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Abstract. Global change has substantially shifted vegetation phenology, with important implications in the carbon and water 

cycles of terrestrial ecosystems. Various vegetation phenology datasets have been developed using remote sensing data; 

however, the significant uncertainties in these datasets limit our understanding of ecosystem dynamics in terms of phenology. 10 

It is therefore crucial to generate a reliable large-scale vegetation phenology dataset, by fusing various existing vegetation 

phenology datasets, to provide comprehensive and accurate estimation of vegetation phenology with fine spatiotemporal 

resolution. In this study, we merged four widely used vegetation phenology datasets to generate a new dataset using the 

Reliability Ensemble Averaging fusion method. The spatial resolution of the new dataset is 0.05° and its temporal scale spans 

1982–2022. The evaluation using the ground-based PhenoCam dataset from 280 sites indicated that the accuracy of the newly 15 

merged dataset was improved substantially. The start of growing season and the end of growing season in the newly merged 

dataset had the largest correlation (0.84 and 0.71, respectively) and accuracy in terms of the root mean square error (12 and 17 

d, respectively). Using the new dataset, we found that the start of growing season exhibits a significant (p < 0.01) advanced 

trend with a rate of approximately 0.24 d yr−1, and that the end of growing season exhibits a significant (p < 0.01) delayed 

trend with a rate of 0.16 d yr−1 over the period 1982–2022. This dataset offers a unique and novel source of vegetation 20 

phenology data for global ecology studies.  
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1 Introduction 

Global change has notably altered the timing of vegetation phenology (Ettinger et al., 2020; Zhang et al., 2022), leading 

to important implications in the carbon and water cycles of terrestrial ecosystems (Peñuelas et al., 2009; Piao et al., 2019; 

Richardson et al., 2012; Zhou, 2022). Various vegetation phenology datasets using remote sensing data have been produced, 25 

but inconsistencies and uncertainties arise when comparing those datasets with ground-based phenological observations, and 

large variations also exist in terms of the spatiotemporal resolutions (Peng et al., 2017). Therefore, there is an urgent need to 

develop a highly reliable vegetation phenology product to improve our understanding of vegetation phenology dynamics, and 

to facilitate subsequent research on terrestrial ecosystem responses to climate change. 

Ground-based phenological records were commonly used in vegetation phenology studies (Fu et al., 2014; Geng et al., 30 

2020; Sparks and Carey, 1995; Zhou et al., 2020). Although ground-based observations provide high accuracy in terms of 

phenology dynamics, they are limited to certain locations resulting in sparse spatial coverage. In contrast, phenology datasets 

based on remote sensing data can cover large areas, providing comprehensive and continuous monitoring of vegetation 

phenology across landscapes, regions, or even continents. Additionally, remote sensing datasets are processed using 

standardized methods that ensure consistency and comparability across different locations and periods. However, phenology 35 

datasets based on remote sensing data do have certain limitations. Owing to differences in revisit cycles among satellites, 

together with sensor characteristics, sun–sensor geometry, and atmospheric conditions during imaging, substantial bias exists 

among the derived phenology datasets. For example, differences of >50 d in the start of growing season (SOS) have been 

reported among different phenology datasets based on remote sensing data (Peng et al., 2017; Zhou et al., 2020). Additionally, 

substantial variations in the trends of vegetation phenology exist. For example, a recent study reported that the SOS was 40 

delayed by 0.17 d yr−1 when based on the Global Inventory Modeling and Mapping Studies-3rd Generation (GIMMS 3g) 

dataset, whereas the SOS was advanced by 0.58 d yr−1 when based on the Moderate Resolution Imaging Spectroradiometer 

(MODIS) dataset in the Northern Hemisphere (Zhang et al., 2020). Previous studies found that different vegetation phenology 

datasets have merits and demerits in different regions and over different periods (Fensholt and Proud, 2012; Zhang et al., 2020). 

Because it is difficult to determine the optimal dataset from the various phenology datasets, producing a merged dataset is 45 

therefore essential for providing a comprehensive and accurate estimation of vegetation phenology with high spatiotemporal 

resolution.  

The simple averaging method was commonly employed when integrating different vegetation phenology datasets 

(Delbart et al., 2015; Piao et al., 2019; Wang et al., 2019). However, the simple averaging method operates under the 

assumption that the reliability within each dataset is uniform, whereas it varies because of differences among the various 50 

methods of extraction (Lu et al., 2021). Alternatively, methods such as weighted functions, the Bayesian approach, and mixed 

models have been combined with the vegetation index method to integrate datasets with high temporal and spatial resolutions 
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(Walker et al., 2012; Zhu et al., 2010). Such methods can improve the data reliability of homogeneous surfaces based on the 

continuity of data in both time and space. Specifically, the Reliability Ensemble Averaging (REA) method, which assigns 

different weights to each dataset based on their reliability, has been applied to merge various datasets and consistently 55 

demonstrated high reliability through validation (Giorgi and Mearns, 2002; Lu et al., 2021; Xu et al., 2010). Therefore, the 

REA method has demonstrated its effectiveness in obtaining accurate merged vegetation phenology datasets.  

