
The Response to Comments from Review 1 

Comment 1 

Remove link and citation from the abstract of GDCLD dataset. 

Response 1 

Thanks for your careful comment. 

We have removed the links and citations from the abstract. 

Comment 2 

Four independent regions are not clear. Authors must explain it clearly. 

Response 2 

Thank you for your constructive comment. In the first paragraph of Section 5 (Results) 

of the manuscript, we have modeified and provided a detailed introduction of the four 

independent regions.  

“To further assess the generalization ability of this dataset, we chose three types of 

remote sensing images (UAV, PlanetScope, and Map World image) from four 

independent seismic events (Lushan, Mestas, Sumatra, and Palu) as the test dataset. 

Considering the geographical distribution, these four regions, located on different 

continents and characterized by distinct tectonic settings and climatic conditions, ensure 

complete independence from the training dataset. From the perspective of data sources, 

the four study areas represent three major types of remote sensing imagery: 

PlanetScope, UAV, and Map World. Additionally, the UAV sensor used in the Lushan 

area is different from those used in other regions. This data partitioning strategy is 

designed to rigorously evaluate the generalization capability of the GDCLD-trained 

model.” (P23L461~470) 

Comment 3 

In the proposed work you have collected data for rainfall induced landslides or other 

parameters like topographical, anthropogenic and geological parameters are also 

considered? If yes mention it, if not what results will be observed after evaluating these 

parameters. 

Response 3 

Thanks for your valuable comment and suggestions. 

1. Firstly, the primary objective of this study is to develop a multi-source remote sensing 

dataset for the intelligent recognition of landslides in optical imagery. Consequently, 

other geological factors, including topography and geomorphology, were not considered 

in this research. While the incorporation of high-resolution Digital Elevation Model (DEM) 

data can indeed enhance the model's ability to recognize landslides, the publicly 

available DEM data has a resolution of 30 meters, which is too coarse when compared 

to high-resolution optical data. Therefore, this study has not yet considered incorporating 

topographic and geomorphological information extracted from DEMs. 

2. Furthermore, anthropogenic and geological parameters have not yet been 

incorporated into the dataset, despite their potential to enhance landslide detection 

accuracy. Regarding geological parameters, the currently available public data are too 

coarse to be directly applied to semantic segmentation tasks involving VHR remote 

sensing imagery. As for anthropogenic parameters, during the dataset creation process, 

we have included representations of human engineering activities as negative samples 



(Figure.5), which can contribute to improving the generalization capability of landslide 

detection models. 

3. Finally, regarding data on rainfall-induced landslides, this paper did not specifically 

collect such data. The experiments mentioned in the abstract on the intelligent 

recognition of rainfall-induced landslides mainly utilized remote sensing data from the 

GVLM dataset (Zhang et al., 2023) (P34L619~624), which includes rainfall-induced 

landslides. Additionally, during the revision process, we added a brief discussion in 

Section 6.4, where we incorporated PlanetScope data of rainfall-induced landslides that 

occurred in Meizhou and Guangzhou, China during April 2024. This data can be 

accessed at https://doi.org/10.5281/zenodo.11369484 (Fang et al., 2024). 

“For the Meizhou case, we obtained the image on May 14, 2024, and applied 

SegFormer model trained on GDCLD data to identify landslides triggered by the heavy 

rainfall. The results are shown in Figure.14, demonstrating that the GDCLD-trained 

model can effectively map newly-induced landslides with a total area reached 8.49 km2. 

The model shows excellent performance in avoiding false positives such as buildings, 

roads, and rivers.” (P37L656~660) 

Comment 4 

Abstract written is so general, it must be rewritten highlighting the major objectives, 

method adopted and result achieved. 

Response 4 

Thank you for raising this point. We have rewritten the abstract 

“Rapid and accurate mapping of landslides triggered by extreme events is essential for 

effective emergency response, hazard mitigation, and disaster management. However, 

the development of generalized machine learning models for landslide detection has 

been hindered by the absence of a high-resolution, globally distributed, event-based 

dataset. To address this gap, we introduce the Globally Distributed Coseismic Landslide 

Dataset (GDCLD), a comprehensive dataset that integrates multi-source remote sensing 

images, including PlanetScope, Gaofen-6, Map World, and Unmanned Aerial Vehicle 

data, with varying geographical and geological background for nine events across the 

globe. In this study, we evaluated the effectiveness of GDCLD by comparing the 

mapping performance of seven state-of-the-art semantic segmentation algorithms. 

