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Abstract. Global change has substantially shifted vegetation phenology, with important implications in the carbon and water 

cycles of terrestrial ecosystems. Various vegetation phenology datasets have been developed using remote sensing data; 

however, the significant uncertainties in these datasets limit our understanding of ecosystem dynamics in terms of phenology. 10 

It is therefore crucial to generate a reliable large-scale vegetation phenology dataset, by fusing various existing vegetation 

phenology datasets, to provide comprehensive and accurate estimation of vegetation phenology with fine spatiotemporal 

resolution. In this study, we merged four widely used vegetation phenology datasets to generate a new dataset using the 

Reliability Ensemble Averaging fusion method. The spatial resolution of the new dataset is 0.05° and its temporal scale spans 

1982–2022. The new dataset has a spatial resolution of 0.05° and covers the period from 1982 to 2020, with geographic 15 

coverage extending above 30 degrees North in the Northern Hemisphere. The evaluation using a ground-based phenocam data 

the ground-based PhenoCam dataset from 280 sites indicated that the accuracy of the newly merged dataset was improved 

substantially. The start of growing season and the end of growing season in the newly merged dataset had the largest correlation 

(0.84 and 0.71, respectively with phenocam datarespectively) and accuracy in terms of the root mean square error (12 and 17 

d, respectively between phenocam data and merged datasetsrespectively). Using the new dataset, we found that the start of 20 

growing season exhibits a significant (p < 0.01) advanced trend with a rate of approximately 0.24 d yr−1, and that the end of 

growing season exhibits a significant (p < 0.01) delayed trend with a rate of 0.16 d yr−1 over the period 1982–20220. This 

dataset offers a unique and novel source of vegetation phenology data for global ecology studies.  
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1 Introduction 

Global change has notably altered the timing of vegetation phenology (Ettinger et al., 2020; Zhang et al., 2022), leading 25 

to important implications in the carbon and water cycles of terrestrial ecosystems (Peñuelas et al., 2009; Piao et al., 2019a; 

Richardson et al., 2012; Zhou, 2022). Various vegetation phenology datasets using remote sensing data have been produced, 

but inconsistencies and uncertainties arise when comparing those datasets with ground-based phenological observations, and 

large variations also exist in terms of the spatiotemporal resolutions (Peng et al., 2017). Therefore, there is an urgent need to 

develop a highly reliable vegetation phenology product to improve our understanding of vegetation phenology dynamics, and 30 

to facilitate subsequent research on terrestrial ecosystem responses to climate change. 

Ground-based phenological records were are commonly used in vegetation phenology studies (Fu et al., 2014; Geng et 

al., 2020; Sparks and Carey, 1995; Zhou et al., 2020). PhenoCam, as a ground-based measurement, has been operational for 

more than 20 years (Richardson et al., 2018a). Although ground-based observations provide high accuracy in terms of 

phenology dynamics, they are limited to certain locations resulting in sparse spatial coverage. In contrast, phenology datasets 35 

based on remote sensing data can cover large areas, providing comprehensive and continuous monitoring of vegetation 

phenology across landscapes, regions, or even continents. Additionally, remote sensing datasets are processed using 

standardized methods that ensure consistency and comparability across different locations and periods. However, phenology 

datasets based on remote sensing data do have certain limitations. Owing to differences in revisit cycles among satellites, 

together with sensor characteristics, sun–sensor geometry, and atmospheric conditions during imaging, substantial bias exists 40 

among the derived phenology datasets. For example, differences of >50 d in the start of growing season (SOS) have been 

reported among different phenology datasets based on remote sensing data (Peng et al., 2017; Zhou et al., 2020). Additionally, 

substantial variations in the trends of vegetation phenology exist. For example, a recent study reported that the SOS was 

delayed by 0.17 d yr−1 when based on the Global Inventory Modeling and Mapping Studies-3rd Generation (GIMMS 3g) 

dataset, whereas the SOS was advanced by 0.58 d yr−1 when based on the Moderate Resolution Imaging Spectroradiometer 45 

(MODIS) dataset in the Northern Hemisphere during 2000-2015 (Zhang et al., 2020). Previous studies found that different 

vegetation phenology datasets have advantages and disadvantagesmerits and demerits in different regions and over different 

periods (Fensholt and Proud, 2012; Zhang et al., 2020), the MODIS phenology product for the United States shows a stronger 

correlation with ground observations compared to the AVHRR phenology product (Peng et al., 2017), while the VIPPHEN 

data has fewer missing values than the MODIS phenology product. For estimates obtained using different extraction methods 50 

from the same satellite data, the discrepancies can exceed one month(White et al., 2009). Additionally, the NDVI (Normalized 

Difference Vegetation Index) threshold required for phenology extraction varies across different biomes (Reed et al., 1994). 

Because it is difficult to determine the optimal dataset from the various phenology datasets, producing a  merged dataset using 

method which can choose the best dataset in different time and space among all input datasets is therefore essential for 

providing a comprehensive and accurate estimation of vegetation phenology with high spatiotemporal resolution.  55 
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The simple averaging method was is commonly employed when integrating different vegetation phenology datasets 

(Delbart et al., 2015; Piao et al., 2019a; Wang et al., 2019). However, the simple averaging method operates under the 

assumption that the reliability within each dataset is uniform, whereas it varies because of differences among the various 

methods of extraction (Lu et al., 2021). Alternatively, methods such as weighted functions, the Bayesian approach, and mixed 

models have been combined with the vegetation index method, which used the mathematical formulas to assess vegetation 60 

conditions to integrate datasets with high temporal and spatial resolutions (Walker et al., 2012; Zhu et al., 2010). Such methods 

can improve the data reliability of homogeneous surfaces based on the continuity of data in both time and space. Specifically, 

the Reliability Ensemble Averaging (REA) method, which assigns different weights to each dataset based on their reliability, 

has been applied to merge various datasets and consistently demonstrated high reliability through validation (Giorgi and 

Mearns, 2002; Lu et al., 2021; Xu et al., 2010). Therefore, the REA method has demonstrated its effectiveness in obtaining 65 

accurate merged vegetation phenology datasets.  

In this study, we merged four widely used vegetation phenology datasets to generate a new dataset using the REA fusion 

method. The spatial resolution of the new dataset is 0.05° and its temporal scale spans 1982–20222020. The new dataset was 

evaluated using data from the ground-based pPhenoCcam dataset from 280 sites over the period 2000–2018, which provided 

1410 site–year combinations. We further explored the phenological trends in spring and autumn vegetation phenology using 70 

the merged dataset. The new vegetation phenology dataset could be used in further studies on the impact of energy and carbon–

water cycles within terrestrial ecosystems, together with analysis of their responses and feedbacks to global climate change 

(Piao et al., 2009, 2019a; Tang et al., 2016). 