In this study, we merged four widely used vegetation phenology datasets to generate a new dataset using the REA fusion 

method. The spatial resolution of the new dataset is 0.05° and its temporal scale spans 1982–2022. The new dataset was 

evaluated using data from the ground-based PhenoCam dataset from 280 sites over the period 2000–2018, which provided 60 

1410 site–year combinations. We further explored the phenological trends in spring and autumn vegetation phenology using 

the merged dataset. The new vegetation phenology dataset could be used in further studies on the impact of energy and carbon–

water cycles within terrestrial ecosystems, together with analysis of their responses and feedbacks to global climate change 

(Piao et al., 2009, 2019; Tang et al., 2016). 

2 Data and Method  65 

2.1 Phenology dataset  

Four satellite-based vegetation phenology products were used to create a merged dataset, and the ground-based PhenoCam 

dataset was used for validation. The four satellite-based vegetation phenology products include (1) the MCD12Q2 dataset, 

which was extracted from the MODIS Land Cover Dynamics Version 6.1 derived by Friedl et al., 2022; (2) the VIP dataset 

(Making Earth System Data Records for Use in Research Environments Vegetation Index and Phenology) , that was derived 70 

by Didan and Barreto, 2016, (3) the GIM_3g (GIMMS NDVI3g) dataset, that was derived by Wang et al. (2019), and (4) the 

GIM_4g (GIMMS NDVI4g) derived by Chen and Fu, 2024. The time span and the spatial resolution of each vegetation 

phenology dataset are listed in Table 1. The details of each phenology dataset are introduced below. 

Table 1 List of data sources  

Name Abbreviations  Sensor 
Spatial 

Resolution 
Time Span Reference 

MODIS 
MCD12Q2 

MCD12Q2 MODIS 500m 2001-2022 (Friedl et al., 2022) 

MEaSUREs 
VIPPHEN 

VIP AVHRR& MODIS 0.05° 1982-2015 (Didan and Barreto, 2016) 

GIMMS 
NDVI3g 

GIM_3g AVHRR 1/12° 1998-2014 (Wang et al., 2019) 

GIMMS 

NDVI4g 
GIM_4g AVHRR 1/12° 1982-2020 (Chen and Fu, 2024) 

Note: GIM_4g refers to the phenology dataset derived the from GIMMS NDVI4g dataset, MCD12Q2 refers to the MODIS MCD12Q2 75 
product, VIP refers to the MEaSUREs VIPPHEN dataset, and GIM_3g refers to the phenology dataset derived from the GIMMS NDVI3g 

dataset. 
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2.1.1 MCD12Q2 phenology dataset 

The MCD12Q2 product was derived using data from the MODIS sensor onboard the Terra and Aqua satellites. The 

MCD12Q2 land cover dynamic product v6.1 provides a global surface phenology dataset with a 500-m spatial resolution for 80 

the period 2001–2021. The vegetation phenology data were extracted from the Nadir Bidirectional Adjusted Reflectance 2-

band Enhanced Vegetation Index (EVI2) using the threshold method (Gray et al., 2019). The MCD12Q2 phenology dataset 

includes greenup and dormancy (equivalent to SOS and EOS in this study, respectively). Greenup (dormancy) is defined as 

the date when the EVI2 time series first (last) crosses 15% of the segment EVI2 amplitude (Gray et al., 2019). This dataset can 

be found at https://lpdaac.usgs.gov/products/mcd12q2v061/ (Friedl et al., 2022).  85 

2.1.2 VIP phenology dataset  

The VIP phenology dataset (VIP) was generated using data from the NASA Making Earth System Data Records for Use 

in Research Environments (MEaSUREs) and the Advanced Very High-Resolution Radiometer (AVHRR) over the period 

1981–1999, together with MODIS/Terra MOD09 surface reflectance data over the period 2000–2014 (Didan et al., 2018). The 

VIP dataset includes the SOS and EOS, which were also extracted using the threshold method. This dataset is organized in a 90 

geographic gridded format with a spatial resolution of 0.05°. This dataset can be found at 

https://lpdaac.usgs.gov/products/vipphen_ndviv004/ (Didan and Barreto, 2016).  

2.1.3 GIM_3g phenology dataset 

The GIMMS NDVI 3g-based phenology dataset (GIM_3g) has a spatial resolution of 1/12° and covers the period 1998–

2014 (Wang et al., 2019). A double logistic function was applied to fit the NDVI curve and the threshold method was used to 95 

extract phenological dates, including the SOS and EOS. This product provides phenology data for the Northern Hemisphere, 

and it uses the date when the NDVI first (last) crosses 20% of the segment NDVI amplitude as the SOS (EOS). This dataset 

can be accessed at http://data.globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/ (Wang et al., 2019). 

