different periods, which have been applied to various remote sensing tasks, including 

landslide detection. Typically, CNN-based algorithms are well-suited for small datasets, 

whereas Transformer-based algorithms perform better on larger datasets. Therefore, we 

chose these seven semantic segmentation algorithms to comprehensively evaluate the 

GDCLD dataset. 

2. Regarding the performance of the seven semantic segmentation algorithms in landslide 

detection, experimental results from the GDCLD validation and test sets indicate that 

semantic segmentation models based on the Transformer architecture outperform those 

based purely on CNN architectures in multi-source remote sensing image recognition tasks. 

The results are presented in Tables.4 and 5. This superiority can be attributed to the 

Transformer models' larger receptive fields, which enable the effective learning of high-level 

features from multi-source imagery, thereby enhancing their generalization capabilities. In 

section 5, we give a more detailed explanation. (P23~26L458~543) 

Table.4 Comparison of result on GDCLD validation dataset 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 77.05 82.01 79.54 71.07 

ResUNet ResNet-50 78.17 86.48 82.11 71.94 

DeepLabV3 ResNet-50 81.27 86.96 84.02 74.61 

HRNet HRNet-48 81.88 87.21 84.46 75.19 

UperNet ViT-B16 88.18 90.64 89.39 81.97 

SwinUNet - 89.78 92.01 90.72 83.68 

SegFormer MiT-B4 91.35 91.70 91.52 85.06 

Table.5 Comparison of result on test dataset 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 61.69 61.22 61.45 56.09 



ResUNet ResNet-50 66.56 64.46 65.49 57.06 

DeepLabV3 ResNet-50 65.26 67.75 66.48 59.73 

HRNet HRNet-48 65.52 72.03 68.62 61.79 

UperNet ViT-B16 69.96 78.08 73.80 65.42 

SwinUNet - 71.56 82.26 76.54 67.18 

SegFormer MiT-B4 77.09 87.09 81.88 72.84 
 

Comment 19 

Why were PlanetScope, Gaofen-Map World, and Unmanned Aerial Vehicles chosen as the 

primary sources of remote sensing images? Are there other potential sources that could be 

included in future iterations of the dataset? 

Response 19 

We thank the reviewer for raising the questions. 

1. At first, considering that this study utilizes very high-resolution (VHR) remote sensing 

imagery, with a spatial resolution of 3m for PlanetScope, 2m for Gaofen-6, 0.5-1m for Map 

World, and 0.2m for UAV, the overall resolution range of the multisource remote sensing 

images spans from 0.2m to 3m. This range effectively encompasses the entire spectrum of 

VHR spatial resolutions, enabling GDCLD to meet the demands of landslide detection tasks 

in most scenarios.  

2. In future work, we plan to further enrich GDCLD with additional remote sensing data 

sources, including Gaofen-2 (0.8m), Gaofen-7 (0.5m), Google Earth image (0.5m-1m), and 

higher-resolution UAV (0.1~0.2m), to support the development of even more accurate 

landslide detection models. We have updated some of the UAV data of the landslides 

induced by the Loess Earthquake with a spatial resolution of 0.1m, which can be downloaded 

from https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024). 

“To address this, we have updated the database with high-resolution UAV data (0.1m 

resolution) of loess landslides triggered by the Mw 6.2 earthquake in Jishishan, Gansu, 

China, in December 2023.” (P39L675~677) 

Comment 20 

What specific criteria and methods were used to annotate the 1.39 billion landslide pixels? 

Were there any challenges or limitations encountered during the annotation process? 



Response 20 

Thanks for your comments. 

1. During the annotation of the 1.39 billion landslide pixels, as illustrated in Figure.1 and 

Figure.2, we first considered the spectral changes in remote sensing images before and 

after the event to preliminarily identify landslide-affected areas. Subsequently, we 

incorporated topography, landforms, and surrounding objects to assess the morphological 

characteristics of the landslides, allowing us to exclude images of bare land, vegetation 

changes over time, river changes, and human engineering activities (Fan et al., 2019). Using 

QGIS software, vector labels were meticulously drawn for each landslide pixel.  