2 Data and Method  

2.1 Phenology dataset  75 

Four satellite-based vegetation phenology products were used to create a merged dataset, and the ground-based 

pPhenocCam dataset was used for validation. The four satellite-based vegetation phenology products include (1) the 

MCD12Q2 (Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics data product) phenology 

dataset, which was extracted from the MODIS  Land Cover Dynamics Version 6.1 derived by Friedl et al., 2022; (2) the VIP 

dataset (Making Earth System Data Records for Use in Research Environments Vegetation Index and Phenology) dataset, that 80 

was derived by Didan and Barreto, 2016, (3) the GIM_3g (GIMMS ( NDVI3gGlobal Inventory Modeling and Mapping Studies) 

Normalized Difference Vegetation Index 3rd Generation) based phenology dataset, that was derived by Wang et al. (2019), 

and (4) the GIM_4g (GIMMS NDVI4gGIMMS(Global Inventory Modeling and Mapping Studies) Normalized Difference 

Vegetation Index4th Generation) based phenology dataset derived by Chen and Fu, 2024. The time span and the spatial 

resolution of each vegetation phenology dataset are listed in Table 1. The merged data used in this paper was clipped into 85 
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regions above 30 degrees in the Northern Hemisphere to ensure that the region was covered by four datasets. The details of 

each phenology dataset are introduced below. 

Table 1 List of data sources  

Name Abbreviations  Sensor 
Spatial 

Resolution 
Time Span Reference 

MODIS 

MCD12Q2 
MCD12Q2 MODIS 500m 

2001-

20222020 
(Friedl et al., 2022) 

MEaSUREs 

VIPPHEN 
VIP AVHRR& MODIS 0.05° 1982-2015 (Didan and Barreto, 2016) 

GIMMS 

NDVI3g 
GIM_3g AVHRR 1/12° 1999-2014 (Wang et al., 2019) 

GIMMS 

NDVI4g 
GIM_4g AVHRR 1/12° 1982-2020 (Chen and Fu, 2024) 

Note: GIM_4g refers to the phenology dataset derived the from GIMMS NDVI4g dataset, MCD12Q2 refers to the MODIS MCD12Q2 

product, VIP refers to the MEaSUREs VIPPHEN dataset, and GIM_3g refers to the phenology dataset derived from the GIMMS NDVI3g 90 
dataset. 

2.1.1 MCD12Q2 phenology dataset 

The MCD12Q2 product was derived using data from the MODIS sensor onboard the Terra and Aqua satellites. The 

MCD12Q2 land cover dynamic product v6.1 provides a global surface phenology dataset with a 500-m spatial resolution for 

the period 2001–20212020. The vegetation phenology data were extracted from the Nadir Bidirectional Adjusted Reflectance 95 

2-band Enhanced Vegetation Index (EVI2) using the threshold method (Gray et al., 2019). The threshold method defines the 

growing state of the vegetation as the time when the vegetation index reaches a certain percentage of the annual amplitude and 

reflect a specific vegetation physiological growth stage. The MCD12Q2 phenology dataset includes greenup and dormancy 

(equivalent to SOS and EOS in this study, respectively). Greenup (dormancy) is defined as the date when the EVI2 time series 

first (last) crosses 15% of the segment EVI2 amplitude (Gray et al., 2019). The time series data was fitted by a penalized cubic 100 

smoothing spline. The amplitude is calculated as the difference between the maximum and minimum values of the EVI2 time 

series within the growing season. This dataset can be found at https://lpdaac.usgs.gov/products/mcd12q2v061/ (Friedl et al., 

2022).  

2.1.2 VIP phenology dataset  

The VIP phenology dataset (VIP) was generated using data from the NASA Making Earth System Data Records for Use 105 

in Research Environments (MEaSUREs) and the Advanced Very High-Resolution Radiometer (AVHRR) over the period 

1981–1999, together with MODIS/Terra MOD09 surface reflectance data over the period 2000–2014 (Didan et al., 2018). The 

VIP dataset includes the SOS and EOS, which were also extracted using the threshold method. The filtering method based on 

confidence interval and operational continuity algorithm were used to rebuild the time series curves. The start (end) of season 

is defined using the modified Half-Max method (White et al., 2009) as the date when the NDVI2 time series first (last) crosses 110 

https://lpdaac.usgs.gov/products/mcd12q2v061/
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35% of the segment NDVI2 amplitude. This dataset is organized in a geographic gridded format with a spatial resolution of 

0.05°. This dataset can be found at https://lpdaac.usgs.gov/products/vipphen_ndviv004/ (Didan and Barreto, 2016).  

2.1.3 GIM_3g phenology dataset 

The GIMMS NDVI ( Normalized Difference Vegetation Index) 3g-based phenology dataset (GIM_3g) has a spatial 

resolution of 1/12° and covers the period 19981999–2014 (Wang et al., 2019). A double logistic function was applied to fit the 115 

NDVI curve and the threshold method was used to extract phenological dates, including the SOS and EOS. This product 

provides phenology data for the Northern Hemisphere, and it uses the date when the NDVI first (last) crosses 20% of the 

segment NDVI amplitude as the SOS (EOS). The amplitude is calculated as the difference between the maximum and 

minimum values of the NDVI time series within that specific segment of the growing season. This dataset can be accessed at 

http://data.globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/ (Wang et al., 2019). 120 

2.1.4 GIM_4g phenology dataset 

The GIM_4g dataset, based on the GIMMS NDVI 4g dataset acquired by the AVHRR sensors, has a spatial resolution of 

1/12° and a temporal scale spanning 1982–2020. Two steps were adopted in the process to extract phenological dates. First, 

the NDVI time series data were fitted and smoothed using five fitting methods: the HANTS-Maximum, Spline-Midpoint, 

Gaussian-Midpoint, Timesat-SG, and Polyfit-Maximum methods. Second, the threshold method was used to extract 125 

phenological dates, using the date when the NDVI first (last) crosses 20% (50%) of the segment NDVI amplitude as the SOS 

(EOS) (Chen et al., 2024; Chen and Fu, 2024). The amplitude is calculated as the difference between the maximum and 

minimum values of the NDVI time series within that specific segment of the growing season. The average spring (SOS) and 

autumn (EOS) phenological dates were produced from the results of the five fitting methods. The GIM_4g phenology dataset 

is available at https://doi.org/10.5281/zenodo.11136967 (Chen and Fu, 2024).  130 