2.1.4 GIM_4g phenology dataset 

The GIM_4g dataset, based on the GIMMS NDVI 4g dataset acquired by the AVHRR sensors, has a spatial resolution of 100 

1/12° and a temporal scale spanning 1982–2020. Two steps were adopted in the process to extract phenological dates. First, 

the NDVI time series data were fitted and smoothed using five fitting methods: the HANTS-Maximum, Spline-Midpoint, 

Gaussian-Midpoint, Timesat-SG, and Polyfit-Maximum methods. Second, the threshold method was used to extract 

phenological dates, using the date when the NDVI first (last) crosses 20% (50%) of the segment NDVI amplitude as the SOS 

(EOS) (Chen et al., 2024; Fu et al., 2023). The average spring (SOS) and autumn (EOS) phenological dates were produced 105 

from the results of the five fitting methods. The GIM_4g phenology dataset is available at 

https://doi.org/10.5281/zenodo.11136967 (Chen and Fu, 2024).  
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2.1.5 Camera-based phenology dataset  

The ground-based PhenoCam dataset, with phenological dates extracted from camera-derived images with high spatial 

resolution and reliable accuracy, was used to validate the merged dataset. The PhenoCam dataset comprises three datasets. The 110 

first dataset, i.e., the PhenoCam Dataset v 2.0, includes data acquired using a downward-facing automatic digital fisheye 

camera system over the period 2000–2018 and across 393 sites in various ecosystems, comprising deciduous broadleaf, 

deciduous needleleaf, evergreen broadleaf, evergreen needleleaf, grassland, mixed vegetation, shrubland, tundra, and wetland 

ecosystems, mainly in regions of Europe and North America (https://daac.ornl.gov/) (Moon et al., 2021; Ruan et al., 2023). 

The second PhenoCam dataset is the Japan Internet Nature Information System digital camera data acquired over the period 115 

2002–2009 (Ide and Oguma, 2010; Inoue et al., 2014), and the vegetation types include deciduous broadleaf forest, wetland, 

and mixed deciduous forest (http://www.sizenken.biodic.go.jp/). The third dataset is from the Phenological Eyes Network 

(http://www.pheno-eye.org/), which is a network of ground-based observatories for long-term automatic observation of 

vegetation dynamics established in 2003. For use in this study, we selected PhenoCam data from 280 sites over the period 

2000–2018, which provided 1410 site–year combinations.  120 

2.1.6 Land cover dataset 

To avoid the impact of human activities and non-vegetated areas on data quality, areas of cropland, cropland/natural 

vegetation mosaics, permanent snow and ice, barren land and water bodies were removed based on a land cover dataset 

obtained by supervised classification of MODIS reflectance data (Sulla-Menashe and Friedl, 2018). The land cover data 

generated based on the Annual International Geosphere–Biosphere Programme classification schemes, are available from 125 

https://lpdaac.usgs.gov/products/mcd12q1v061/ (Friedl and Sulla-Menashe, 2022). 

2.2 Ensemble method for estimating phenological dates 

The weighting method was applied to obtain more accurate SOS and EOS dates from the four vegetation phenology 

datasets. The weight assigned to each product was based on the interannual variability of each phenology dataset, together 

with the degree of consistency and offset among the four phenology datasets (Giorgi and Mearns, 2002). There is discrepancy 130 

in the spatial coverage among the four phenology datasets, and missing data occurs in specific regions for some of the datasets. 

The ensemble method can fill in missing data accurately, thereby producing a phenology dataset with high accuracy and 

spatially continuous coverage. Furthermore, the process of merging the phenology datasets does not depend on simple 

averaging; instead, it is based on the uncertainty among the products, which produces data that is more reliable than those 

obtained using the simple averaging method, and can circumvent the effects of outliers (Giorgi and Mearns, 2002).  135 

2.2.1 Reliability ensemble averaging method 

The REA method based on the “voting principle” generates data that is consistent with most of the input phenology 

products at the pixel level. It provides a dataset with high reliability by relying on the temporal consistency of each pixel 
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among the input products, and by minimizing the influence of outliers during the merging process (Giorgi and Mearns, 2002). 

The REA method has been applied to generate datasets for multiple elemental fields, e.g., temperature, evapotranspiration, and 140 

precipitation (Giorgi and Mearns, 2002; Lu et al., 2021; Xu et al., 2010). In this study, the REA method was used to integrate 

both the SOS and the EOS from the four phenology datasets. 

The REA method gives different weights to the various datasets involved in the process of data merging, and then obtains 

the desired result using the following function: 

∆𝑃ℎ�̃� = �̃�(∆𝑃ℎ𝑒) =
∑ 𝑅𝑖∆𝑃ℎ𝑒𝑖𝑖

∑ 𝑅𝑖𝑖
                                         (1) 145 

where ∆𝑃ℎ�̃�  represents the phenology result, ∆𝑃ℎ𝑒𝑖   represents the different datasets involved in the process, �̃� 

denotes the REA process, and 𝑅𝑖 represents the model reliability factor, which is defined as follows: 

𝑅𝑖 = [(𝑅𝐵,𝑖)
𝑚
× (𝑅𝐷,𝑖)

𝑛
]
[
1

𝑚×𝑛
]

 

