
1 

SAR Image Semantic Segmentation of Typical Oceanic and 1 

Atmospheric Phenomena  2 

Quankun Li1,2,3, Xue Bai1,2, Lizhen Hu1,2, Liangsheng Li4, Yaohui Bao5, Xupu Geng1,2,3, Xiao-Hai Yan3,6 3 

1 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 4 
361102, China 5 
2 Engineering Research Center of Ocean Remote Sensing Big Data, Fujian Province University, Xiamen 361102, China 6 
3 Joint Center for Ocean Remote Sensing, University of Delaware-Xiamen University, Xiamen 361005, China 7 
4 National Key Laboratory of Scattering and Radiation, Beijing 100854, China 8 
5 Fujian Hisea Digital Technology Co, Ltd, Sanming 365001, China  9 
6 College of Earth, Ocean & Environment, University of Delaware, Newark, DE 19716, USA 10 

Correspondence to: Xupu Geng (gengxp@xmu.edu.cn), Xiao-Hai Yan (xiaohai@udel.edu) 11 

Abstract. The ocean surface exhibits a variety of oceanic and atmospheric phenomena. Automatically detecting and 12 

identifying these phenomena is crucial for understanding oceanic dynamics and ocean-atmosphere interactions. In this study, 13 

we select 2,383 Sentinel-1 WV mode images and 2,628 IW mode sub-images to construct a semantic segmentation dataset that 14 

includes 12 typical oceanic and atmospheric phenomena. Each phenomenon is represented by approximately 400 sub-images, 15 

resulting in a total of 5,011 images. The images in this dataset have a resolution of 100 meters and dimensions of 256×256 16 

pixels. We propose a modified Segformer model to segment semantically these multiple categories of oceanic and atmospheric 17 

phenomena. Experimental results show that the modified Segformer model achieves an average Dice coefficient of 80.98%, 18 

an average IoU of 70.32%, and an overall accuracy of 87.13%, demonstrating robust segmentation performance of typical 19 

oceanic and atmospheric phenomena in SAR images.  20 

1 Introduction 21 

The exchange of energy and matter between the ocean and the atmosphere influences global water circulation, climate change, 22 

and biogeochemical cycles. Its significant role in the global environment, climate, and ecological balance cannot be overstated. 23 

Traditional ocean observations are predominantly based on in-situ or buoy observations. However, these methods incur high 24 

observation costs and are limited in observation coverage, making it difficult to meet the demand for short-term and large-25 

scale ocean observations (Li et al., 2020). Compared to traditional methods, ocean remote sensing allows for distant, wide-26 

ranging, and efficient observation of the ocean. Synthetic Aperture Radar (SAR) is an active microwave remote sensing 27 

imaging radar, characterized by all-daytime, all-weather, and high-resolution capabilities. Compared to optical satellites, SAR 28 

can penetrate clouds, unaffected by weather conditions, making it especially advantageous for observing the ocean surface, 29 

particularly in adverse weather conditions. Nowadays, the accumulation of a large number of SAR images has provided a 30 

wealth of research data for ocean studies. 31 

 32 

Traditional methods for detecting oceanic and atmospheric phenomena in SAR images primarily rely on feature selection and 33 

threshold setting (Alpers and Huang, 2011; Chen et al., 2008; Fiscella et al., 2000; Topouzelis and Kitsiou, 2015). However, 34 

these methods suffer from sensitivity to noise and poor generalization ability. With the application of artificial intelligence in 35 

the field of oceanography, researchers have introduced deep learning methods, constructed data-driven models for detecting 36 

oceanic and atmospheric phenomena, which extract features of different phenomena more accurately, significantly enhancing 37 

the generalization ability of models. 38 

 39 

Deep learning technology has demonstrated powerful image segmentation capabilities in the field of computer vision and has 40 
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become a reliable tool for extracting precise pixel objects in SAR images. Deep learning methods have been proposed to 41 

automatically extract various ocean and atmospheric phenomena from SAR images, such as sea surface oil spills, sea ice, 42 