2. The annotation process encountered significant challenges, including interference from 

exposed bedrock and bare land, as well as debris accumulation at channel outlets caused 

by debris flows. To address the first challenge, we meticulously compared the spectral and 

morphological characteristics of pre- and post-earthquake remote sensing images to 

eliminate the interference from non-landslide features, such as pre-existing bare land. For 

the second challenge, we focused on the morphological differences between landslides and 

debris flows to mitigate the impact of debris flow channels and deposition areas on spectral 

changes in remote sensing image (Hungr et al., 2014). 
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The Response to Comments from Review 2 

Comment 1 

Table 1, please provide the number of sites where landslides have occurred, along with the 

number of landslide polygons for each dataset. 

Response 1 

Thanks for your careful suggestion. 

We have revised Table 1 to include the specific events corresponding to each dataset and 

the number of landslides associated with each event. However, due to the absence of 

detailed information in the original sources for the GVLM and CAS datasets, some data 

remain unavailable, resulting in incomplete information. (P7L161) 

Table.1 Existing landslide dataset statistics 

Dataset Bands events 
Tiles Landslides 

number 

Labeling 

pixels 

Bijie landslide 3 1 2773 770 7.23×106 

Landslide4sense 14 4 3799 >30000 1.76×106 

HR-GLDD 4 13 1756 7193 2.96×106 

GVLM 3 17 17 - 3.24×107 

CAS Landslide 3 9 20865 - 1.95×108 
 

Comment 2 

Table 2, please specify the total number of polygons obtained and confirms that the 

necessary rights for the use of the mentioned images. 

Response 2 

Thanks for your valuable comment. 

1. We have made some revisions to the content of Section 3.1, "Data Collection." In response 

to your suggestions, we have added Table 2 to provide additional information. This table 

includes details such as the time, geographic coordinates (latitude and longitude), the 

number of landslides, and the total area affected by each landslide event. (P9L179) 

Table.2 Summary table of landslide event information in GDCLD 



Events Mw time 

Geographic 

coordinates 

Landslide 

number 

Total landslide area 

(km2) 

Jiuzhaigou 6.5 2017 (102.82°E, 33.20°N) 2498 14.5 

Mainling 6.4 2017 (95.02°E, 29.75°N) 1448 33.6 

Hokkaido 6.6 2018 (142.01°E, 42.69°N) 7962 23.8 

Palu 7.5 2018 (119.84°E, 0.18°S) 15700 43.0 

Mesetas 6.0 2019 (76.19°W, 3.45°N) 804 8.5 

Nippes 7.2 2021 (73.45°W, 18.35°N) 4893 45.6 

Sumatra 6.1 2022 (100.10°E, 0.22°N) 602 10.6 

Lushan 5.9 2022 (102.94°E, 30.37°N) 1063 7.2 

Luding 6.8 2022 (102.08°E, 29.59°N) 15163 28.53 

2. Details regarding data authorization are provided in Section 8, "Data Availability." The 

Planet data were obtained through the Planet Education and Research Program. Both the 

Map World and GF-6 datasets were accessed under an image license acquired by our team. 

The UAV data are under the usage rights of the laboratory affiliated with our team.  

“Both the Map World and GF-6 datasets were accessed under an image license acquired 

by our team. The UAV data are under the usage rights of the laboratory affiliated with our 

team. If you need to use them, please contact the corresponding author. The original 

PlanetScope data were obtained through the Planet Education and Research Program. You 

can get original imageries at https://www.planet.com/ (Planet Team, 2019).” (P41L713~717) 

 

Comment 3 

In Fig. 4, it's crucial to clarify the distinction between 'Label' and 'Ground Truth,' as they may 

initially appear similar. 

Response 3 

Thanks you for giving this comment. 