 = {⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐵𝑃ℎ𝑒,𝑖)
⌉
𝑚

⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐷𝑃ℎ𝑒,𝑖)
⌉
𝑛

} 
                                 (2) 

where 𝑅𝐵,𝑖 measures the bias of the data compared with that of the average data (the higher the bias, the lower the 

reliability of the dataset), and 𝑅𝐷,𝑖 represents the convergence criterion of the data (the larger the distance between the dataset 150 

and the newly generated REA data, the poorer the convergence; several iterations are required to reach convergence). The 

values of 𝑅𝐵,𝑖 and 𝑅𝐷,𝑖 will be set to 1 when 𝐵𝑃ℎ𝑒,𝑖 and 𝐷𝑃ℎ𝑒,𝑖 are less than 𝜖𝑃ℎ𝑒, which means the deviation of the dataset 

is within the limit of natural variation. 

𝐵𝑃ℎ𝑒,𝑖 = ∆𝑃ℎ𝑒𝑖 − 𝑃ℎ𝑒̅̅ ̅̅ ̅,                                                                                      (3) 

𝐷𝑃ℎ𝑒,𝑖 = ∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ𝑒,                                      (4) 155 

𝜀𝑃ℎ𝑒 = max(𝑀𝐴(𝐷𝑃ℎ𝑒)) −min(𝑀𝐴(𝐷𝑃ℎ𝑒)).                                                           (5) 

Equation (3) explains the derivation of 𝐵𝑃ℎ𝑒,𝑖 i.e., it is defined by the difference between the input dataset and the mean 

value of the four datasets. Equation (4) explains the arithmetic process of 𝐷𝑃ℎ𝑒,𝑖, which is measured by the difference between 

the REA result and each input dataset. In Eq. (5), 𝜀𝑃ℎ𝑒 is measured by the natural variability in phenology, which is calculated 

by estimating the difference between the maximum and minimum values of the multiyear moving averages following linear 160 

detrending of the observed long-term series data. 

𝛿𝑃ℎ𝑒 = [�̃�(∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ�̃�)
2
]

1
2
= [

∑ 𝑅𝑖(∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ�̃�)
2

𝑖

∑ 𝑅𝑖𝑖
]

1
2

(6) 

∆𝑃ℎ𝑒+ = ∆𝑃ℎ�̃� + 𝛿∆𝑃ℎ𝑒 , (7a) 

∆𝑃ℎ𝑒− = ∆𝑃ℎ�̃� − 𝛿∆𝑃ℎ𝑒 . (7b) 

In Eq. (6), 𝛿𝑃ℎ𝑒 is the uncertainty range calculated using 𝑅𝑖 and the difference between the REA result and the datasets 165 

(a higher value of 𝛿𝑃ℎ𝑒 means larger differences between the REA result and the original phenology datasets). The upper and 

lower limits of the uncertainty range are measured by ∆𝑃ℎ�̃� and 𝛿∆𝑃ℎ𝑒, respectively, in Eqs. (7a) and (7b). 
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2.2.3 Evaluation criteria  

In this study, the metrics of the root mean square error (RMSE), BIAS, correlation coefficient (r), unbiased RMSE 

(UbRMSE) and coefficient of variation (CV) were used for data evaluation: 170 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃ℎ𝑒𝑖 −𝑅𝑒𝑓𝑖)

2𝑛
𝑖=1

𝑛
, (8) 

𝐵𝐼𝐴𝑆 =
∑ (𝑃ℎ𝑒𝑖 − 𝑅𝑒𝑓𝑖)
𝑛
𝑖=1

𝑛
, (9) 

𝑟 =
∑ (𝑃ℎ𝑒𝑖 −𝑃ℎ𝑒̅̅ ̅̅ ̅)(𝑅𝑒𝑓𝑖 − 𝑅𝑒𝑓̅̅ ̅̅ ̅)𝑛
𝑖=1

√∑ (𝑃ℎ𝑒𝑖 − 𝑃ℎ𝑒̅̅ ̅̅ ̅)
2𝑛

𝑖=1
√∑ (𝑅𝑒𝑓𝑖 −𝑅𝑒𝑓̅̅ ̅̅ ̅)

2𝑛
𝑖=1

, (10)
 

𝑢𝑏𝑅𝑀𝑆𝐸 =  √𝑅𝑀𝑆𝐸2 −𝐵𝐼𝐴𝑆2, (11) 

STD = √
1

N
∑(Phei − Phe̅̅ ̅̅ ̅)

2
N

i=1

, (12) 175 

CV =
σPhe

𝑃ℎ𝑒̅̅ ̅̅ ̅
(13) 

where n represents the number of site years, 𝑃ℎ𝑒𝑖  represents the corresponding vegetation phenological indicator (i.e., 

SOS and EOS) at a given point, 𝑅𝑒𝑓𝑖 represents data from a phenology camera, σPhe represents the standard deviation of 

𝑃ℎ𝑒𝑖 , and 𝑃ℎ𝑒̅̅ ̅̅ ̅ and 𝑅𝑒𝑓̅̅ ̅̅ ̅ represent the average of 𝑃ℎ𝑒𝑖  and 𝑅𝑒𝑓𝑖, respectively. 