These models were further tested by three different types of remote sensing images in 

four independent regions, while the GDCLD-SegFormer model get the best 

performance. Additionally, we extended the evaluation to a rainfall-induced landslide 

dataset, where the models demonstrated excellent performance as well, highlighting the 

dataset's applicability to landslide segmentation triggered by other factors. Our results 

confirm the superiority of GDCLD in remote sensing landslide detection modeling, 

offering a comprehensive data base for rapid landslide assessment following future 

unexpected events worldwide.” (P2L16~32) 

Comment 5 

Too much old citations in the introduction section, it must be updated with latest citations 

like: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3998 

https://link.springer.com/article/10.1007/s12145-022-00889-2 



https://www.mdpi.com/2072-4292/16/6/992 

https://www.nature.com/articles/s41597-023-02847-z 

Response 5 

Thanks for your careful review. We have updated the latest literature in the introduction 

section of the article.  

Comment 6 

Write paper organization at the end of the introduction section. Also write major objective 

of the paper achieved in the proposed work along with steps taken to accomplish the 

above objective. 

Response 6 

Thanks for your valuable advices. 

We have added the corresponding content at the end of the Introduction.  

“The paper is structured as follows: Section 2 reviews existing high-quality landslide 

datasets to provide an overview of the current state of research. Section 3 introduces 

the data collection and preparation process to showcase the extensive research events 

and scientific methodology behind our data production. Section 4 describes the semantic 

segmentation algorithms, loss functions, and parameter settings used in this study, and 

shows their rationality. Section 5 presents the results, including the training, validation, 

and testing outcomes of the dataset, as well as the generalization ability of the GDCLD 

trained model in independent regions. Section 6 discusses the innovation and 

effectiveness of GDCLD, illustrating its effective application in several landslide events.” 

(P5L96~104). 

Comment 7 

In line 87 to 88 “Therefore, there is a pressing need for the development of a carefully 

curated and diverse dataset”. It must be written properly. 

Response 7 

Thanks for your helpful comment. We have modified this section. 

“Therefore, there is an urgent need to develop a carefully curated and diverse dataset.” 

(P4L87) 

Comment 8 

Line 92 what kind of shortcomings were addressed. Have evaluated the existing dataset 

on the proposed method. If yes then kindly share the result. If not, evaluate it, and add 

one table highlighting the same. 

Response 8 

Thanks for your helpful comments. 

Our study addresses the following key shortcoming: 

1. The GDCLD dataset, constructed from multi-source remote sensing imagery, 

represents the largest publicly available landslide dataset to date. Unlike existing 

datasets, GDCLD is entirely composed of high-resolution remote sensing imagery, with 

annotated pixels reaching a total of 1.39 billion. Furthermore, it incorporates negative 

samples such as bare land, cloud cover, dry riverbeds, and human engineering activities. 

These features significantly enhance the generalization capability of models trained on 

GDCLD. This aspect is elaborated in Section 3.2 and is further substantiated by the 

model's excellent generalization performance as demonstrated in Sections 5 and 6.3. 



Additionally, compared to other publicly available but smaller landslide datasets, GDCLD 

effectively supports the training of large neural networks based on the Transformer 

architecture, providing a robust data foundation for the future development of large vision 

models for landslide detection. This aspect is further discussed in Section 7. 

2. To demonstrate the performance of GDCLD, we have supplemented the study with 

relevant experiments, providing a detailed comparison of existing landslide datasets in 

Section 6.3. As presented in Table 10, the models trained on GDCLD exhibit superior 

performance compared to those trained on other datasets, underscoring the advantages 

of GDCLD. 

 

Comment 9 

Section 2 must be written as “Related Work” 

Response 9 

Thanks for your comment. We have modified “Relate Work” to “Related Work”. 

（P5L105） 

Comment 10 

In section 3 except “Data Collection” all other subsections must be presented in tabular 

form rather in running text. 