In Figure.4, the "label" represents binary pixel value derived from manually interpreted 

landslide polygons, while the "ground truth" is depicted by overlaying the semi-transparent 

landslide label on the corresponding position of the image. This approach visually 



demonstrates the accuracy of our landslide annotations. In the caption of Figure.4, we added 

a sentence to explain these two word. 

“The "label" refers to the binary landslide mask, whereas the "Ground Truth" illustrates the 

concordance between the annotated and actual landslide in images.” (P19L351~353) 

Comment 4 

A clear workflow outlining the entire dataset production process, along with details on 

personnel involvement, costs, and time invested, would offer valuable insights into the 

significant effort required to create such a comprehensive resource. 

Response 4 

Thanks for your insightful advices. 

1. We have drawn a flowchart of the dataset preprocessing and added it Section 3 

(Figure.1). (P8L164~171) 

“The creation of the GDCLD dataset can be broadly divided into two main components: 

landslide data collection and remote sensing data processing. In the first part, we compiled 

recent landslide events induced by earthquakes worldwide over the past seven years and 

obtained the corresponding remote sensing imagery. The second part details the process of 

annotating landslide labels and the methodology used to create the standard dataset. The 

workflow is illustrated in Figure.1. 

 

Figure.1 The workflow of producing GDCLD” 



2. Regarding the specific timeline and procedures for dataset creation, the landslide data 

included in the GDCLD were interpreted by our team over one year of research.  

“The mapping of landslide polygons for these nine events was primarily conducted by a team 

of five researchers, including the authors. All team members possess expertise in geology 

or remote sensing and were involved in a year-long process of detailed interpretation.” 

(P13~14L298~301) 

Moreover, we have acknowledged the efforts of all colleagues involved in the landslide 

interpretation in the Acknowledgements section with the following statement: "We sincerely 

thank all colleagues who contributed to the landslide interpretation work." (P43L768~769) 

Comment 5 

Lastly, the section titled '6.3 Model based on GDCLD performance on existing datasets' 

necessitates clarification to ensure its content is fully understood. 

Response 5 

We thank the reviewer for raising the question. 

During the revision of our manuscript, we have made adjustments to the content of Section 

6.3 and also revised its title. The overall content of Section 6.3 is outlined as follows: 

(P33~36L601~650) 

“6.3 Comparison with existing landslide datasets and models 

To assess the robustness and generalization capabilities of the GDCLD dataset, we 

employ SegFormer trained on the GDCLD dataset (GDCLD-S model) to identify landslides 

within three distinct datasets: HR-GLDD, GVLM, and CAS. Initially, we standardize the data 

from these three datasets into 1024×1024 remote sensing tiles. Subsequently, utilizing the 

MGDCLD-S model, we conduct landslide identification across all these datasets. Table.8 9 

demonstrates favorable performance of the model across these diverse datasets. For 

instance, in the HR-GLDD dataset, which shares similarities with the PlanetScope image 

within GDCLD, the model achieves an mIoU of 76.97%, indicating a balance between 

Precision and Recall metrics. Similarly, when applied to the GVLM dataset, leveraging Map 

World image, our dataset exhibits robust predictive outcomes, resulting in a comprehensive 

mIoU of 70.07%. Likewise, for the CAS dataset, GDCLD demonstrates strong generalization 



capabilities, yielding an outstanding comprehensive metric with mIoU = 76.91%, alongside 

balanced Recall and Precision metrics. 

Although all landslide samples contained in GDCLD are induced by seismic activity, our 

model demonstrates good detection capabilities for rainfall-induced landslides. These two 

categories exhibit distinct spectral characteristics from their surrounding environments. 