2.2.4 Mann–Kendall trend test 180 

The Mann–Kendall trend test is a nonparametric trend test method, which has the characteristics of not being limited by 

a specific distribution and a small number of outliers, and can be used to detect the hypothesis trend of time series data (Kendall, 

1975; Mao et al., 2022; Sun et al., 2019). The basic Mann–Kendall test formulas are as follows: 

S = ∑ ∑ sgn(Xj − Xi

n

j=j+1

)

n−1

i=1

, (14) 

𝑍𝑐 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
    𝑆 > 0

       0        𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
    𝑆 < 0

(15)  185 

where 𝑋𝑖 and 𝑋𝑗 are the phenological parameter values of the 𝑖-th year and the 𝑗-th year of the pixel, respectively, n is 

the length of the time series, sgn is the sign function, and S is the test statistic. The null hypothesis H0: the time series data is 

n independent samples with identically distributed random variables, H1: for any 𝑖, 𝑗 ≤ 𝑛, and 𝑖 ≠ 𝑗, the distribution of 𝑋𝑖, 
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𝑋𝑘  is different. If |𝑍| ≥ 𝑍1−𝛼
2
, the time series is considered to have a statistically significant change; otherwise, any change is 

considered not statistically significant. When Z > 0, the time series has an upward trend; when Z < 0, it has a downward trend 190 

(Zhou and Liu, 2018). 

3 Results  

3.1 Difference in vegetation phenological dates among the four datasets 

Figure 1 illustrates the spatial distribution of the multiyear mean dates for both the SOS and the EOS above 30°N for each 

of the four datasets. The mean SOS values for the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets are day of the year (DOY) 195 

120 (std = 32 d), 125 (std = 43 d), 132 (std = 17 d), and 139 (std = 32 d), respectively. Discrepancies among the datasets are 

particularly notable in southwestern North America, North Africa, the Qinghai–Tibet Plateau, and Mongolia. Compared with 

the SOS, the EOS exhibits greater variability, and the mean EOS values for the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets 

are DOY 281 (std = 37 d), 290 (std = 44 d), 315 (std = 19 d), and 287 (std = 53 d), respectively. Among the four datasets, the 

spatial distributions of the GIM_4g and VIP datasets are the most similar. In comparison with these two datasets, the MCD12Q2 200 

dataset displays lower EOS values in Northern Europe, Central Asia, North America, and in the 45°–60°N latitudinal belt over 

Central Asia. Given the substantial differences among these datasets, it is imperative to integrate these datasets into a merged 

dataset with higher accuracy. 

 
Figure 1: Spatial distribution of multiyear mean SOS and EOS dates from each phenology dataset: (a–d) multiyear mean SOS dates 205 
and (e–h) multiyear mean EOS dates derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively. 
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3.2 Variation of weights and contributions of the four datasets to the merged phenology dataset 

The weight of each dataset, as determined by the REA method, varies largely among years and specific locations. The 

left panels of Fig. 2 illustrate the mean weight for each dataset in each year over the period 1982–2022, with the upper and 

lower sections representing the SOS and the EOS, respectively. For the SOS, the overall weight of the VIP dataset during 210 

1982–1998 surpasses that of the GIM_4g dataset. The GIM_3g dataset is dominant during 1999–2014, with weights exceeding 

65%. In 2015, the weighting of the MCD12Q2 dataset was highest at approximately 45%, with the weights of the other two 

datasets broadly similar. During 2016–2020, the weights of the MCD12Q2 and GIM_4g datasets are 61% and 39%, 

respectively, but during 2021–2022, the dataset consists solely of the MCD12Q2 dataset. The combinations of data sources for 

the EOS data are similar to those for the SOS data. Specifically, during 1982–1998, the weight of the VIP dataset is 215 

approximately 65%, with the GIM_4g dataset accounting for the remaining 35%. For 1999–2000, the weighting of the GIM_3g 

dataset is approximately only 10%, whereas that of the VIP dataset is the highest (approximately 55%). Throughout the period 

2001–2014, the weighting of the VIP dataset is greatest (>45%), whereas that of the GIM_3g dataset is low (<10%); the 

weighting of the GIM_4g and MCD12Q2 datasets each account for over 20%. During 2016–2020, the weights of the GIM_4g 

and MCD12Q2 datasets are broadly equal, albeit with the weighting of the GIM_4g dataset slightly exceeding that of the 220 

MCD12Q2 dataset. 