ocean eddies, and internal ocean waves (Du et al., 2019; Zhang et al., 2021; Krestenitis et al., 2019; Zheng et al., 2022; Zi et 43 

al., 2024). However, deep learning methods are data-driven method, and numerous studies have highlighted the challenges of 44 

creating deep learning datasets, which require significant time and effort (Li et al., 2020). Additionally, most related research 45 

has focused on limited areas or single phenomena, failing to achieve comprehensive observations of multiple oceanic and 46 

atmospheric phenomena on the sea surface. 47 

 48 

Fortunately, the first SAR image oceanic and atmospheric phenomena dataset for image classification was released by Wang 49 

et al. (Wang et al., 2019b, a). This dataset manually selected Sentinel-1 WV mode images from 2016, annotated with 10 types 50 

of geophysical phenomena: atmospheric fronts, biogenic slicks, icebergs, low wind speed areas, microwave convection cells, 51 

ocean fronts, pure sea waves, rainfall cells, sea ice, and wind streaks. The results of the study indicated that deep learning 52 

models based on this dataset achieved satisfactory results, with excellent classification performance. However, there are certain 53 

limitations when multiple phenomena are present in SAR images. To address the situation where multiple phenomena exist in 54 

a single image, Colin et al. compared various fully supervised and weakly supervised methods to segment different oceanic 55 

and atmospheric phenomena at the pixel level (Colin et al., 2022). The experimental results showed that fully supervised 56 

frameworks outperformed weakly supervised methods, effectively achieving the segmentation tasks for different oceanic and 57 

atmospheric phenomena. Although Colin et al. achieved good fully supervised segmentation results using a U-Net-like 58 

structure, we think that using only 100 manually annotated samples for each phenomenon is insufficient to achieve the best 59 

segmentation results. Additionally, their study trained models with images at a resolution of 100 meters, but the output image 60 

resolution was 400 meters, which could not capture fine structures and has certain limitations. Furthermore, although the study 61 

demonstrated the potential for expanded applications of WV mode data, the dataset only included WV mode images, resulting 62 

in limited data diversity, which is detrimental to semantic segmentation tasks. 63 

 64 

Therefore, this paper aims to construct a SAR image dataset with multiple oceanic and atmospheric phenomena, annotated 65 

manually, for fully supervised semantic segmentation tasks. By using a series of advanced semantic segmentation networks, 66 

we aim to achieve pixel-level segmentation of various oceanic and atmospheric phenomena. 67 

 68 

The paper is organized as follows: Section 2 describes the dataset construction; Section 3 describes the deep-learning model; 69 

Section 4 presents the segmentation result and validation; Section 5 presents the cases analysis; and Section 6 shows the 70 

summary and conclusion. 71 

2 Dataset 72 

2.1 Focused phenomena 73 

Based on existing research and the classification of oceanic and atmospheric phenomena in SAR images in the TenGeoP-74 

SARwv dataset, we construct a SAR image semantic segmentation dataset comprising 12 types of oceanic and atmospheric 75 

phenomena. The TenGeoP-SARwv dataset already includes 10 phenomena: Atmospheric Fronts (AF), Oceanic Fronts (OF), 76 

Rainfall (RF), Icebergs (IC), Sea Ice (SI), Pure Ocean Waves (POW), Wind Streaks (WS), Low Wind Areas (LWA), Biological 77 

Slicks (BS), and Micro Convective Cells (MCC). In addition to these, we have newly added two typical marine phenomena: 78 

Oceanic Internal Waves (IWs) and Eddies (Eddy). 79 
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 80 

Figure 1: 12 Oceanic and atmospheric phenomena we focus on (a) Atmospheric fronts; (b) Ocean fronts; (c) Rainfall; (d) Iceberg; 81 
(e) Sea ice; (f) Pure ocean wave; (g) Wind Strikes; (h) Low wind areas; (i) Biological slicks; (j) Micro convective cells; (k) Oceanic 82 
internal waves; (l) Eddy. 83 