Consequently, models trained on GDCLD exhibit proficient detection capabilities for rainfall-

induced landslides. We present the identification performance of GDCLD-based model for 

rainfall-induced landslides from the GVLM dataset in Table.8 9 and Figure.1213. Figure.12 

13 underscores the excellent detection performance of the GDCLD-S model on rainfall-

induced landslides in the GVLM dataset. Despite occasional misclassifications of small-size 

targets, the model effectively delineates the majority of rain-induced landslides. the Precision 

metrics in Table.8 affirm this observation with an mIoU reaching 78.22% and both Recall and 

Precision exceeding 85%. This highlights the robust generalization capability of the model 

trained by our dataset, enabling effective identification of rainfall-induced landslides 

Table.9 Validation results of other public datasets 

Dataset Precision (%) Recall (%) F1 (%) mIoU (%) 

HR-GLDD 84.88 86.81 85.84 76.97 

GVLM 72.83 87.54 80.68 70.07 

CAS 82.95 86.35 84.62 76.91 

GVLM-rainfall 85.88 86.71 86.29 78.22 



 

Figure.13 Detection results of rainfall landslides by GDCLD-S model in GVLM dataset 

In addition to the aforementioned analyses, we compare the performance of GDCLD 

with other two datasets, GVLM and CAS. Specifically, we train landslide detection models 

using the SegFormer algorithm on the GVLM and CAS datasets, denoted as GVLM-S and 

CAS-S, respectively, with identical training parameters as previously described. 

Furthermore, we also use the DeepLabV3 to train the CAS-D model based on the CAS 

dataset and use it for comparison of landslide detection (Xu et al., 2024). Subsequently, the 

GDCLD-S, CAS-S, CAS-D and GVLM-S models were applied to identify landslides in the 

Lushan area using three distinct remote sensing data sources: UAV, PlanetScope, and Map 

World. The results of this comparison are presented in Table 10. From Table 10, it is evident 

that the GDCLD-S model outperformed CAS-S, CAS-D and GVLM-S across all three remote 

sensing datasets, achieving mIoU of 72.96%, 69.05%, and 71.92% on UAV, PlanetScope, 

and Map World. In contrast, CAS-S records mIoU values of 62.03%, 56.86%, and 60.35% 



for the same datasets, respectively, which is better than the CAS-D model trained with 

DeepLabV3, and also illustrates the advantages of the transformer architecture over the 

CNN architecture. Notably, GDCLD-S exhibited a significantly higher Recall than the other 

two models and also demonstrated an advantage in Precision. Overall, GDCLD-S, along 

with CAS-S, exhibited superior performance compared to the single-source data model 

GVLM-S, particularly in handling multisource remote sensing images. The extensive 

landslide data and negative samples included in GDCLD-S further contributed to its 

enhanced robustness against noise and improved Recall in landslide detection. 

Table.10 Performance of the GDCLD-S, GVLM-S, CAS-S, and CAS-D models on the 

Lushan case 

Model Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

 UAV 72.73 55.34 62.88 57.91 

CAS-D PlanetScope 52.07 56.05 53.93 52.86 

 Map World 61.79 70.50 64.9 58.11 

 UAV 73.03 54.84 57.67 53.41 

GVLM-S PlanetScope 60.13 53.40 54.82 51.52 

 Map World 77.71 66.40 71.56 63.97 

 UAV 74.08 67.05 69.95 62.03 

CAS-S PlanetScope 58.56 76.57 66.40 56.86 

 Map World 75.02 64.65 68.37 60.35 

 UAV 74.72 90.35 81.80 72.96 

GDCLD-S PlanetScope 81.50 82.28 81.78 69.05 

 Map World 76.18 87.35 81.38 71.92 

” 
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The Response to Comments from Review 3 

Comment 1 

However, a significant concern with this work, as with any automated landslide mapping, is 

the potential clustering of multiple landslides in one location, leading to the incorrect 

identification of several landslides as a single event. For instance, in the Hokkaido landslide 

area, several crowns have merged, resulting in a unified depositional landscape. Was any 

attempt made to address this issue by separating the multiple landslides? If not, this should 

be discussed in the limitations section and considered for future work. 