The latitudinal distribution of the mean weighting of the datasets for the SOS and the EOS is shown in Fig. 2(b) and 2(d), 

respectively. For the SOS data, the zonal distribution of the GIM_4g, VIP, and MCD12Q2 datasets is reasonably stable within 

30°–75°N. The weight of the GIM_3g dataset is notably higher between 50°N and 70°N, primarily because of its spatial 

distribution, and it shows notable fluctuations in high-latitude areas. In contrast, the weighting of the EOS datasets exhibits 225 

relatively smooth changes within 30°–75°N. There are marked fluctuations in the weighting of the GIM_4g and VIP datasets 

in high-latitude areas above 75°N. The weight of the GIM_4g dataset between 30°N and 75°N fluctuates before stabilizing 

smoothly. Conversely, the weight of the VIP dataset increases with latitude, displaying a trend opposite to that of the GIM_4g 

dataset. Additionally, the weighting of both the MCD12Q2 and the GIM_3g datasets initially increases and then decreases with 

increasing latitude. 230 
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Figure 2: (a and c) Weights of the four phenology datasets during 1982–2022 and (b and d) latitudinal differences for (a and b) the 

SOS and (c and d) the EOS. The four datasets comprise the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets (for the full names, see Table 

1). 235 

Figure 3 shows the spatial distribution of the mean contribution of the four datasets to the merged SOS and EOS results, 

calculated as the average weight for each pixel over the timespan for the corresponding dataset. For the SOS data, the GIM_3g 

dataset exhibits the greatest contribution, followed by similar contributions from the GIM_4g and VIP datasets; the MCD12Q2 

dataset has the smallest contribution. The MCD12Q2 dataset has a greater contribution in high-latitude areas near the Arctic 

Circle, but makes a smaller contribution in most other regions. The VIP dataset generally has a greater contribution than that 240 

of the MCD12Q2 dataset, with values ranging between 0 and 0.5 in 90% of areas. The overall contribution of the GIM_3g 

dataset is reasonably uniform, averaging at approximately 0.37. For the EOS data, the VIP dataset has the greatest contribution, 

followed by the GIM_4g dataset; the GIM_3g dataset has the smallest contribution. The contribution of the MCD12Q2 dataset 

remains relatively small, primarily distributed between 0 and 0.5. The VIP dataset has a positive correlation with latitude, with 

approximately 4.7% of areas of weights exceeding 0.8 in central Asia and parts of East Asia, whereas the contribution of the 245 

GIM_3g dataset remains lower across the entire region. 
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Figure 3: Spatial distribution of the mean contribution of the four datasets to the merged SOS and EOS results. (a–d) The mean SOS 
weight derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively, and (e–h) the mean EOS weight derived from the 

GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively. 250 

3.3 Merged phenology dataset using the REA method  

Figure 4 displays the merged mean SOS and EOS dates for the period 1982–2022. For the SOS, a general pattern of 

increase with latitude is evident, albeit with later occurrence of the SOS in southwestern North America, on the Qinghai–Tibet 

Plateau, etc. The highest proportion of the SOS falls within DOY 120–150 (40.0%), followed by DOY 90–120 (23.3%). The 

probabilities of the SOS within the intervals of DOY 60–90 and DOY 150–180 are comparable, i.e., 14.8% and 15.8%, 255 

respectively, with only 6.2% of areas experiencing the SOS later than DOY 180. The mean SOS obtained using the REA 

method is DOY 129 (std = 28 d). It demonstrates an overall increase in the EOS with latitude, with fewer trends observed in 

high-latitude areas above 60°N and eastern parts of North America. The distribution of the EOS appears more uniform after 

merging. Unlike the SOS data, the EOS primarily occurs within DOY 270–330 (93.1%). The mean EOS is DOY 283 (std = 23 

d). Interannual variability in most regions for both the SOS and the EOS data is minimal; however, notable variations are 260 

observed in areas such as southwestern North America, Spain, Portugal, North Africa, West Asia, and Mongolia, consistent 

with the earlier analysis of data sources.  

The mean uncertainty range (by Equation 6) of merged SOS and EOS dates and its coefficient of variation (CV) using 

the REA method during 1982-2022 are presented in Figure 4. The mean uncertainty range of SOS (EOS) dates is below 10d 

in more than 96% (94%) of regions, with less than 4% (5%) of regions exhibiting a mean uncertainty range exceeding 10d or 265 

15d Fig. 4(b, e). The mean uncertainty range of SOS dates shows a negative correlation with latitude, whereas this trend is not 

evident in EOS dates. In Fig. 4(c, f), regarding the coefficient of variation (CV) in the uncertainty range of SOS (EOS) dates 
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from 1982 to 2022, more than 56% (73%) of regions have a CV below 1, 31% (18%) regions have a CV between 1 and 1.5, 

and only 13% (8%) of regions have a CV higher than 1.5. Regions with a CV below 1 in the uncertainty range of SOS and 

EOS dates are mostly located in the middle latitudes, but no observable correlation between CV and latitude changes is evident. 270 

 

Figure 4: Merged mean (a) SOS and (b) EOS dates (DOY) obtained using the REA method for the period 1982–2022 and the 

uncertainty in the REA merged data. Mean uncertainty (𝛿𝑃ℎ𝑒) of SOS dates (b) and EOS (e) obtained using the REA method for the 

period 1982–2022, and its coefficient of variation (CV) in merged SOS (c) and EOS dates (f). 

The PhenoCam dataset was used to evaluate each of the four vegetation datasets and the merged dataset. Verification 275 

results of the SOS and EOS data indicate that the merged data produced using the REA method has the best performance (Fig. 