 84 

2.2 Sentinel-1 Imagery Collection 85 

Sentinel-1A and Sentinel-1B are launched by the European Space Agency (ESA) in April 2014 and April 2016, respectively. 86 

These polar-orbiting Earth observation satellites are primarily used for observing land and ocean through four imaging modes: 87 

Interferometric Wide swath (IW), Strip Map (SM), Extra Wide swath (EW), and Wave mode (WV). To enhance the 88 

applicability of the model and the diversity of the training data, we construct a semantic segmentation dataset of oceanic and 89 

atmospheric phenomena using images from the Sentinel-1 IW and WV modes. The IW mode is the primary acquisition mode 90 

for Sentinel-1 in land and coastal areas, while the WV mode is primarily used for open ocean areas. 91 

 92 

For WV mode images, we incorporate the TenGeoP-SARwv dataset. Since this dataset is an image classification dataset with 93 

only one label per image, it cannot be directly used for pixel-level semantic segmentation tasks. Therefore, we select 2,383 94 

WV mode images from the dataset for semantic segmentation annotation. Additionally, we reference the annotations proposed 95 

by Colin to further enhance the accuracy and reliability of the annotations. 96 

 97 

(a)

(i)

(d)

(h) (j)

(b)

(f)

(c) (e)

(g)
 98 

Figure 2: TenGeoP-SARwv dataset image examples (a) Atmospheric fronts; (b) Ocean fronts; (c) Rainfall; (d) Iceberg; (e) Sea ice; 99 
(f) Pure ocean wave; (g) Wind Strikes; (h) Low wind areas; (i) Biological slicks; (j) Micro convective cells. 100 
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For IW mode images, we select a total of 484 global Sentinel-1 IW mode images acquired from 2015 to 2022. We utilize the 101 

Ground Range Detected (GRD) product of Sentinel-1 IW mode images. To maintain consistency in the processing of data 102 

images, we apply a preprocessing method similar to that of TenGeoP-SARwv to the selected IW images (Wang et al., 2019b). 103 

However, since IW mode images are often acquired near coastlines, we utilize a sea-land segmentation operation to eliminate 104 

the influence of land. The dataset also includes the classification of artificial objects to mitigate the impact of vessels and 105 

offshore wind turbines on the segmentation results of oceanic and atmospheric phenomena. 106 

 107 
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 108 
Figure 3: Sentinel-1 IW mode images preprocessing method. 109 

 110 
Among these phenomena, due to the significant uncertainty in identifying oceanic internal waves, we reference the oceanic 111 

internal wave object detection dataset proposed by Tao et al. (Tao et al., 2022a). However, the object detection task only 112 

displays the object area without pixel-level annotation. From this dataset, we select 156 images with prominent ocean internal 113 

wave features. Based on the object detection annotations from Tao's dataset, we determine the locations of oceanic internal 114 

waves within the images to achieve accurate semantic segmentation annotations of ocean internal wave phenomena.  115 

 116 

(a) (b)
 117 

Figure 4: The ocean internal wave object detection data set proposed by Tao et al. 118 

 119 

2.3 Dataset Generation 120 

To construct a dataset suitable for semantic segmentation tasks, we use a sliding window method to crop the normalized 8-bit 121 

and 16-bit images with a resolution of 100m into non-overlapping 256×256 sub-images. The 8-bit images are used for visual 122 

interpretation and annotation, while the 16-bit images are used for model training. Each type of oceanic and atmospheric 123 

phenomenon has approximately 400 sub-images. Then, based on the original SAR images, the Labelme software is used to 124 

annotate the cropped sub-images. After annotation, the generated JSON files are batch-converted into PNG format files to 125 

form the data labels. After obtaining image labels, all SAR image data from different categories and imaging modes are 126 

randomly divided into training, validation, and test sets at a ratio of 8:1:1. This results in a total of 5,011 experimental data 127 

samples, comprising 4036 training set images, 483 validation set images, and 492 test set images. The test set data is 128 

independent of the training and validation sets. 129 

 130 
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 131 
Figure 5: SAR images and labels examples (a) (c) SAR Images; (b) (d) Image labels. 132 