2.1.5 Camera-based phenology dataset  

The A ground-based pPhenoCcam dataset, with phenological dates extracted from camera-derived images with high 

spatial resolution and reliable accuracy, was used to validate the merged dataset. The pPhenocCam dataset comprises three 

datasets. The first dataset, i.e., the PhenoCam Dataset v 2.0 (Richardson et al., 2018b; Seyednasrollah et al., 2019a, b), includes 

data acquired derived fromusing conventional visible-wavelength automated digital camera imagerya downward-facing 135 

automatic digital fisheye camera system through PhenoCam Network (Richardson et al., 2018a) over the period 2000–2018 

and across 393 sites in various ecosystems, for detailed information, please refer to  

https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html and https://phenocam.nau.edu/webcam/ . It, comprisesing 

deciduous broadleaf, deciduous needleleaf, evergreen broadleaf, evergreen needleleaf, grassland, mixed vegetation, shrubland, 

tundra, and wetland ecosystems, mainly in regions of Europe and North America (https://daac.ornl.gov/) (Moon et al., 2021; 140 

Ruan et al., 2023). Spline interpolation method was applied to PhenoCam data to extract transition dates for each ROI mask 

https://lpdaac.usgs.gov/products/vipphen_ndviv004/
http://data.globalecology.unh.edu/data/GIMMS_NDVI3g_Phenology/
https://doi.org/10.5281/zenodo.11136967
https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html
https://phenocam.nau.edu/webcam/
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in PhenoCam Dataset v2.0. We used the date when the GCC first (last) crosses 255% of the GCC amplitude as the SOS and 

EOS.  

 The second pPhenocCam dataset is from the Japan Internet Nature Information System digital camera data 

(http://www.sizenken.biodic.go.jp/) acquired over the period 2002–2009.Ide and Oguma (Ide and Oguma, 2010; Inoue et al., 145 

2014) provided greenup dates for (Ide and Oguma, 2010; Inoue et al., 2014), two phenocam sites with areas of interest (AOI) 

defined at the species level scale. Tand the vegetation types included in their data compriseinclude deciduous broadleaf forest, 

wetland, and mixed deciduous forest (http://www.sizenken.biodic.go.jp/). The date of green-up each year was estimated as the 

DOY of the maximum rate of increasing 2G-RBi (i.e., the maximum of the second derivative.  

The third dataset consists of phenology data for deciduous broadleaf forests in Japan (Inoue et al., 2014)(Inoue et al., 150 

2014)is , from supported by the Phenological Eyes Network (http://www.pheno-eye.org/), which is a network of ground-based 

observatories for long-term automatic observation of vegetation dynamics established in 2003 (Nasahara and Nagai, 2015), 

the start and end of season is defined as the first day when 20% of leaves had flushed and the first day when 80% of leaves 

had fallen in the given ROI, respectively. For use in this study, we deleted 26 sites which only have one direction of transition 

dates, and removed 90 sites with no phenology values in four data sources, then selected pPhenocCam data from 280 sites 155 

over the period 2000–2018, which provided 1410 site–year combinations.  

2.1.6 Land cover dataset 

To avoid the impact of human activities and non-vegetated areas on data quality, areas of cropland, cropland/natural 

vegetation mosaics, permanent snow and ice, barren land and water bodies were removed based on a land cover dataset 

obtained by supervised classification of MODIS reflectance data (Sulla-Menashe and Friedl, 2018). The land cover data 160 

generated based on the Annual International Geosphere–Biosphere Programme classification schemes, are available from 

https://lpdaac.usgs.gov/products/mcd12q1v061/ (Friedl and Sulla-Menashe, 2022). 

2.2 Ensemble method for estimating phenological dates 

The weighting method was applied to obtain more accurate SOS and EOS dates from the four vegetation phenology 

datasets. The weight assigned to each product was based on the interannual variability of each phenology dataset, together 165 

with the degree of consistency and offset among the four phenology datasets (Giorgi and Mearns, 2002). There is discrepancy 

in the spatial coverage among the four phenology datasets, and missing data occurs in specific regions for some of the datasets. 

The ensemble method can fill in missing data accurately, thereby producing a phenology dataset with high accuracy and 

spatially continuous coverage. Furthermore, the process of merging the phenology datasets does not depend on simple 

averaging; instead, it is based on the uncertainty among the products, which produces data that is more reliable than those 170 

obtained using the simple averaging method, and can circumvent the effects of outliers (Giorgi and Mearns, 2002).  

http://www.sizenken.biodic.go.jp/
https://lpdaac.usgs.gov/products/mcd12q1v061/
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2.2.1 Reliability ensemble averaging method 

The weighting method was applied to obtain more accurate SOS and EOS dates from the four vegetation phenology 

datasets. The weight assigned to each product was based on the interannual variability of each phenology dataset, together 

with the degree of consistency and offset among the four phenology datasets (Giorgi and Mearns, 2002). The consistency is 175 

measured as the difference between the input dataset and the mean value of the four datasets, and the offset is measured by the 

difference between the REA result and each input dataset, they are calculated in iterations. There areis discrepanciesy in the 

spatial coverage among the four phenology datasets, and missing data occurs in specific regions for some of the datasets. The 

ensemble method can fill in missing data accurately, thereby producing a phenology dataset with high accuracy and spatially 

continuous coverage. Furthermore, the process of merging the phenology datasets does not depend on simple averaging; 180 

instead, it is based on the uncertainty among the products, which produces data that is more reliable than those obtained using 

the simple averaging method, and can circumvent the effects of outliers (Giorgi and Mearns, 2002).  

 

The REA method based on the “voting principle” ( the REA result is generate based on different weights of data sources) 

generates data that is consistent with most of the input phenology products at the pixel level. It provides a dataset with high 185 

reliability by relying on the temporal consistency of each pixel among the input products, and by minimizing the influence of 

outliers during the merging process (Giorgi and Mearns, 2002). The REA method has been applied to generate datasets for 

multiple elemental fields, e.g., temperature, evapotranspiration, and precipitation (Giorgi and Mearns, 2002; Lu et al., 2021; 

Xu et al., 2010). In this study, the REA method was used to integrate both the SOS and the EOS from the four phenology 

datasets. 190 

The REA method gives different weights to the various datasets involved in the process of data merging, and then obtains 

the desired result using the following function: 

∆𝑃ℎ𝑒̃ = 𝐴̃(∆𝑃ℎ𝑒) =
∑ 𝑅𝑖∆𝑃ℎ𝑒𝑖𝑖

∑ 𝑅𝑖𝑖
                                         (1) 

where ∆𝑃ℎ𝑒̃  represents the phenology result, ∆𝑃ℎ𝑒𝑖  represents the different datasets involved in the process, 𝐴̃ 

denotes the REA process, and 𝑅𝑖 represents the model reliability factor, which is defined as follows: 195 