5). Specifically, the RMSE for the SOS and the EOS is 12 and 17 d, respectively. The correlation between the SOS and 

PhenoCam results is notably high at 0.84; for the EOS, it is 0.71. Evaluation of the four satellite-based SOS products shows 

that the GIM_3g dataset has the highest correlation coefficient and the lowest RMSE among the four datasets. However, it has 

more missing values spatially and a shorter time span, leading to fewer points for verification. The MCD12Q2 dataset has a 280 

correlation coefficient of 0.65 and an RMSE of 20 d, but its wider spatial coverage provides more points for verification. The 

GIM_4g dataset has a lower correlation with the PhenoCam dataset owing to outliers, resulting in an RMSE of 29 d. Compared 

with the PhenoCam dataset, the VIP dataset has a lower estimation in the SOS range of DOY 100–140, leading to a larger 

RMSE. The REA-based SOS dataset outperforms in terms of all indicators, with the lowest RMSE, UbRMSE, and standard 
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deviation, together with the highest correlation and lowest absolute bias, thereby demonstrating high consistency with the 285 

PhenoCam dataset.  

In the evaluation of the EOS, the MCD12Q2 dataset has the best results among the four datasets, and except for the REA 

result, it has the highest correlation coefficient and the lowest RMSE. The GIM_4g dataset shows good performance but tends 

to overestimate the EOS, resulting in an RMSE of 43 d. Both the VIP and the GIM_3g datasets overestimate the EOS owing 

to their spatial and temporal distributions, with RMSEs of 46 and 35 d, respectively. It is evident from Fig. 5 that the REA 290 

dataset demonstrates the highest accuracy and best consistency with the PhenoCam dataset, outperforming the four other 

datasets in terms of all indicators, with the lowest RMSE, UbRMSE, and standard deviation, together with the highest 

correlation and lowest absolute bias.  

 
Figure 5: Scatterplots and radar charts of performance for each phenology dataset and the merged phenology dataset obtained using 295 
the REA method. (a–e) SOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, and REA datasets, respectively, (f) radar chart 

of the SOS evaluation results, (g–j and l) EOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, and REA datasets, respectively, 

and (k) radar chart of the EOS evaluation results. OBS indicates ground-based PhenoCam phenological dates, RMSE indicates the root mean 
square error, UbRMSE indicates the unbiased RMSE, BIAS indicates the mean difference between the satellite-based results and the ground-

based verification results, and STD indicates the standard deviation. 300 

Due to differences in time scales between PhenoCam data and different phenology datasets, we selected a long-term 

PhenoCam site that aligns with the time span of these phenology datasets to evaluate the merged dataset. We have chosen an 

American PhenoCam site characterized by deciduous broad-leaved forest and the time range is 2002-2010 for SOS and 2001-

2009 for EOS. As shown in the time series plot in Figure 6, the consistency between the REA and PhenoCam data for both 
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SOS and EOS compared to other datasets is the largest. Additionally, most vegetation phenology products demonstrate higher 305 

consistency with PhenoCam data for SOS compared to EOS. 

 

Figure 6: Time series of a PhenoCam site data with each phenology dataset and the merged phenology dataset obtained using the 

REA method. (a) SOS time series of the PhenoCam, GIM_4g, MCD12Q2, VIP, GIM_3g, and REA datasets, respectively, (b) EOS time 

series of the PhenoCam, GIM_4g, MCD12Q2, VIP, GIM_3g, and REA datasets, respectively. 310 

3.4 Temporal trends of phenology based on the merged dataset 

It is evident from Fig. 7(a) that the SOS exhibits a significant (p < 0.01) trend of advance over the period 1982–2022, 

with a rate of advance of approximately 0.24 d yr−1. Figure 7(b) presents the spatial distribution of the SOS trends obtained 

using the Mann–Kendall test. Approximately 65.58% of regions exhibit a trend of advance, with 46.25% of regions exhibiting 

a significant (p < 0.05) trend.  315 

Figure 7(c) illustrates that the EOS exhibits a significant trend of delay with a rate of 0.16 d yr−1 (p < 0.01). It is evident 

from Fig. 7(d) that the proportion of areas experiencing delayed EOS in regions above 30°N is 66.08% (comprising 43.21% 

significant at p < 0.05), consistent with the corresponding trend depicted in Fig. 7(c). Apart from southwestern to northeastern 

regions of North America, Europe, the Middle East, and certain high-latitude areas in Asia, EOS delay is predominant. Over 

the study area, 45.69% of regions exhibit SOS advance and EOS delay, 18.97% show SOS advance and EOS advance, 19.49% 320 

demonstrate SOS delay and EOS delay, and 14.42% show SOS delay and EOS advance. 
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Figure 7: Temporal and spatial trends of the SOS and the EOS over the period 1982–2022 based on the merged dataset obtained 

using the REA method. (a) Temporal trend of the SOS over the period 1982-2022, (b) Spatial trend of the SOS over the period 1982-2022, 325 
(c)Temporal trend of the EOS over the period 1982-2022, (d) Spatial trend of the EOS over the period 1982-2022. The shaded area in (a) 

and (c) indicates uncertainty at one standard deviation. 