 133 

3 Deep Learning Model 134 

3.1 Modified Segformer 135 

An improved Segformer model is employed for the semantic segmentation of marine and atmospheric phenomena in SAR 136 

images. While the original Segformer (Xie et al., 2021) possesses strong feature extraction capabilities and can generate 137 

multi-level feature maps, its decoder section employs simple MLP layers, which are ineffective in accurately restoring the 138 

detailed information from multi-scale feature maps, resulting in less precise segmentation outcomes. However, oceanic and 139 

atmospheric phenomena in SAR images exhibit multi-scale characteristics, complex features, and unclear boundaries. In this 140 

study, we enhance the original Segformer decoder by incorporating an improved Atrous Spatial Pyramid Pooling (ASPP) module 141 

(Chen et al., 2017), Coordinate Attention (CA) module (Hou et al., 2021), and employing a progressive upsampling approach to fuse 142 

feature maps of different scales.  143 

 144 
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 145 
Figure 6: The architecture of modified Segformer. 146 

 147 

For the improved ASPP module, we set the dilation rates of the atrous convolutions in the ASPP module to [2, 5, 6] to mitigate 148 

the grid effect (Wang et al., 2018) and accommodate oceanic and atmospheric phenomena of different scales. Additionally, the 149 

global average pooling layer in the ASPP has certain limitations, as it cannot fully capture the feature information of oceanic 150 

and atmospheric phenomena with varying shapes. Therefore, in this study, we replace the global average pooling layer in the 151 

ASPP module with a Mixed Pooling Model (MPM) (Hou et al., 2020), which combines different pooling methods to effectively 152 

capture both short-range and long-range dependencies in the feature maps. For the upsampling module, we employ a 153 

progressive upsampling method similar to that used in U-Net to fuse the four different scale feature maps extracted by 154 

Segformer. This approach allows the network to better utilize contextual information and reduces the information loss that 155 

occurs with direct upsampling in the original Segformer network. Additionally, we incorporate the CA mechanism module to 156 

enhance the fusion of feature maps, improving the segmentation capability for target regions. 157 

3.2 Training Strategy 158 

All experiments were carried out on NVIDIA GeForce RTX 3090 GPU by using the PyTorch framework. Regarding 159 

hyperparameter settings, the batch size for all experimental models is set to 16, and the models are trained for 80,000 iterations. 160 

The AdamW optimizer with a momentum of 0.9 is used to train the network, with an initial learning rate of 0.00006 and a 161 

weight decay set to 0.01. 162 

 163 

Due to the differences in pixel counts for each phenomenon, we used a multi-loss function strategy to train the deep learning 164 

model. We combined weighted cross-entropy loss, Dice loss, and Focal loss to mitigate the impact of pixel value imbalance. 165 

We used the Dice coefficient (Dice) and Intersection over Union (IoU) as metrics to evaluate the positional differences between 166 

each phenomenon and the ground truth labels. Overall Accuracy (OA) represents the proportion of correctly classified pixels 167 

in the images. 168 

 169 

Because oceanic and atmospheric phenomena influenced by different environmental factors have varying characteristics, a 170 

large and diverse dataset is crucial for achieving good segmentation results. Data augmentation methods can effectively expand 171 

our dataset, enhancing its diversity and improving the network's segmentation capabilities. Therefore, in this study, we augment 172 

the original dataset with several techniques, including horizontal and vertical flipping, image rotation, and photometric 173 

distortion.  174 
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4 Result and Validation 175 

4.1 Overall Evaluation Results 176 

To compare the segmentation performance of different models, we select four classic semantic segmentation models for 177 

comparative experiments. To ensure the fairness of the experiments, all networks are trained in the same hardware environment 178 

and obtain segmentation results based on the same training set, validation set, and test set. Table 1 presents the segmentation 179 

results of each model on the test set. 180 

 181 

Table 1: Comparison of segmentation results of five models. 182 

 mDice (%) mIoU (%) OA (%) 