𝑅𝑖 = [(𝑅𝐵,𝑖)
𝑚
× (𝑅𝐷,𝑖)

𝑛
]
[
1

𝑚×𝑛
]
 

 = {⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐵𝑃ℎ𝑒,𝑖)
⌉
𝑚

⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐷𝑃ℎ𝑒,𝑖)
⌉
𝑛

} {⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐵𝑃ℎ𝑒,𝑖)
⌉
𝑚

⌈
𝜖𝑃ℎ𝑒

𝑎𝑏𝑠(𝐷𝑃ℎ𝑒,𝑖)
⌉
𝑛

}
[
1

𝑚×𝑛
]                                 (2) 

where 𝑅𝐵,𝑖 measures the bias of the data compared with that of the average data (the higher the bias, the lower the 

reliability of the dataset), and 𝑅𝐷,𝑖 represents the convergence criterion of the data (the larger the distance between the dataset 

and the newly generated REA data, the poorer the convergence; several iterations are required to reach convergence). The 

values of 𝑅𝐵,𝑖 and 𝑅𝐷,𝑖 will be set to 1 when 𝐵𝑃ℎ𝑒,𝑖 and 𝐷𝑃ℎ𝑒,𝑖 are less than 𝜖𝑃ℎ𝑒 , which means the deviation of the dataset 200 

is within the limit of natural variation. 

𝐵𝑃ℎ𝑒,𝑖 = ∆𝑃ℎ𝑒𝑖 − 𝑃ℎ𝑒̅̅ ̅̅ ̅,                                                                                      (3) 
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𝐷𝑃ℎ𝑒,𝑖 = ∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ𝑒,                                      (4) 

𝜀𝑃ℎ𝑒 = max(𝑀𝐴(𝐷𝑃ℎ𝑒)) − min(𝑀𝐴(𝐷𝑃ℎ𝑒)).                                                           (5) 

Equation (3) explains the derivation of 𝐵𝑃ℎ𝑒,𝑖 i.e., it is defined by the difference between the input dataset and the mean 205 

value of the four datasets. Equation (4) explains the arithmetic process of 𝐷𝑃ℎ𝑒,𝑖, which is measured by the difference between 

the REA result and each input dataset. In Eq. (5), 𝜀𝑃ℎ𝑒 is measured by the natural variability in phenology, which is calculated 

by estimating the difference between the maximum and minimum values of the multiyear moving averages following linear 

detrending of the observed long-term series data, and works with 𝐵𝑃ℎ𝑒,𝑖 and 𝐷𝑃ℎ𝑒,𝑖 jointly to assign weights to each dataset. 

Natural variability changes from region to region, in Equation (1) and (6), 𝜀𝑃ℎ𝑒 cancels out under the condition of 𝐵𝑃ℎ𝑒,𝑖 and 210 

𝐷𝑃ℎ𝑒,𝑖 greater than 𝜀𝑃ℎ𝑒,which based on the assumption that more stringent on are required to increase the reliability over 

regions characterized by lower natural variability. 

𝛿𝑃ℎ𝑒 = [𝐴̃(∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ𝑒̃)
2
]

1
2
= [

∑ 𝑅𝑖(∆𝑃ℎ𝑒𝑖 − ∆𝑃ℎ𝑒̃)
2

𝑖

∑ 𝑅𝑖𝑖

]

1
2

(6) 

∆𝑃ℎ𝑒+ = ∆𝑃ℎ𝑒̃ + 𝛿∆𝑃ℎ𝑒 , (7a) 

∆𝑃ℎ𝑒− = ∆𝑃ℎ𝑒̃ − 𝛿∆𝑃ℎ𝑒 . (7b) 215 

In Eq. (6), 𝛿𝑃ℎ𝑒 is the uncertainty range calculated using 𝑅𝑖 and the difference between the REA result and the datasets 

(a higher value of 𝛿𝑃ℎ𝑒 means larger differences between the REA result and the original phenology datasets). The upper and 

lower limits of the uncertainty range limits are measured by ∆𝑃ℎ𝑒̃ and 𝛿∆𝑃ℎ𝑒, respectively, in Eqs. (7a) and (7b). 

If there is one data that shows significant discrepancies compared to other data, which may cause by improper extraction 

methods in that region, the 𝐵𝑃ℎ𝑒,𝑖 and 𝐷𝑃ℎ𝑒,𝑖 will extract this variance and combine with the natural variability 𝜀𝑃ℎ𝑒 of the 220 

region in the weight distribution process. If the natural variability of that region is low, then the weight is assigned to a smaller 

value, and if the natural variability of the region is large, the weight is assigned by both the natural variability and the deviations. 

2.2.23 Evaluation criteria  

In this study, the metrics of the root mean square error (RMSE), BIAS, correlation coefficient (r), unbiased RMSE 

(UbRMSE) and coefficient of variation (CV) were used for data evaluation: 225 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃ℎ𝑒𝑖 − 𝑅𝑒𝑓𝑖)

2𝑛
𝑖=1

𝑛
, (8) 

𝐵𝐼𝐴𝑆 =
∑ (𝑃ℎ𝑒𝑖 − 𝑅𝑒𝑓𝑖)
𝑛
𝑖=1

𝑛
, (9) 

𝑟 =
∑ (𝑃ℎ𝑒𝑖 − 𝑃ℎ𝑒̅̅ ̅̅ ̅)(𝑅𝑒𝑓𝑖 − 𝑅𝑒𝑓̅̅ ̅̅ ̅)𝑛
𝑖=1

√∑ (𝑃ℎ𝑒𝑖 − 𝑃ℎ𝑒̅̅ ̅̅ ̅)
2𝑛

𝑖=1
√∑ (𝑅𝑒𝑓𝑖 − 𝑅𝑒𝑓̅̅ ̅̅ ̅)

2𝑛
𝑖=1

, (10)
 

𝑢𝑏𝑅𝑀𝑆𝐸 =  √𝑅𝑀𝑆𝐸2 − 𝐵𝐼𝐴𝑆2, (11) 
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STD = √
1

N
∑(Phei − Phe̅̅ ̅̅ ̅)

2
N

i=1

, (12) 230 

CV =
σPhe

𝑃ℎ𝑒̅̅ ̅̅ ̅
(13) 

where n represents the number of site years, 𝑃ℎ𝑒𝑖 represents the corresponding vegetation phenological indicator (i.e., 

SOS and EOS) at a given point, 𝑅𝑒𝑓𝑖 represents data from a phenology camera, σPhe represents the standard deviation of 

𝑃ℎ𝑒𝑖 , and 𝑃ℎ𝑒̅̅ ̅̅ ̅ and 𝑅𝑒𝑓̅̅ ̅̅ ̅ represent the average of 𝑃ℎ𝑒𝑖  and 𝑅𝑒𝑓𝑖, respectively. 