Response 10 

Thank you for your positive and constructive comments. 

In Section 3.1, following your suggestion, we have organized the nine earthquake-

induced landslide events collected in this study into a table. The table provides a clear 

overview of each event, displaying key information such as the date, magnitude, 

geographic location, number of landslides, and total landslide area. This approach 

allows for an intuitive comparison of all events, enabling readers to easily grasp the 

critical details. 

Table.2 Summary table of landslide event information in GDCLD 

Events Mw time 
Geographic 

coordinates 

Landslide 

number 

Total landslide 

area (km2) 

Jiuzhaigou 6.5 2017 (102.82°E, 33.20°N) 2498 14.5 

Mainling 6.4 2017 (95.02°E, 29.75°N) 1448 33.6 

Hokkaido 6.6 2018 (142.01°E, 42.69°N) 7962 23.8 

Palu 7.5 2018 (119.84°E, 0.18°S) 15700 43.0 

Mesetas 6.0 2019 (76.19°W, 3.45°N) 804 8.5 

Nippes 7.2 2021 (73.45°W, 18.35°N) 4893 45.6 

Sumatra 6.1 2022 (100.10°E, 0.22°N) 602 10.6 

Lushan 5.9 2022 (102.94°E, 30.37°N) 1063 7.2 

Luding 6.8 2022 (102.08°E, 29.59°N) 15163 28.53 

(P9L179) 

We also retain the detailed descriptions of each event in the main text. These running 

texts provide a more comprehensive understanding of the events, including background 

information, geographic and geological contexts, and specifics regarding the multi-

source remote sensing imagery. This detailed narrative enriches the reader's 

perspective and enhances their understanding of the study’s context. 



 

Comment 11 

Section 3.2 highlights the preprocessing of the dataset. One detailed fig must be added 

highlighting the steps involved or operations performed on training dataset. 

Response 11 

Thanks for your advice. 

We have drawn a flowchart of the dataset preprocessing and added it Section 3 

(Figure.1). (P8L164~171) 

“The creation of the GDCLD dataset can be broadly divided into two main 

components: landslide data collection and remote sensing data processing. In the first 

part, we compiled recent landslide events triggerred by earthquakes worldwide over the 

past seven years and obtained the corresponding remote sensing image. The second 

part details the process of annotating landslide labels and the methodology used to 

create the standard dataset. The workflow is illustrated in Figure.1. 

 

Figure.1 The workflow of producing GDCLD” 

Comment 12 

Mention the technical novelty of the paper other than creating the generalized dataset. 

Response 12 

Thank you for the suggestion. 

This study primarily focuses on innovation in dataset development, aiming to provide a 

high-quality landslide dataset for research on intelligent landslide recognition, 

contributing to disaster prevention and mitigation efforts alongside researchers 

worldwide. Therefore, we have integrated state-of-the-art remote sensing and 

computational techniques that are currently open-source, with a particular emphasis on 

the contributions and innovations of the GDCLD dataset. 

1. GDCLD is a landslide dataset based on multi-source, multi-sensor, and cross-

resolution high-precision remote sensing imagery, entirely annotated manually. It is 

suitable for intelligent landslide recognition tasks across a wide range of scenarios. 

2. The dataset encompasses multiple global events, spanning various climate zones, 



tectonic settings, and geomorphological landscapes, and features an extended temporal 

resolution. 

3. We have manually incorporated a rich set of negative samples, such as bare land, 

exposed rock, dry riverbeds, cloud cover, and human engineering activities, which are 

prone to confusion with landslides. This work was carried out to enhance the 

generalization capability of models trained on this dataset. 

4. During the manual annotation process, we meticulously cross-referenced the spectral 

characteristics of pre- and post-event remote sensing imagery with the morphological 

features of landslides. Additionally, we conducted field surveys for certain landslide 

events. 

5. In terms of intelligent recognition, we conducted the first comparative analysis of 

different neural network architectures on a multi-source remote sensing landslide 

dataset, confirming the superiority of the Transformer architecture for landslide 

recognition. 

6. Regarding remote sensing data sources, we compared the effectiveness of single-

source versus multi-source remote sensing imagery in landslide recognition, 

demonstrating the effectiveness of multi-source imagery in such tasks. 