U-Net (Ronneberger et al., 2017) 72.31 59.29 79.07 

DeepLabV3+ (Chen et al., 2018) 78.81 68.04 84.93 

SETR (Zheng et al., 2021) 78.21 67.50 84.81 

Segformer (Xie et al., 2021) 78.83 68.08 85.20 

Modified Segformer (Ours) 80.98 70.32 86.77 

 183 

The modified Segformer model demonstrates the best performance, with scores of 80.98% (Dice), 70.32% (IoU), and 86.77% 184 

(Accuracy). Compared to U-Net, the proposed model improves the average Dice score by 8.67%, IoU by 11.03%, and accuracy 185 

by 7.76%. Compared to the baseline Segformer, the proposed model enhances the average Dice score by 2.15%, IoU by 2.24%, 186 

and accuracy by 1.57%. 187 

 188 
The visual inspection of the segmentation results is given in Figure 7. It confirms that the most promising method is the 189 

modified Segformer. These observations are coherent with the segmentation results values. 190 
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 191 
Figure 7: Visualization of segmentation results of five models (a) SAR Images; (b) Ground truth; (c) U-Net; (d) DeepLabV3+; (e) 192 
SETR; (f) Segformer; (g) Modified Segformer. 193 

 194 
The results indicate that when multiple phenomena coexist in SAR images, U-Net and DeepLabV3+ frequently exhibit 195 

numerous misclassifications, unclear boundary segmentation, and severe image distortion. Additionally, due to the limitations 196 

of the receptive field of CNNs, these models cannot accurately identify large-scale, long-distance phenomena, resulting in 197 

lower segmentation accuracy. They also fail to delineate the contours of small-scale phenomena such as icebergs and ocean 198 

fronts. In contrast, the Transformer-based models SETR and Segformer show some improvement over the aforementioned 199 

models, achieving relatively accurate boundary recognition for various phenomena. However, they still encounter 200 

segmentation errors for small-scale and complex-featured phenomena. Notably, the modified Segformer model proposed in 201 

this study demonstrates superior segmentation capabilities for oceanic and atmospheric phenomena. It accurately segments the 202 

boundaries of different phenomena in complex scenes, improves the segmentation of small-scale phenomena with clear 203 

contours, and has a lower false alarm rate, producing results that closely align with the ground truth labels. 204 

4.2 Segmentation results for different phenomena 205 

Table 2 presents the Dice coefficients for the segmentation results of twelve oceanic and atmospheric phenomena across five 206 

networks, with the best segmentation results for each phenomenon highlighted in bold. The results show that the modified 207 

Segformer model proposed in this study achieves the best segmentation results for eight phenomena: ocean fronts, rainfall, 208 

icebergs, sea ice, pure ocean waves, wind streaks, oceanic internal waves, and Eddies. Compared to the baseline Segformer 209 

network, the detection of ocean fronts, icebergs, and eddies shows significant improvement, with Dice coefficients increasing 210 
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by 3.4%, 9.53%, and 6.28%, respectively, demonstrating the enhanced capability of the modified Segformer network in 211 

extracting small targets and learning complex features. Although atmospheric fronts, biological slicks, low wind speed areas, 212 

and micro-convective cells did not achieve the best segmentation results, the differences from the best results are minimal, at 213 

0.07%, 0.17%, 0.06%, and 0.04% respectively, which are within an acceptable range. Overall, the modified Segformer model 214 

exhibits the best comprehensive segmentation performance. 215 

 216 
Table 2: Dice coefficients (%) of segmentation of different phenomena by five models, the best results are shown in black bold. 217 