RMSE is calculated as the square root of the average of the squares of the residuals, which penalizes larger errors than 235 

smaller ones and provide an estimate of the magnitude of errors between remote sensing estimated value and phenocam 

datasets. BIAS is the average difference between remote sensing estimated value and phenocam value, that helps in 

understanding whether the estimated value is higher or lower than phenocam value. The correlation coefficient measures the 

linear relationship between two variables. The ubRMSE measures the deviation between two variables without systematic 

errors. Standard deviation quantifies the variation of the dataset, which measures the deviation between data and the mean 240 

value.  

2.2.34 Mann–Kendall trend test 

The Mann–Kendall trend test is a nonparametric trend test method, which has the characteristics of not being limited by 

a specific distribution and a small number of outliers, and can be used to detect the hypothesis trend of time series data (Kendall, 

1975; Mao et al., 2022; Sun et al., 2019). The M-K test is applied to analyze the trend of SOS and EOS during 1982-2022 2020 245 

in the merged dataset. The basic Mann–Kendall test formulas are as follows: 

S =∑ ∑ sgn(Xj − Xi

n

j=j+1

)

n−1

i=1

, (14) 

𝑍𝑐 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
    𝑆 > 0

       0        𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
    𝑆 < 0

(15) 

where 𝑋𝑖 and 𝑋𝑗 are the phenological parameter values of the 𝑖-th year and the 𝑗-th year of the pixel, respectively, n is 

the length of the time series, sgn is the sign function, and S is the test statistic. The null hypothesis H0: the time series data is 250 

n independent samples with identically distributed random variables, H1: for any 𝑖, 𝑗 ≤ 𝑛, and 𝑖 ≠ 𝑗, the distribution of 𝑋𝑖, 

𝑋𝑘 is different. If |𝑍| ≥ 𝑍1−𝛼
2
, the time series is considered to have a statistically significant change; otherwise, any change is 

considered not statistically significant. When Z > 0, the time series has an upward trend; when Z < 0, it has a downward trend 

(Zhou and Liu, 2018). 
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3 Results  255 

3.1 Difference in vegetation phenological dates among the four datasets 

Figure 1 illustrates the spatial distribution of the multiyear mean dates for both the SOS and the EOS above 30°N for each 

of the four datasets. The mean SOS values for the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets are day of the year (DOY) 

120 (std = 32 d), 125 (std = 43 d), 132 (std = 17 d), and 139 (std = 32 d), respectively. Discrepancies among the datasets are 

particularly notable in southwestern North America, North Africa, the Qinghai–Tibet Plateau, and Mongolia. Compared with 260 

the SOS, the EOS exhibits greater variability, and the mean EOS values for the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets 

are DOY 281 (std = 37 d), 290 (std = 44 d), 315 (std = 19 d), and 287 (std = 53 d), respectively. Among the four datasets, the 

spatial distributions of the GIM_4g and VIP datasets are the most similar. In comparison with these two datasets, the MCD12Q2 

dataset displays lower EOS values in Northern Europe, Central Asia, North America, and in the 45°–60°N latitudinal belt over 

Central Asia. Given the substantial differences among these datasets, it is imperative to integrate these datasets into a merged 265 

dataset with higher accuracy. 

 
Figure 1: Spatial distribution of multiyear mean SOS and EOS dates from each phenology dataset: (a–d) multiyear mean SOS dates 

and (e–h) multiyear mean EOS dates derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively. 

3.2 Variation of weights and contributions of the four datasets to the merged phenology dataset 270 

The weight of each dataset, as determined by the REA method, varies largely among years and specific locations. The 

left panels of Fig. 2 illustrate the mean weight for each dataset in each year over the period 1982–20222020, with the upper 

and lower sections representing the SOS and the EOS, respectively. For the SOS, the overall weight of the VIP dataset during 

1982–1998 surpasses that of the GIM_4g dataset. The GIM_3g dataset is dominant during 1999–2014, with weights exceeding 
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65%. In 2015, the weighting of the MCD12Q2 dataset was highest at approximately 45%, with the weights of the other two 275 

datasets broadly similar. During 2016–2020, the weights of the MCD12Q2 and GIM_4g datasets are 61% and 39%, 

respectively, but during 2021–2022, the dataset consists solely of the MCD12Q2 dataset. The combinations of data sources for 

the EOS data are similar to those for the SOS data. Specifically, during 1982–1998, the weight of the VIP dataset is 

approximately 65%, with the GIM_4g dataset accounting for the remaining 35%. For 1999–2000, the weighting of the GIM_3g 

dataset is approximately only 10%, whereas that of the VIP dataset is the highest (approximately 55%). Throughout the period 280 

2001–2014, the weighting of the VIP dataset is greatest (>45%), whereas that of the GIM_3g dataset is low (<10%); the 

weighting of the GIM_4g and MCD12Q2 datasets each account for over 20%. During 2016–2020, the weights of the GIM_4g 

and MCD12Q2 datasets are broadly equal, albeit with the weighting of the GIM_4g dataset slightly exceeding that of the 

MCD12Q2 dataset. 

The latitudinal distribution of the mean weighting of the datasets for the SOS and the EOS is shown in Fig. 2(b) and 2(d), 285 

respectively. For the SOS data, the zonal distribution of the GIM_4g, VIP, and MCD12Q2 datasets is reasonably stable within 

30°–75°N. The weight of the GIM_3g dataset is notably higher between 50°N and 70°N, primarily because of its spatial 

distribution, and it shows notable fluctuations in high-latitude areas. In contrast, the weighting of the EOS datasets exhibits 

relatively smooth changes within 30°–75°N. There are marked fluctuations in the weighting of the GIM_4g and VIP datasets 

in high-latitude areas above 75°N. The weight of the GIM_4g dataset between 30°N and 75°N fluctuates before stabilizing 290 

smoothly. Conversely, the weight of the VIP dataset increases with latitude, displaying a trend opposite to that of the GIM_4g 

dataset. Additionally, the weighting of both the MCD12Q2 and the GIM_3g datasets initially increases and then decreases with 

increasing latitude. 
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Figure 2: (a and c) Weights of the four phenology datasets during 1982–2022 2020 and (b and d) latitudinal differences for (a and b) 

the SOS and (c and d) the EOS. The four datasets comprise the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets (for the full names, see 

Table 1). 