Response 1 

Thank you for giving this comment. We strongly agree with your opinion that the current 

available landslide datasets are all facing such challenge.  Currently, most publicly available 

landslide datasets are designed for semantic segmentation tasks rather than instance 

segmentation. Unlike other computer vision tasks, landslides are complex geological 

phenomena, and distinguishing multiple landslides that overlap or blend together is 

challenging when relying solely on optical imagery. Effective separation often requires 

additional data, such as digital elevation models (DEMs) and derived geomorphological 

features. We have addressed this issue in Section 7 and plan to develop a dedicated 

landslide instance segmentation dataset in future work. 

“Note that GDCLD is generally more applicable to semantic segmentation rather than 

instance segmentation for landslide identification task. Unlike other instance segmentation 

tasks, landslide segmentation presents unique challenges due to the frequent mixing of the 

"deposit" areas of adjacent landslide bodies (Hungr et al., 2014). In most cases, we can only 

intuitively identify the "source" area of a landslide. This phenomenon is commonly observed 

in events such as the landslides triggered by the 2022 Luding earthquake in China 

(Figure.S10). Under these circumstances, it is often not feasible to separate individual 

landslides directly from 2D optical images. Instead, it is necessary to consider the movement 

characteristics of each object from a 3D perspective (Bhuyan et al., 2024; Marc and Hovius, 

2015) and combine this with topographic data to create accurate landslide labels for instance 

segmentation. However, generating such datasets requires high-resolution digital elevation 



models (DEM) and UAV or direct use of point cloud data. Given the global limitations in 

publicly available DEM (30m), achieving such fine distinctions is challenging. Therefore, our 

current study primarily focuses on semantic segmentation tasks. In future research, we plan 

to prepare landslide labels for instance segmentation based on LiDAR observation, and to 

develop specialized algorithms to address this complex issue. (P40L686~701) 

 

Figure.S10 Example of instance landslide label (2022 Luding earthquake-triggered 

landslides) 

” 



Comment 2 and Comment 3 

1. In the abstract, specify the number of events or case areas represented by this global ML-

based inventory.  

2. On line 27, mention the best-fit model used. 

Response 2 and Response 3 

Thanks for your insightful advices. 

We have completely rewritten the summary and added content based on your suggestions. 

“Rapid and accurate mapping of landslides triggered by extreme events is essential for 

effective emergency response, hazard mitigation, and disaster management. However, the 

development of generalized machine learning models for landslide detection has been 

hindered by the absence of a high-resolution, globally distributed, event-based dataset. To 

address this gap, we introduce the Globally Distributed Coseismic Landslide Dataset 

(GDCLD), a comprehensive dataset that integrates multi-source remote sensing images, 

including PlanetScope, Gaofen-6, Map World, and Unmanned Aerial Vehicle data, with 

varying geographical and geological background for nine events across the globe. In this 

study, we evaluated the effectiveness of GDCLD by comparing the mapping performance of 

seven state-of-the-art semantic segmentation algorithms. These models were further tested 

by three different types of remote sensing images in four independent regions, while the 

GDCLD-SegFormer model get the best performance. Additionally, we extended the 

evaluation to a rainfall-induced landslide dataset, where the models demonstrated excellent 

performance as well, highlighting the dataset's applicability to landslide segmentation 

triggered by other factors. Our results confirm the superiority of GDCLD in remote sensing 

landslide detection modeling, offering a comprehensive data base for rapid landslide 

assessment following future unexpected events worldwide.” (P2L 16~32) 

Comment 4 

On line 69, where it is stated that most models lack generalization capability across diverse 

environmental backgrounds and remote sensing images, please elaborate on what the 

authors mean by "generalization." 

Response 4 



Thanks you for giving this comment. 

In this point, the term "generalization ability" refers to the capacity of machine learning or 

deep learning algorithms to adapt to new and unseen samples. This aims to illustrate that 

most models trained on existing datasets experience a significant decline in landslide 

detection performance when confronted with different geographic regions and remote 

sensing data sources. In the revised Section 6.3, we have included experiments to 

substantiate this observation. Specifically, we evaluated the ability of models trained on three 

datasets—CAS, GVLM, and GDCLD—to detect landslides in previously unseen areas. 