 AF OF RF IC SI POW 

U-Net 49.35 57.06 74.84 46.1 95.02 79.9 

DeepLabV3+ 61.17 64.81 84.17 44.01 99.31 84.33 

SETR 63.18 63.86 87.17 34.93 99.27 83.05 

Segformer 61.73 63.62 87.58 39.46 99.85 85.65 

Ours 63.11 67.02 87.79 48.99 99.87 86.47 

 WS LWA BS MCC IWs Eddy 

U-Net 86.65 85.61 85.32 80.25 82.42 45.17 

DeepLabV3+ 92.69 89.11 90.67 84.68 86.99 63.87 

SETR 91.72 89.99 90.78 84.71 84.64 65.18 

Segformer 91.44 89.54 90.60 84.5 86.1 65.92 

Ours 94.08 89.9 90.61 84.67 87.08 72.2 

 218 

Among the twelve typical oceanic and atmospheric phenomena, large-scale ocean phenomena such as rainfall, sea ice, pure 219 

ocean waves, wind streaks, low wind speed areas, honeycomb convection, oceanic internal waves, and biological slicks have 220 

relatively distinct features, resulting in better segmentation outcomes with Dice coefficients exceeding 80% for all five 221 

networks. For phenomena with complex features, such as atmospheric fronts and ocean eddies, the models exhibit some 222 

misclassification. Atmospheric fronts have multiple distinct features (Catto et al., 2014), making it difficult for the modified 223 

Segformer model to learn all characteristics from a limited dataset. Ocean eddies present various forms due to different 224 

formation mechanisms, such as "black eddies" and "white eddies" (Stuhlmacher and Gade, 2020), adding to the segmentation 225 

challenge due to their feature diversity. Iceberg segmentation results are the lowest among the five networks, primarily because 226 

icebergs are small in scale, often occupying only a few pixels in the image, which increases the difficulty for model 227 

segmentation. Furthermore, Sentinel-1 IW mode images are collected near the coast, where human-made structures like ships, 228 

which share similar characteristics with icebergs, are present, leading to a higher misclassification. 229 

 230 

Notably, each network demonstrates excellent recognition capability for sea ice, with Dice coefficients exceeding 95%. This 231 

high accuracy is primarily due to the large coverage area of SAR images and the distinct characteristics of sea ice. Additionally, 232 

this study focuses on the basic features of sea ice without classifying its types, making the image segmentation task similar to 233 

an image classification task. 234 

4.3 Comparison with visual interpretation results 235 

To validate the segmentation performance of the modified Segformer model on full Sentinel-1 IW mode images, we select 236 

Setinel-1 IW mode image containing multiple phenomena for testing. First, the original image undergoes preprocessing steps. 237 

The preprocessing results are shown in Figure 4-4. It is clear that the SAR image primarily contains three oceanic and 238 
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atmospheric phenomena: low wind speed areas, biological slicks, and micro-convective cells. Additionally, small-scale ocean 239 

eddies are present, as indicated by the orange boxed sub-image area in Figure 8. The entire SAR image is then divided into 240 

256 × 256 sub-images with a certain overlap rate and input into the modified Segformer model for testing. The segmentation 241 

results are shown in Figure 9. The results clearly display the three primary oceanic and atmospheric phenomena in the SAR 242 

image: the red mask represents low wind speed areas, the yellow mask represents biological slicks, and the purple mask 243 

represents micro-convective cells. The modified Segformer model also successfully identifies and segments smaller-scale 244 

ocean eddies, as indicated by the brown mask areas, achieving accurate segmentation results. 245 

 246 

 247 
Figure 8: Preprocessed Sentinel-1 IW mode image. 248 

 249 

 250 
Figure 9: Segmentation result display. The segmentation results are displayed overlaid with the original image. 251 

 252 
To validate the segmentation performance of the modified Segformer model on Sentinel-1 WV mode images, we select several 253 

WV mode images containing typical oceanic and atmospheric phenomena for testing. As shown in Figure 10, the segmentation 254 

results demonstrate that for large-scale phenomena such as pure ocean waves, low wind speed areas, biological slicks, and sea 255 

ice, the proposed model accurately identifies and segments specific regions. Additionally, the model also performs well in 256 

segmenting smaller-scale oceanic and atmospheric phenomena within the images, such as icebergs, ocean fronts, and ocean 257 

eddies. 258 
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 259 
Figure 10: Sentinel-1 WV mode image segmentation Results. The segmentation results are displayed overlaid with the original 260 
image. 261 