Figure 3 shows the spatial distribution of the mean contribution of the four datasets to the merged SOS and EOS results, 300 

calculated as the average weight for each pixel over the timespan for the corresponding dataset. For the SOS data, the GIM_3g 

dataset exhibits the greatest contribution, followed by similar contributions from the GIM_4g and VIP datasets; the MCD12Q2 

dataset has the smallest contribution. The MCD12Q2 dataset has a greater contribution in high-latitude areas near the Arctic 

Circle, but makes a smaller contribution in most other regions. The VIP dataset generally has a greater contribution than that 

of the MCD12Q2 dataset, with values ranging between 0 and 0.5 in 90% of areas. The overall contribution of the GIM_3g 305 

dataset is reasonably uniform, averaging at approximately 0.37. For the EOS data, the VIP dataset has the greatest contribution, 
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followed by the GIM_4g dataset; the GIM_3g dataset has the smallest contribution. The contribution of the MCD12Q2 dataset 

remains relatively small, primarily distributed between 0 and 0.5. The VIP dataset has a positive correlation with latitude, with 

approximately 4.7% of areas of weights exceeding 0.8 in central Asia and parts of East Asia, whereas the contribution of the 

GIM_3g dataset remains lower across the entire region. 310 

 

Figure 3: Spatial distribution of the mean contribution of the four datasets to the merged SOS and EOS results. (a–d) The mean SOS 

weight derived from the GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively, and (e–h) the mean EOS weight derived from the 

GIM_4g, MCD12Q2, VIP, and GIM_3g datasets, respectively. 315 
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3.3 Merged phenology dataset using the REA method  

Figure 4 displays the merged mean SOS and EOS dates for the period 1982–20222020. For the SOS, a general pattern of 

increase with latitude is evident, albeit with later occurrence of the SOS in southwestern North America, on the Qinghai–Tibet 

Plateau, etc. The highest proportion of the SOS falls within DOY 120–150 (40.0%), followed by DOY 90–120 (23.3%). The 

probabilities of the SOS within the intervals of DOY 60–90 and DOY 150–180 are comparable, i.e., 14.8% and 15.8%, 320 

respectively, with only 6.2% of areas experiencing the SOS later than DOY 180. The mean SOS obtained using the REA 

method is DOY 129 (std = 28 d). It demonstrates an overall increase in the EOS with latitude, with fewer trends observed in 

high-latitude areas above 60°N and eastern parts of North America. The distribution of the EOS appears more uniform after 

merging. Unlike the SOS data, the EOS primarily occurs within DOY 270–330 (93.1%). The mean EOS is DOY 283 (std = 23 

d). Interannual variability in most regions for both the SOS and the EOS data is minimal; however, notable variations are 325 

observed in areas such as southwestern North America, Spain, Portugal, North Africa, West Asia, and Mongolia, consistent 

with the earlier analysis of data sources(Fu et al., 2014; Liu et al., 2016; Piao et al., 2006, 2015).  

The mean uncertainty range of merged SOS and EOS dates, calculated using Equation (6), is presented in Figure 4. This 

range was determined using the REA method over the period from 1982 to 2020.The mean uncertainty range (by Equation 6) 

of merged SOS and EOS dates and its coefficient of variation (CV) using the REA method during 1982-2022 are presented in 330 

Figure 4. The mean uncertainty range of SOS (EOS) dates is below 10d in more than 96% (94%) of regions, with less than 4% 

(5%) of regions exhibiting a mean uncertainty range exceeding 10d or 15d Fig. 4(b, e). The mean uncertainty range of SOS 

dates shows a negative correlation with latitude, whereas this trend is not evident in EOS dates. In Fig. 4(c, f), regarding the 

coefficient of variation (CV) in the uncertainty range of SOS (EOS) dates from 1982 to 20222020, more than 56% (73%) of 

regions have a CV below 1, 31% (18%) regions have a CV between 1 and 1.5, and only 13% (8%) of regions have a CV higher 335 

than 1.5. Regions with a CV below 1 in the uncertainty range of SOS and EOS dates are mostly located in the middle latitudes, 

but nThere is no observable evident correlation between CV and latitude changes is evident. 
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Figure 4: Merged mean (a) SOS and (db) EOS dates (DOY) obtained using the REA method for the period 1982–2022 2020 and the 340 
uncertainty in the REA merged data. Mean uncertainty (𝛿𝑃ℎ𝑒) of SOS dates (b) and EOS (e) obtained using the REA method for the 

period 1982–20222020, and its coefficient of variation (CV) in merged SOS (c) and EOS dates (f). 

The pPhenocCam dataset was used to evaluate each of the four vegetation datasets and the merged dataset. Verification 

results of the SOS and EOS data indicate that the merged data produced using the REA method has the best performance (Fig. 

5). Specifically, the RMSE for the SOS and the EOS is 12 and 17 d, respectively. The correlation between the SOS and 345 

pPhenocCam results is notably high at 0.84; for the EOS, it is 0.71. Evaluation of the four satellite-based SOS products shows 

that the GIM_3g dataset has the highest correlation coefficient and the lowest RMSE among the four datasets. However, it has 

more missing values spatially and a shorter time span, leading to fewer points for verification. The MCD12Q2 dataset has a 

correlation coefficient of 0.65 and an RMSE of 20 d, but its wider spatial coverage provides more points for verification. The 

GIM_4g dataset has a lower correlation with the pPhenocCam dataset owing to outliers, resulting in an RMSE of 29 d. 350 

Compared with the pPhenocCam dataset, the VIP dataset has a lower estimation in the SOS range of DOY 100–140, leading 

to a larger RMSE. And comparing with simple average, the REA-based SOS shows better performance in RMSE (REA and 

Average, 12d and 21d, respectively), CORR (REA and Average, 0.84 and 0.65, respectively), BIAS (REA and Average, -1.5d 
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and -9.7d, respectively) and UbRMSE (REA and Average, 12d and 18d, respectively). The REA-based SOS dataset 

outperforms in terms of all indicators, with the lowest RMSE, UbRMSE, and standard deviation, together with the highest 355 

correlation and lowest absolute bias, thereby demonstrating high consistency with the pPhenocCam dataset.  