We mentioned the technical innovations of this study in the conclusion: 

“Finally, we demonstrate the superiority of the Transformer architecture over 

conventional CNN architecture in the task of landslide identification using multi-source 

remote sensing image. The GDCLD-S model further highlights the enhanced 

generalization capabilities of multi-source data compared to single-source data.” 

(P42L740~743) 

Comment 13 

How can the GDCLD and the trained models be integrated into current emergency 

response and disaster management systems? Are there any case studies or real-world 

applications that demonstrate their effectiveness? 

Response 13 

Thanks for your valuable questions. 

Regarding the geological disaster emergency identification system, we integrated this 

identification model into our institute, the laboratory's emergency system (SKLGP-LDD). 

In order to show the applications of GDCLD in landslides triggered by real events, we 

added a discussion section 6.4 “Practical Applications of GDCLD” and conducted 

rapid mapping of two landslide events that occurred in 2024. 

“To evaluate the practical applicability of the CDCLD, we selected two significant 

landslide-triggering events that occurred in April 2024 for rapid landslide identification. 

These events include landslides induced by a heavy rainfall in Meizhou, China and 

landslides triggered by an earthquake in Hualien, China. In both cases, PlanetScope 

image was employed for experimentation. For the Meizhou case, we obtained the image 

on May 14, 2024, and applied SegFormer model trained on GDCLD data to identify 

landslides triggered by the heavy rainfall. The results, shown in Figure 14, demonstrate 

that the GDCLD-trained model effectively mapped newly-induced landslides with a total 

area of 8.49 km2. The model exhibited excellent accuracy in avoiding false positives 

such as buildings, roads, and rivers. In terms of the Hualien event, we acquired post-



event images from April 17 to 29, 2024. The rapid identification results, displayed in 

Figure.15, indicate that the GDCLD-trained model effectively eliminates false positives, 

such as roads, buildings, bare ground, and rivers, with the identified landslide area of 

90.9 km2. The original PlanetScope images and landslide recognitions of the two events 

are available at https://doi.org/10.5281/zenodo.13612636 (Fang et al., 

2024)”(P36~39L652~671) 

 

Figure.14 Detection results of rainfall landslides for Meizhou, China. (a) is the aerial view 

of the whole area, (b), (c) and (d) is the partial details. 



 

Figure.15 Detection results of earthquake-triggered landslides for Hualien, China. (a) is 

the aerial view of the whole area, (b), (c) and (d) is the partial details. 

Comment 14 

What are the challenges and considerations for scaling this approach to cover larger 

areas or more diverse regions? Are there any technological or infrastructural 

requirements? 

Response 14 

Thanks for your valuable comment. 

1. At first, the GDCLD dataset is currently most effective in research areas with moderate 

vegetation cover, as it successfully mitigates interference based on negative samples 

such as clouds, bare land, and dried riverbeds. However, its application in detecting 

loess landslides, such as those triggered by the Mw 6.2 earthquake in Jishishan, Gansu, 

China, on December 18, 2023, exhibits certain limitations in our approach. As we 

mentioned in section 7, we will continue to expand our dataset in the future to enable it 

to meet the needs of a wider range of landslide identification tasks.  

“The current GDCLD primarily comprises landslide samples from regions with significant 

vegetation coverage, with limited representation from areas with low vegetation cover, 

such as loess landslides. To address this, we have updated the database with high-

resolution UAV data (0.1m resolution) of loess landslides triggered by the Mw 6.2 

earthquake in Jishishan, Gansu, China, in December 2023. Incorporating these loess 

landslide samples would enhance the dataset's diversity and improve the generalization 

capability of landslide detection models. Ongoing efforts to track and integrate data from 

landslides triggered by future extreme events including strong earthquakes, heavy 

rainfall, and hurricanes, will further enrich the dataset.” 

(P39~40L673~680)  



2. In addition, to meet the needs of automatic landslide identification in a larger area, a 

larger neural network model is needed. This requires not only accurate training data 

from geological researchers, but also sufficient computing power and computer science. 

We also mentioned in section 7 that we will train a large visual model based on GDCLD 

in the future. 