 262 

4.4 Case Study 263 

4.4.1 Oceanic internal wave 264 

We use the oceanic internal wave object detection dataset (Tao, 2022b) to validate the segmentation performance of the 265 

modified Segformer model on oceanic internal waves. Since our dataset construction references part of the dataset from Tao 266 

et al., to avoid data overlap, an additional set of images was selected. These images were captured on December 7, 2017, and 267 

April 9, 2020, in the Celebes Sea region. As shown in Figure 11, the green boxed areas in the images indicate the object 268 

detection annotations for oceanic internal waves. 269 

 270 

(a) (b)  271 
Figure 11: Internal Wave object detection data example (a) Case1; (b)Case 2. 272 

 273 
First, the original Sentinel-1 IW mode images were downloaded and reprocessed. The preprocessing results are shown in 274 

Figure 12. Next, the entire IW mode image was cropped into sub-images with a certain overlap rate and input into the modified 275 

Segformer model for testing to obtain the final segmentation results. Figure 13 shows the overlay of the internal wave 276 
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segmentation results with the original images, where the colored areas represent the internal wave segmentation results.  277 

(b)(a)  278 
Figure 12: Re-preprocessing result image (a) Case1; (b)Case 2. 279 

 280 

(a) (b)  281 
Figure 13: Segmentation result display. The segmentation results are displayed overlaid with the original image (a) Case1; (b)Case 282 
2. 283 

 284 
Comparing the object detection annotations in Figure 11 with the segmentation results in Figure 13, the modified Segformer 285 

model can clearly and accurately extract internal wave stripes from complex oceanic and atmospheric phenomena, with the 286 

extraction results consistent with the object detection labels. Additionally, the segmentation results reveal extra internal wave 287 

stripes, as indicated by the red boxes in the figure. This demonstrates that the modified Segformer model not only can clearly 288 

segment large-scale internal wave stripes but also performs well in segmenting individual internal wave stripes. 289 

4.4.2 Rainfall 290 

In this section, the modified Segformer model's segmentation results for rainfall phenomena are validated using IMERG data 291 

(Pradhan et al., 2022), a Level 3 product from the GPM satellite. IMERG integrates and interpolates microwave precipitation 292 

estimates, infrared precipitation estimates, and ground truth data to produce precipitation products with a temporal resolution 293 

of 0.5 hours and a spatial resolution of 0.1°. This study extracts rainfall data from IMERG to characterize rainfall areas and 294 

compare them with the model's segmentation results.  295 

 296 

We select two typical IW mode image cases of Sentinel-1 containing rainfall phenomena, which were taken in the 297 

Mediterranean area and the sea near Singapore on October 29, 2022 and October 30, 2022 respectively. The preprocessing 298 

results are shown in Figure 14. As can be clearly seen from the figure, both selected SAR images exhibit noticeable rainfall 299 

phenomena. After preprocessing, the images were cropped into sub-images and input into the modified Segformer model to 300 

obtain the segmentation results for the rainfall phenomena. The overlay of the segmentation results with the original images is 301 

shown in Figure 15, where the white areas represent the model's segmentation results. From the perspective of visual 302 

interpretation, the modified Segformer model accurately segmented the rainfall phenomena over the ocean surface. 303 
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(a) (b)
 304 

Figure 14: Preprocessed result image (a) Case1; (b)Case 2. 305 

(a) (b)  306 
Figure 15: Segmentation result display. The segmentation results are displayed overlaid with the original image (a) Case1; (b)Case 307 
2. 308 