In the evaluation of the EOS, the MCD12Q2 dataset has the best results among the four datasets, and except for the REA 

result, it has the highest correlation coefficient and the lowest RMSE. The GIM_4g dataset shows good performance but tends 

to overestimate the EOS, resulting in an RMSE of 43 d. Both the VIP and the GIM_3g datasets overestimate the EOS owing 

to their spatial and temporal distributions, with RMSEs of 46 and 35 d, respectively. The REA-based EOS also shows better 360 

performance in RMSE (REA and Average, 17d and 32d, respectively), CORR (REA and Average, 0.71 and 0.45, respectively), 

BIAS (REA and Average, 1.0d and 8.0d, respectively) and UbRMSE (REA and Average, 17d and 31d, respectively). It is 

evident from Fig. 5 that the REA dataset demonstrates the highest accuracy and best consistency with the pPhenocCam dataset, 

outperforming the four other datasets in terms of all indicators, with the lowest RMSE, UbRMSE, and standard deviation, 

together with the highest correlation and lowest absolute bias.  365 
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Figure 5: Scatterplots and radar charts of performance for each phenology dataset and the merged phenology dataset obtained using 

the REA method. (a–ef) SOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, Average, and REA datasets, respectively, (fm) 

radar chart of the SOS evaluation results, (g–j and l) EOS evaluation results of the GIM_4g, MCD12Q2, VIP, GIM_3g, Average, and REA 370 
datasets, respectively, and (kn) radar chart of the EOS evaluation results. Each point represents a site year in the figure. OBS indicates 

ground-based pPhenocCam phenological dates, RMSE indicates the root mean square error, UbRMSE indicates the unbiased RMSE, BIAS 

indicates the mean difference between the satellite-based results and the ground-based verification results, and STD indicates the standard 

deviation, and CORR indicates the correlation coefficient. 

Due to differences in time scales between pPhenocCam data and different phenology datasets, wWe selected a long-term 375 

pPhenocCam site (Morganmonroe) from PhenoCam that aligns with the time span of these phenology datasets to evaluate the 

merged dataset. We have chosen an American US. PhenoCam site characterized by deciduous broad-leaved forest and the time 

range is 2002200910-2010 201820 for SOS and 200820101-2009 201820 for EOS. As shown in the time series plot in Figure 

6S4, the consistency between the REA and PhenoCam data for both SOS and EOS compared to other datasets is the largest. 



20 
 

Additionally, most vegetation phenology products demonstrate higher consistency with PhenoCam data for SOS compared to 380 

EOS. 

 

Figure 6: Time series of a PhenoCam Morganmonroesite data with each phenology dataset and the merged phenology 

dataset obtained using the REA method. (a) SOS time series of the PhenoCam, GIM_4g, MCD12Q2, VIP, GIM_3g, 

and REA datasets, respectively, (b) EOS time series of the PhenoCam, GIM_4g, MCD12Q2, VIP, GIM_3g, and REA 385 
datasets, respectively. 

3.4 Temporal trends of phenology based on the merged dataset 

It is evident from Fig. 76(a) that the SOS exhibits a significant (p < 0.01) trend of advance (earlier dates in SOS)  over 

the period 1982–20222020, with a rate of advance of approximately 0.24 19 d yr−1. Figure 76(b) presents the spatial distribution 

of the SOS trends obtained using the Mann–Kendall test. Approximately 645.3758% of the regions exhibit a trend of advance, 390 

with 446.8825% of regions exhibiting a significant (p < 0.05) trend, while 18.53% of regions demonstrate a significant trend 

of delay (later dates in SOS).  

Figure 76(c) illustrates that the EOS exhibits a significant trend of delay (later dates in EOS) with a rate of 0.168 d yr−1 

(p < 0.01). It is evident from Fig. 7(d) that the proportion of areas experiencing delayed EOS in regions above 30°N is 686.1108% 

(comprising 463.6021% significant at p < 0.05), consistent with the corresponding trend depicted in Fig. 76(c). Apart from 395 

southwestern to northeastern regions of North America, Europe, the Middle East, and certain high-latitude areas in Asia, EOS 

delay is predominant. Over the study area, 46.7245.69% of regions exhibit SOS advance and EOS delay, 17.7318.97% show 

SOS advance and EOS advance, 21.4219.49% demonstrate SOS delay and EOS delay, and 14.4214% show SOS delay and 

EOS advance. 

 400 
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Figure 6: Temporal and spatial trends of the SOS and the EOS over the period 1982–2020 based on the merged dataset obtained 

using the REA method. (a) Temporal trend of the SOS over the period 1982-2020, (b) Spatial trend of the SOS over the period 1982-2020, 

(c)Temporal trend of the EOS over the period 1982-2020, (d) Spatial trend of the EOS over the period 1982-2020. The shaded area in (a) 405 
and (c) indicates uncertainty at one standard deviation, red lines in (a) and (c) are the fitting lines of average SOS/EOS dates for each year, 

and black lines are the average SOS/EOS date for each year. Significant delay (DS), non-significant delay (DN), significant advance (AS), 

non-significant advance (AN). 

Figure 7: Temporal and spatial trends of the SOS and the EOS over the period 1982–2022 based on the merged dataset obtained 

using the REA method. (a) Temporal trend of the SOS over the period 1982-2022, (b) Spatial trend of the SOS over the period 1982-2022, 410 
(c)Temporal trend of the EOS over the period 1982-2022, (d) Spatial trend of the EOS over the period 1982-2022. The shaded area in (a) 

and (c) indicates uncertainty at one standard deviation. 

4 Discussion and Conclusions 

Different vegetation phenology datasets have been produced and were are widely used, but we found that differences of 

more than two months (>60 d) exist in key phenological dates among these datasets, consistent with previous reports (White 415 

et al., 2009; Zeng et al., 2020). Remote sensing vegetation phenology typically reflects transition dates in the vegetation growth 

cycle, such as the start (budburst) and end (leaf senescence) of the growing season, and different vegetation indices, e.g. NDVI, 

LAI and SIF, were used. The phenological dates that were extracted from different methods were supposed to indicate changes 

in actual physiological conditions as accurately as possible. However, the effectiveness of these methods varies across regions 
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and time period even, and may not always represent the true vegetation conditions. Such as, different vegetation phenology 420 

datasets show different performance across regions and years comparing to the phenocam dates in the Fig. S1. The consistency 

of VIP and ground phenocam data in the year 2001 of deciduous broadleaf forest is the best, while the consistency of GIM_3g 

data in the year 2002 is better than that of VIP data. Comparing to the forest types, the consistency of remote sensing based 

phenological dates and phenocam data is higher in deciduous broadleaf region when using GIM_3g method, but in evergreen 

needleleaf when using the MCD method. Therefore, a method that integrates data from different methods based on reliability 425 

is feasible. For remote sensing vegetation phenology datasets with different data sources, one of Tthe substantial differences 

among the various vegetation phenology datasets are related mainly to differences in the remote sensing image and the 

corresponding terrestrial feature, including spatial and temporal resolutions, extraction methods, spectral response functions, 

and the complexity of surface backgrounds (Trishchenko et al., 2002; Zhang et al., 2020). For example, phenology datasets 

with low spatial resolution experience the problem of the mixed-pixel effect, which means unknown composition of vegetation 430 

types may appears in the same pixel (Chen et al., 2018), which and can result in large differences in phenological phenological 

dates compared with those derived using high-resolution phenology datasets. Another main factor that may induct large 

variation in phenological dates, are the various remote sensing phenology algorithms (time series data processing methods and 

phenology extraction methods)(Cong et al., 2012; Wu et al., 2021; Zeng et al., 2020). The choice of data processing or 

smoothing strongly affects the land surface phenology extracted, and will further influence the trend of how phenology change 435 

(positive and negative trends can be found in the same dataset with different phenology extraction method) (Misra et al., 2016). 