4 Discussion and Conclusions 

Different vegetation phenology datasets have been produced and were widely used, but we found that differences of more 

than two months (>60 d) exist in key phenological dates among these datasets, consistent with previous reports (Zhang et al., 330 

2020). The substantial differences among the various vegetation phenology datasets are related mainly to differences in spatial 

and temporal resolutions, extraction methods, spectral response functions, and the complexity of surface backgrounds 

(Trishchenko et al., 2002; Zhang et al., 2020). For example, phenology datasets with low spatial resolution experience the 

problem of the mixed-pixel effect (Chen et al., 2018), which can result in large differences in phenological dates compared 

with those derived using high-resolution phenology datasets. Thus, a merged phenology dataset is required to exploit the 335 

advantages of the various phenology datasets available.  

Data fusion methods generally include unmixing-based, weight-function-based, and Bayesian-based methods (Gevaert 

and García-Haro, 2015; Piao et al., 2019). In the field of vegetation phenology, fusion methods based on raw remote sensing 

data, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (Gao et al., 2006) and the Enhanced Spatial and 
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Temporal Adaptive Reflectance Fusion Model (Zhu et al., 2010), are generally influenced by complex vegetation types, 340 

vegetation growth status, and the process of coefficient determination (Sisheber et al., 2022). The reflectance of vegetation 

endmembers changes nonlinearly, and likely results in poor performance in vegetation phenology extraction. The REA method 

is not based on the hypothesis that pixel reflectance changes linearly; instead, it merges annual phenology products directly 

based on their reliability. Compared with commonly used data fusion methods, the REA method offers advantages in terms of 

simplicity and efficiency(Lu et al., 2021), and it considers the reliability of the data, which contrasts with traditional methods 345 

that simply calculate the mean value of various data. The simple averaging method treats each data source equally, even though 

the uncertainties of each dataset are likely to vary across time and space(Lu et al., 2021; Wang et al., 2019), introducing 

inaccuracy to the merged dataset. The REA method considers the temporal correlation of vegetation phenology data by 

employing a voting principle (Giorgi and Mearns, 2002), and this approach facilitates convergence of data while retaining 

differences in terms of the spatial distribution, thereby offering advantages with respect to multisource data fusion. 350 

Compared with individual vegetation phenology datasets, i.e., the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets, our 

REA-based phenology dataset has a long-term sequence spanning 1982–2022 with a spatial resolution of 0.05°. The REA 

method facilitates better convergence and produces a unified phenology product with high reliability. To verify the reliability 

of the merged data product, we compared it against the ground-based PhenoCam dataset. Results revealed that the REA-based 

SOS and EOS exhibit the lowest RMSE and the highest correlation coefficients compared with those of the other four datasets, 355 

suggesting that the REA method offers high processing efficiency and accuracy. Global climate change has notably altered the 

timing of vegetation phenology events, including the advance of the SOS (Piao et al., 2019) and the delay of the EOS. Based 

on the merged phenology dataset, our results were consistent with those earlier findings, i.e., over the long-term period of 

1982–2022, advance (delay) in the SOS (EOS) has occurred at the rate of 0.24 (0.16) d yr−1. Shifts in vegetation phenology 

affect ecosystem structure (Kharouba et al., 2018; Yang and Rudolf, 2010), consequentially affecting biodiversity (Renner and 360 

Zohner, 2018), terrestrial carbon and water cycles (Piao et al., 2020), and the climate system (Green et al., 2017; Piao et al., 

2020). The establishment of a comprehensive and reliable vegetation phenology dataset is therefore profoundly important. Our 

study demonstrates that an invaluable vegetation phenology dataset can be obtained by applying the REA method, and that 

this dataset could be used for subsequent analyses, such as examining vegetation phenology dynamics and their impacts on the 

terrestrial carbon cycle and water balance, and providing climatic feedback for global vegetation dynamics modeling. 365 

Data availability 

The MCD12Q2 phenology dataset is available at https://lpdaac.usgs.gov/products/mcd12q2v061/(Friedl et al., 2022), the VIP 

phenology dataset is available at https://lpdaac.usgs.gov/products/vipphen_ndviv004/ (Didan and Barreto, 2016), the GIM_3g 

phenology dataset is available at http://data.globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/ (Wang et al., 2019), 

the GIM_4g phenology dataset is available at https://doi.org/10.5281/zenodo.11136967 (Chen and Fu, 2024), the camera-based 370 

phenology dataset is available at https://daac.ornl.gov/, http://www.sizenken.biodic.go.jp/, and http://www.pheno-eye.org/, the 
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land use dataset is available at https://lpdaac.usgs.gov/products/mcd12q1v061/ (Friedl and Sulla-Menashe, 2022), and the REA 

phenology dataset is available at https://doi.org/10.5281/zenodo.11127281 (Cui and Fu, 2024). 
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