“In addition to the aforementioned analyses, we compare the performance of GDCLD 

with other two datasets, GVLM and CAS. Specifically, we train landslide detection models 

using the SegFormer algorithm on the GVLM and CAS datasets, denoted as GVLM-S and 

CAS-S, respectively, with identical training parameters as previously described. 

Furthermore, we also use the DeepLabV3 to train the CAS-D model based on the CAS 

dataset and use it for comparison of landslide detection (Xu et al., 2024). Subsequently, the 

GDCLD-S, CAS-S, CAS-D and GVLM-S models were applied to identify landslides in the 

Lushan area using three distinct remote sensing data sources: UAV, PlanetScope, and Map 

World. The results of this comparison are presented in Table 10. From Table 10, it is evident 

that the GDCLD-S model outperformed CAS-S, CAS-D and GVLM-S across all three remote 

sensing datasets, achieving mIoU of 72.96%, 69.05%, and 71.92% on UAV, PlanetScope, 

and Map World. In contrast, CAS-S records mIoU values of 62.03%, 56.86%, and 60.35% 

for the same datasets, respectively, which is better than the CAS-D model trained with 

DeepLabV3, and also illustrates the advantages of the transformer architecture over the 

CNN architecture. Notably, GDCLD-S exhibited a significantly higher Recall than the other 

two models and also demonstrated an advantage in Precision. Overall, GDCLD-S, along 

with CAS-S, exhibited superior performance compared to the single-source data model 

GVLM-S, particularly in handling multisource remote sensing images. The extensive 

landslide data and negative samples included in GDCLD-S further contributed to its 

enhanced robustness against noise and improved Recall in landslide detection. 

(P35~36L629~648) 



Table.10 Performance of the GDCLD-S, GVLM-S, CAS-S, and CAS-D models on the 2022 

Lushan case 

Model Data type Precision (%) Recall (%) F1 (%) mIoU (%) 

 UAV 72.73 55.34 62.88 57.91 

CAS-D PlanetScope 52.07 56.05 53.93 52.86 

 Map World 61.79 70.50 64.9 58.11 

 UAV 73.03 54.84 57.67 53.41 

GVLM-S PlanetScope 60.13 53.40 54.82 51.52 

 Map World 77.71 66.40 71.56 63.97 

 UAV 74.08 67.05 69.95 62.03 

CAS-S PlanetScope 58.56 76.57 66.40 56.86 

 Map World 75.02 64.65 68.37 60.35 

 UAV 74.72 90.35 81.80 72.96 

GDCLD-S PlanetScope 81.50 82.28 81.78 69.05 

 Map World 76.18 87.35 81.38 71.92 

 

“ 

Comment 5 

On line 74, consider starting the sentence with "For instance" or "For example."" 

Response 5 

Thanks for your careful comment. 

We have modified this word. “for example, after major events such as the Wenchuan, China 

(2008), and Gorkha, Nepal (2015) earthquakes.” (P4L62~64) 

Comment 6 

It is advisable to use the full forms of abbreviations like CAS, HRGLDD, and GVLM at their 

first occurrence in the manuscript. 

Response 6 

Thanks for your careful comment. 

We have reviewed the article and revised the content. 



Comment 7 

A flowchart detailing the method would be helpful for readers. 

Response 6 

Thanks for your insightful advices, which will improve our work a lot. 

We have drawn a flowchart of the dataset preprocessing and added it Section 3 (Figure.1). 

(P8L164~171) 

“The creation of the GDCLD dataset can be broadly divided into two main components: 

landslide data collection and remote sensing data processing. In the first part, we compiled 

recent landslide events triggerred by earthquakes worldwide over the past seven years and 

obtained the corresponding remote sensing imagery. The second part details the process of 

annotating landslide labels and the methodology used to create the standard dataset. The 

workflow is illustrated in Figure.1. 

 

Figure.1 The workflow of producing GDCLD” 

 

Comment 8 

On line 96, consider changing the heading to "Related Work" or "Past Research.". 