 309 
The comparison between the model segmentation results and the GPM rainfall data is shown in Figure 16 and Figure 17. The 310 

rainfall areas identified by the GPM data closely correspond to the rainfall areas in the segmentation results. The slight 311 

differences observed may be due to the GPM IMERG product providing average rainfall data over a 0.5-hour period, during 312 

which the rainfall areas can change over time. In conclusion, the modified Segformer model proposed in this study can 313 

accurately identify rainfall areas over the ocean, demonstrating robust segmentation performance. 314 

 315 

(a) (b)  316 
Figure 16: Comparison of the segmentation result image of Case 1 and GPM data (a) Segmentation result; (b) GPM data. 317 
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(a) (b)  318 
Figure 17: Comparison of the segmentation result image of Case 2 and GPM data (a) Segmentation result; (b) GPM data. 319 

5 Data Availability 320 

The dataset constructed in this paper can be downloaded from: https://doi.org/10.5281/zenodo.11410662 (Quankun et al., 321 

2024). This dataset contains SAR images, Json files and PNG annotations. 322 

Other public data used in this paper can be downloaded from the following website: 323 

Sentinel-1: https://search.asf.alaska.edu/. 324 

TenGeoP-SARwv: https://doi.org/10.17882/56796 (Wang et al., 2019a). 325 

SAR_WV_SemanticSegmentation: https://www.kaggle.com/datasets/rignak/sar-wv-semanticsegmentation. 326 

Internal Wave Dataset: https://doi.org/10.6084/m9.figshare.21365835.v3 (Tao et al., 2022b). 327 

6 Summary and Conclusion 328 

In this study, we used Sentinel-1 IW and WV mode data to construct a SAR image semantic segmentation dataset. This dataset 329 

includes twelve typical oceanic and atmospheric phenomena: atmospheric fronts, oceanic fronts, rainfall, icebergs, sea ice, 330 

pure sea waves, wind streaks, low wind speed areas, biogenic slicks, microwave convection cells, oceanic internal waves, and 331 

ocean eddies. Advanced deep learning algorithms have been employed to achieve the recognition and localization of these 332 

phenomena in SAR images. 333 

 334 

The generated dataset of various oceanic and atmospheric phenomena could enhance our understanding of surface phenomena. 335 

It also provides valuable information for studying the interactions between multi-scale oceanic and atmospheric processes, 336 

promoting further research into ocean dynamics. Moreover, its high-resolution characteristics can supplement traditional 337 

observational data of atmospheric phenomena, aiding in the improvement of meteorological forecast models and enhancing 338 

their accuracy, which is vital for the development of high-resolution models. Furthermore, the availability of this extensive IW 339 

dataset is critical to advancing AI oceanographic research. It is the most comprehensive SAR image semantic segmentation 340 

dataset, covering the widest variety of oceanic and atmospheric phenomena. This dataset allows researchers to evaluate the 341 

segmentation performance of different models. 342 

 343 

This paper focuses on the semantic segmentation task, which aims to classify each pixel in an image to segment different 344 

phenomena. This method assumes that each pixel belongs to a mutually exclusive category. However, in practice, different 345 

categories often overlap, meaning a single pixel may belong to multiple categories, increasing the complexity of segmentation. 346 

Introducing new categories that encompass mixed oceanic and atmospheric phenomena can help alleviate this issue to some 347 

extent. Additionally, the dataset consists of images with a resolution of 100m and dimensions of 256×256 pixels, covering 348 

relatively small areas (25km×25km for IW mode sub-images and 20km×20km for WV mode sub-images), which limits 349 
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segmentation accuracy for large-scale oceanic phenomena. Balancing training image size and model performance is crucial 350 

for addressing this challenge. Employing multi-scale segmentation methods can aid in segmenting larger-scale phenomena. 351 

 352 

Overall, the SAR image dataset proposed in this study makes a significant contribution to oceanography, providing valuable 353 

data resources for studying the dynamic processes of multi-scale oceanic and atmospheric phenomena, validating deep learning 354 

models, and developing high-resolution models. This dataset is anticipated to stimulate further research and advancements in 355 

understanding the complex dynamics of sea surface. 356 
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