“In addition to expanding the GDCLD dataset, developing a large-scale vision model for 

landslide detection, such as a Segment Anything Model tailored for landslide 

identification and trained on GDCLD, is a crucial step forward in advancing AI-based 

landslide detection. This model will be used for the intelligent recognition of landslides 

in multi-source remote sensing image on a global scale” (P40L681~685) 

Comment 15 

What are the potential future enhancements or expansions planned for the GDCLD? Are 

there any ongoing efforts to continuously update and improve the dataset? 

Response 15 

Thanks for your questions. 

In Section.7, we outline several future research directions, including the expansion of 

the dataset. We plan to track landslide events triggered by future extreme events and 

incorporate them into our multi-source landslide dataset. During the current revision 

stage, we have already added PlanetScope data for two landslide events in Hualien and 

Meizhou, China. Notably, for dataset expansion, we have also included a UAV-based 

(0.1m resolution) dataset of earthquake-induced landslides in the Loess region, which 

will significantly enhance the richness and diversity of the GDCLD dataset. The dataset 

and detailed data description can be download from 

https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024).  

Comment 16 

What specific characteristics of the GDCLD-trained model enable it to effectively map 

rainfall-induced landslides? Are there any limitations or areas for improvement in this 

application? 

Response 16 

We thank the reviewer for raising these points. 

1. Models trained on the GDCLD dataset are capable of distinguishing landslides from 

surrounding objects by learning differences in spatial morphology, spectral 

characteristics, etc. Given that both earthquake- and rainfall-induced landslides are 

typically newly induced landslides, they often exhibit significant spectral and spatial 

contrasts with their surrounding environment, making them feasible to be identified.  

2. However, since some rainfall-induced landslides are shallow and do not fully disrupt 

the vegetation cover, the model's performance in detecting this type of landslides may 

be suboptimal (Wang et al., 2022). In future work, we plan to specifically address this 

limitation by augmenting the dataset with more samples of rainfall-induced landslides, 

aiming at improving the generalization capability of the GDCLD model. 

Comment 17 

How does the performance of the GDCLD-trained model compare to existing models 

and datasets in quantitative terms? Can you include specific performance metrics or 

visual comparisons? 



Response 17 

Thanks for your valuable comments. 

In order to further demonstrate the advantages of GDCLD over other landslide datasets, 

we modified section 6.3 by adding the GVLM- and CAS-trained models based on the 

SegFormer algorithm. Futhermore, we also reproduced the CAS-D model trained with 

DeepLabV3 in the CAS data paper (Xu et al., 2024). These models were implemented 

for landslide identification task with three different remote sensing data sources in the 

independent 2022 Lushan case study in this paper. In Section 6.3, we have 

supplemented the discussion with relevant experimental data: 

1. As observed in Table 10, the CAS-D model demonstrates mIoU results of 57.91% on 

UAV image, 52.86% on PlanetScope image, and 58.11% on Map World image within 

the Lushan dataset. Overall, these results are inferior to the performance of GDCLD-S 

on the Lushan dataset. Additionally, CAS-D's performance lags behind that of CAS-S, 

which is based on the Transformer architecture. 

2. Table 10 also highlights the performance of landslide detection models trained with 

the SegFormer architecture on the GVLM, CAS, and GDCLD datasets. Among them, 

GDCLD-S exhibits the highest performance, with mIoU results of 72.96% for UAV, 

69.05% for PlanetScope, and 71.92% for MapWorld image, underscoring the superior 

competitiveness of the GDCLD dataset. 

The overall changes to section 6.3 are as follows: （P33~36L602~650） 

“6.3 Comparison with existing landslide datasets and models 

To assess the robustness and generalization capabilities of the GDCLD dataset, we 

employ SegFormer trained on the GDCLD dataset (GDCLD-S model) to identify 

landslides within three distinct datasets: HR-GLDD, GVLM, and CAS. Initially, we 

standardize the data from these three datasets into 1024×1024 remote sensing tiles. 