Response 8 

Thanks for your comment. We have modified “Relate Work” to “Related Work”. （P5L105） 

Comment 9 



On line 97, the intended meaning is unclear and needs clarification. 

Thanks for your careful comment. We have modified this word. 

“The most effective approach for landslide mapping currently involves image segmentation, 

and computer vision segmentation tasks depend heavily on high-quality data to build 

accurate models. However, landslide segmentation tasks have developed relatively recently 

compared to other computer vision applications, resulting in only a limited number of studies 

that have constructed datasets for various landslide events. In this section, we review some 

of these landslide segmentation datasets and provide detailed information on each 

(Table.1).” （P5L106~111） 

Comment 10 

On line 198, change the reference to "Hokkaido earthquake." 

Response 10 

Thanks for your careful comment. We have modified this word. 

“Following the Hokkaido earthquake, we acquired PlanetScope image with a 3m resolution 

on December 12, 2018, and Map World image with a 0.5m resolution (Figure.S3).” 

（P10~11L215~217） 

Comment 11 

The source for the World Map image, as well as other data sources, such as the download 

link or web portal, should be mentioned for the readers. 

Response 11 

We thank the reviewer for raising these points. 

In section 8, we modified the content of Data availability and introduced the source of the 

dataset. 

“In addition, the other original data of UAV, Map World and Gaofen-6 are non-public data. 

Both the Map World and GF-6 datasets were accessed under an image license acquired by 

our team. The UAV data are under the usage rights of the laboratory affiliated with our team. 

If you need to use them, please contact the corresponding author. The original PlanetScope 

data were obtained through the Planet Education and Research Program, which can be 

accessed at https://www.planet.com/ (Planet Team, 2019).” (P41L713~718) 



Comment 12 

Lines 274-275 and several other instances contain unclear grammar. It would be beneficial 

to revise these with the assistance of a native speaker. 

Response 12 

We thank the reviewer for raising these points. We have modified this line. 

“In the aforementioned nine events, the available public data primarily focuses on geological 

analysis rather than tasks related to semantic segmentation.” (P13L292~293) 

In addition, we also corrected other grammatical errors in the manuscript. 

Comment 13 

Additionally, validating the results with data from the recent Taiwan earthquake is suggested. 

Response 13 

Thanks you for the suggestion. In the revised manuscript, we have added a new Section 6.4, 

which details the application of the GDCLD-SegFormer model to the two recent events in 

2024: rainfall-induced landslides in Meizhou, and earthquake-induced landslides in Hualien. 

“6.4 Practical Applications of GDCLD 

To evaluate the practical applicability of the CDCLD, we selected two significant landslide 

events that occurred in April 2024 for rapid identification. These events include landslides 

induced by a heavy rainfall in Meizhou, China and landslides triggered by an earthquake in 

Hualien, China. PlanetScope image was employed in both cases for experimentation. For 

the Meizhou case, we obtained the image on May 14, 2024, and applied SegFormer model 

trained on GDCLD to identify landslides triggered by the heavy rainfall. The results, shown 

in Figure.14, demonstrate that the GDCLD-trained model effectively mapped newly-induced 

landslides with a total area of 8.49 km2. The model exhibited excellent accuracy in avoiding 

false positives such as buildings, roads, and rivers. In terms of the Hualien event, we 

acquired post-event images from April 17 to 29, 2024. The rapid identification results, 

displayed in Figure.15, indicate that. the GDCLD-trained model effectively eliminates false 

positives, such as roads, buildings, bare land, and rivers, with an identified landslide area of 

90.9 km2. The original PlanetScope images and landslide recognitions of the two events are 

available at https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024) 
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Figure.14 Detection results of rainfall-induced landslides for Meizhou, China. (a) is the aerial 

view of the whole area; (b), (c) and, (d) are the partial details.  



 

Figure.15 Detection results of earthquake-triggered landslides for Hualien, China. (a) is the 

aerial view of the whole area; (b), (c,) and (d) are the partial details.“ 
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