The phenology estimates obtained from different extraction methods show significant variation (Cong et al., 2012), and the 

optimal phenology extraction parameters also differ among various biomes(Piao et al., 2006; Reed et al., 1994). The REA 

(reliability ensemble averaging) method is used to catch the dates which can best reflects the change of the vegetation growing 

state based on the assumption that there exists a data source capable of reflecting the vegetation conditions at each grid cell, 440 

and different weights assigned to each data are calculated based on their reliability to get the final result. Thus, a merged 

phenology dataset is required to exploit the advantages of the various phenology datasets available.  

Data fusion methods generally include unmixing-based, weight-function-based, and Bayesian-based methods (Gevaert 

and García-Haro, 2015; Piao et al., 2019a). In the field of vegetation phenology, fusion methods based on raw remote sensing 

data, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (Gao et al., 2006) and the Enhanced Spatial and 445 

Temporal Adaptive Reflectance Fusion Model (Zhu et al., 2010), are generally influenced by complex vegetation types, 

vegetation growth status, and the process of coefficient determination of different methods determination (Sisheber et al., 

2022). These methods are mainly used in a specific region. The reflectance of vegetation endmembers changes nonlinearly 

(the spectral signals of different land covers mix spatially in a nonlinear manner, causing the spectral response of a single pixel 

to no longer be a simple linear combination of the endmember spectra) (Ma et al., 2015)(Ma), and likely results in poor 450 

performance in vegetation phenology extraction. The REA method is not based on the hypothesis that pixel reflectance changes 

linearly; instead, it merges annual phenology products directly based on their reliability. Compared with commonly used data 
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fusion methods, the REA method offers advantages in terms of simplicity and efficiency(Lu et al., 2021), and it considers the 

reliability of the data, which contrasts with traditional methods that simply calculate the mean value of various data. There is 

no restriction on the minimum length of the time series, but it should be available to extract the natural variability to maintain 455 

accuracy. The simple averaging method treats each data source equally, even though the uncertainties of each dataset are likely 

to vary across time and space(Lu et al., 2021; Wang et al., 2019), introducing inaccuracy to the merged dataset. The REA 

method considers the temporal correlation of vegetation phenology data by employing a voting principle (Giorgi and Mearns, 

2002), and this approach facilitates convergence of data while retaining differences in terms of the spatial distribution, thereby 

offering advantages with respect to multisource data fusion. 460 

Compared with individual vegetation phenology datasets, i.e., the MCD12Q2, VIP, GIM_3g, and GIM_4g datasets, our 

REA-based phenology dataset has a long-term sequence spanning 1982–2022 2020 with a spatial resolution of 0.05°. The REA 

method facilitates better convergence and produces a unified phenology product with high reliability. To verify the reliability 

of the merged data product, we compared it against the ground-based pPhenoCcam dataset. Results revealed that the REA-

based SOS and EOS exhibit the lowest RMSE and the highest correlation coefficients compared with those of the other four 465 

datasets, suggesting that the REA method offers high processing efficiency and accuracy. Global climate change has notably 

altered the timing of vegetation phenology events, including the advance of the SOS (Piao et al., 2019a) and the delay of the 

EOS (Piao et al., 2019a).  Both advanced spring phenology and delayed autumn phenology were found between REA-based 

phenological dates and previous studies. But the amplitudes of trends are different among these studies. In details, SOS was 

found significantly advance at the rate of 0.19 days per year in the REA result during 1982-2020, while the advancing rate of 470 

1.4±0.6 days per decade during 1982-2011  (Wang et al., 2015) and 5.4 days advanced from 1982 to 2008 (Jeong et al., 

2011)was also found in previous studies. Similarly, EOS was found significantly delayed at the rate of 0.18 days per year in 

the REA result over the same period, while the 0.18±0.38 days per year delay was found for 1982-2011 (Liu et al., 2016) and 

the 6.6 days delay was found from 1982 to 2008 (Jeong et al., 2011) in previous studies. Based on the merged phenology 

dataset, our results were consistent with those earlier findings, i.e., Oover the long-term period of 1982–2022, advance (delay) 475 

in the REA SOS (EOS) has occurred at the rate of 0.24 (0.16) d yr−1. (Piao et al., 2019b)consistent with previous studies, the 

EOS was found delayed at a rate of approximately 0.18±0.38 days yr-1 from 1982-2011(liu) and also found EOS delayed 4.3 

days in 1982-1999 and 2.3 days in 2000-2008(SU-JONG), and SOS was found significant advance at the rate of 1.4±0.6 days 

decade-1 (wangxuhui) from 1982-2011 and also found advanced 5.4 day in 1982-2008(SU-JONG).However, there are also 

deviations between analyses based on REA phenology dataset and other single dataset(Blunden et al., 2023), which may be 480 

attribute to the transformation of data sources or differences in the regions analyzed. The entire seasonal trends in vegetation 

greenness were estimated, e.g. the NDVI trends (Li et al., 2023), for VIP, GIM_4g and REA method, please see the results in 

Fig. S2. The average greening trend in VIP (-10.16×10-4/yr) is lower than REA (-1.14×10-4/yr) and GIMMS (3.55×10-4/yr). 

The greening rate in VIP, GIM_4g and REA are 25.22% (with 41.44% significantly greening), 68.49% (with 38.32% significant 

greening) and 49.83% (with 56.83% significant greening), respectively. Large difference in these greenness trends were found, 485 
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and thus an integrated method is need.(Li et al., 2023) Shifts in vegetation phenology affect ecosystem structure (Kharouba et 

al., 2018; Yang and Rudolf, 2010), consequentially affecting biodiversity (Renner and Zohner, 2018), terrestrial carbon and 

water cycles (Piao et al., 2020), and the climate system (Green et al., 2017; Piao et al., 2020). The establishment of a 

comprehensive and reliable vegetation phenology dataset is therefore profoundly important. Our study demonstrates that an 

invaluable reliable vegetation phenology dataset can be obtained by applying the REA method, and that this dataset could be 490 

used for subsequent analyses, such as examining vegetation phenology dynamics and their impacts on the terrestrial carbon 

cycle and water balance, and providing climatic feedback for global vegetation dynamics modeling. 
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