Subsequently, utilizing the MGDCLD-S model, we conduct landslide identification across 

all these datasets. Table.8 9 demonstrates favorable performance of the model across 

these diverse datasets. For instance, in the HR-GLDD dataset, which shares similarities 

with the PlanetScope image within GDCLD, the model achieves an mIoU of 76.97%, 

indicating a balance between Precision and Recall metrics. Similarly, when applied to 

the GVLM dataset, leveraging Map World image, our dataset exhibits robust predictive 

outcomes, resulting in a comprehensive mIoU of 70.07%. Likewise, for the CAS dataset, 

GDCLD demonstrates strong generalization capabilities, yielding an outstanding 

comprehensive metric with mIoU = 76.91%, alongside balanced Recall and Precision 

metrics. 

Although all landslide samples contained in GDCLD are induced by seismic activity, 

our model demonstrates good detection capabilities for rainfall-induced landslides. 

These two categories exhibit distinct spectral characteristics from their surrounding 

environments. Consequently, models trained on GDCLD exhibit proficient detection 

capabilities for rainfall-induced landslides. We present the identification performance of 

GDCLD-based model for rainfall-induced landslides from the GVLM dataset in Table.8 

9 and Figure.1213. Figure.12 13 underscores the excellent detection performance of the 

GDCLD-S model on rainfall-induced landslides in the GVLM dataset. Despite occasional 

misclassifications of small-size targets, the model effectively delineates the majority of 



rain-induced landslides. the Precision metrics in Table.8 affirm this observation with an 

mIoU reaching 78.22% and both Recall and Precision exceeding 85%. This highlights 

the robust generalization capability of the model trained by our dataset, enabling 

effective identification of rainfall-induced landslides 

Table.9 Validation results of other public datasets 

Dataset Precision (%) Recall (%) F1 (%) mIoU (%) 

HR-GLDD 84.88 86.81 85.84 76.97 

GVLM 72.83 87.54 80.68 70.07 

CAS 82.95 86.35 84.62 76.91 

GVLM-rainfall 85.88 86.71 86.29 78.22 

 

Figure.13 Detection results of rainfall landslides by GDCLD-S model in GVLM dataset 

In addition to the aforementioned analyses, we compare the performance of 

GDCLD with other two datasets, GVLM and CAS. Specifically, we train landslide 

detection models using the SegFormer algorithm on the GVLM and CAS datasets, 

denoted as GVLM-S and CAS-S, respectively, with identical training parameters as 

previously described. Furthermore, we also use the DeepLabV3 to train the CAS-D 

model based on the CAS dataset and use it for comparison of landslide detection (Xu et 

al., 2024). Subsequently, the GDCLD-S, CAS-S, CAS-D and GVLM-S models were 

applied to identify landslides in the Lushan area using three distinct remote sensing data 



sources: UAV, PlanetScope, and Map World. The results of this comparison are 

presented in Table 10. From Table 10, it is evident that the GDCLD-S model 

outperformed CAS-S, CAS-D and GVLM-S across all three remote sensing datasets, 

achieving mIoU of 72.96%, 69.05%, and 71.92% on UAV, PlanetScope, and Map World. 

In contrast, CAS-S records mIoU values of 62.03%, 56.86%, and 60.35% for the same 

datasets, respectively, which is better than the CAS-D model trained with DeepLabV3, 

and also illustrates the advantages of the transformer architecture over the CNN 

architecture. Notably, GDCLD-S exhibited a significantly higher Recall than the other two 

models and also demonstrated an advantage in Precision. Overall, GDCLD-S, along 

with CAS-S, exhibited superior performance compared to the single-source data model 

GVLM-S, particularly in handling multisource remote sensing images. The extensive 

landslide data and negative samples included in GDCLD-S further contributed to its 

enhanced robustness against noise and improved Recall in landslide detection. 

Table.10 Performance of the GDCLD-S, GVLM-S, CAS-S, and CAS-D models on the 

Lushan case 

Model 
Data type Precision 

(%) 
Recall (%) F1 (%) mIoU (%) 

 UAV 72.73 55.34 62.88 57.91 

CAS-D PlanetScope 52.07 56.05 53.93 52.86 

 Map World 61.79 70.50 64.9 58.11 

 UAV 73.03 54.84 57.67 53.41 

GVLM-S PlanetScope 60.13 53.40 54.82 51.52 

 Map World 77.71 66.40 71.56 63.97 

 UAV 74.08 67.05 69.95 62.03 

CAS-S PlanetScope 58.56 76.57 66.40 56.86 

 Map World 75.02 64.65 68.37 60.35 

 UAV 74.72 90.35 81.80 72.96 

GDCLD-S PlanetScope 81.50 82.28 81.78 69.05 

 Map World 76.18 87.35 81.38 71.92 

” 

Comment 18 

Which seven semantic segmentation algorithms were evaluated, and what were the 

criteria for their selection? How do these algorithms differ in their approach to landslide 

detection? 

Response 18 

Thanks for your comments. 

1. In this study, we selected seven semantic segmentation algorithms—UNet, ResUNet, 

DeepLabV3, HRNet, UperNet, SwinUNet, and SegFormer (Tang et al., 2022; Meena et 



al., 2022; He et al., 2022; Li et al., 2022) (Section 4.1). The first four algorithms are 

based on a pure CNN architecture, while the latter three are based on a Transformer 

architecture. These algorithms have been among the most popular for semantic 

segmentation tasks during different periods, which have been applied to various remote 

sensing tasks, including landslide detection. Typically, CNN-based algorithms are well-

suited for small datasets, whereas Transformer-based algorithms perform better on 

larger datasets. Therefore, we chose these seven semantic segmentation algorithms to 

comprehensively evaluate the GDCLD dataset. 

2. Regarding the performance of the seven semantic segmentation algorithms in 

landslide detection, experimental results from the GDCLD validation and test sets 

indicate that semantic segmentation models based on the Transformer architecture 

outperform those based purely on CNN architectures in multi-source remote sensing 

image recognition tasks. The results are presented in Tables.4 and 5. This superiority 

can be attributed to the Transformer models' larger receptive fields, which enable the 

effective learning of high-level features from multi-source imagery, thereby enhancing 

their generalization capabilities. In section 5, we give a more detailed explanation. 

(P23~26L458~543) 

Table.4 Comparison of result on GDCLD validation dataset 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 77.05 82.01 79.54 71.07 

ResUNet ResNet-50 78.17 86.48 82.11 71.94 

DeepLabV3 ResNet-50 81.27 86.96 84.02 74.61 

HRNet HRNet-48 81.88 87.21 84.46 75.19 

UperNet ViT-B16 88.18 90.64 89.39 81.97 

SwinUNet - 89.78 92.01 90.72 83.68 

SegFormer MiT-B4 91.35 91.70 91.52 85.06 

Table.5 Comparison of result on test dataset 

Method Backbone Precision (%) Recall (%) F1 (%) mIoU (%) 

UNet - 61.69 61.22 61.45 56.09 

ResUNet ResNet-50 66.56 64.46 65.49 57.06 

DeepLabV3 ResNet-50 65.26 67.75 66.48 59.73 

HRNet HRNet-48 65.52 72.03 68.62 61.79 

UperNet ViT-B16 69.96 78.08 73.80 65.42 

SwinUNet - 71.56 82.26 76.54 67.18 

SegFormer MiT-B4 77.09 87.09 81.88 72.84 
 

Comment 19 

Why were PlanetScope, Gaofen-Map World, and Unmanned Aerial Vehicles chosen as 

the primary sources of remote sensing images? Are there other potential sources that 

could be included in future iterations of the dataset? 

Response 19 



We thank the reviewer for raising the questions. 

1. At first, considering that this study utilizes very high-resolution (VHR) remote sensing 

imagery, with a spatial resolution of 3m for PlanetScope, 2m for Gaofen-6, 0.5-1m for 

Map World, and 0.2m for UAV, the overall resolution range of the multisource remote 

sensing images spans from 0.2m to 3m. This range effectively encompasses the entire 

spectrum of VHR spatial resolutions, enabling GDCLD to meet the demands of landslide 

detection tasks in most scenarios.  

2. In future work, we plan to further enrich GDCLD with additional remote sensing data 

sources, including Gaofen-2 (0.8m), Gaofen-7 (0.5m), Google Earth image (0.5m-1m), 

and higher-resolution UAV (0.1~0.2m), to support the development of even more 

accurate landslide detection models. We have updated some of the UAV data of the 

landslides induced by the Loess Earthquake with a spatial resolution of 0.1m, which can 

be downloaded from https://doi.org/10.5281/zenodo.13612636 (Fang et al., 2024). 

“To address this, we have updated the database with high-resolution UAV data (0.1m 

resolution) of loess landslides triggered by the Mw 6.2 earthquake in Jishishan, Gansu, 

China, in December 2023.” (P39L675~677) 

Comment 20 

What specific criteria and methods were used to annotate the 1.39 billion landslide 

pixels? Were there any challenges or limitations encountered during the annotation 

process? 

Response 20 

Thanks for your comments. 

1. During the annotation of the 1.39 billion landslide pixels, as illustrated in Figure.1 and 

Figure.2, we first considered the spectral changes in remote sensing images before and 

after the event to preliminarily identify landslide-affected areas. Subsequently, we 

incorporated topography, landforms, and surrounding objects to assess the 

morphological characteristics of the landslides, allowing us to exclude images of bare 

land, vegetation changes over time, river changes, and human engineering activities 

(Fan et al., 2019). Using QGIS software, vector labels were meticulously drawn for each 

landslide pixel.  

2. The annotation process encountered significant challenges, including interference 

from exposed bedrock and bare land, as well as debris accumulation at channel outlets 

caused by debris flows. To address the first challenge, we meticulously compared the 

spectral and morphological characteristics of pre- and post-earthquake remote sensing 

images to eliminate the interference from non-landslide features, such as pre-existing 

bare land. For the second challenge, we focused on the morphological differences 

between landslides and debris flows to mitigate the impact of debris flow channels and 

deposition areas on spectral changes in remote sensing image (Hungr et al., 2014). 

 

Reference 

Fang, C., Fan, X., & Wang, X. (2024). GDCLD [Data set]. Zenodo. 

https://doi.org/10.5281/zenodo.13612636. 

Fan, X., Scaringi, G., Korup, O., West, A. J., van Westen, C. J., Tanyas, H., Hovius, N., Hales, 



T. C., Jibson, R. W., Allstadt, K. E., Zhang, L., Evans, S. G., Xu, C., Li, G., Pei, X., Xu, Q., 

and Huang, R.: Earthquake‐Induced Chains of Geologic Hazards: Patterns, Mechanisms, 

and Impacts, Reviews of Geophysics, 57, 421-503, 10.1029/2018rg000626, 2019. 

He, X., Zhou, Y., Zhao, J., Zhang, D., Yao, R., and Xue, Y.: Swin transformer embedding UNet 

for remote sensing image semantic segmentation, IEEE Transactions on Geoscience and 

Remote Sensing, 60, 1-15, 2022. 

Li, Z., Chen, S., Meng, X., Zhu, R., Lu, J., Cao, L., and Lu, P.: Full convolution neural network 

combined with contextual feature representation for cropland extraction from high-

resolution remote sensing images, Remote Sensing, 14, 2157, 2022. 

Meena, S. R., Nava, L., Bhuyan, K., Puliero, S., Soares, L. P., Dias, H. C., Floris, M., and Catani, 

F.: HR-GLDD: A globally distributed dataset using generalized DL for rapid landslide 

mapping on HR satellite imagery, Earth System Science Data Discussions, 1-21, 2022. 

Tang, X., Tu, Z., Wang, Y., Liu, M., Li, D., and Fan, X.: Automatic detection of coseismic 

landslides using a new transformer method, Remote Sensing, 14, 2884, 2022. 

Wang, X., Fan, X., Xu, Q., and Du, P.: Change detection-based co-seismic landslide mapping 

through extended morphological profiles and ensemble strategy, ISPRS Journal of 

Photogrammetry and Remote Sensing, 187, 225-239, 2022. 

Xu, Y., Ouyang, C., Xu, Q., Wang, D., Zhao, B., and Luo, Y.: CAS Landslide Dataset: A Large-

Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection, Sci Data, 

11, 12, 10.1038/s41597-023-02847-z, 2024. 

Zhang, X., Yu, W., Pun, M.-O., and Shi, W.: Cross-domain landslide mapping from large-scale 

remote sensing images using prototype-guided domain-aware progressive representation 

learning, ISPRS Journal of Photogrammetry and Remote Sensing, 197, 1-17, 2023. 

 


