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Figure S1: Influence of modes of climate variability on Burned Area (BA) in the period 2001-15 
2020. The figure maps the mode of climate variability with a dominant (and secondary, and 16 
tertiary) influence on interannual variability in BA. The coefficient of covariation (R2) value 17 
linking BA to each mode is also shown. The modes included are: Antarctic Oscillation (AAO); 18 
West Pacific (WP) pattern; Pacific–North American (PNA) pattern; El Niño–Southern 19 
Oscillation (ENSO); Indian Ocean Dipole (IOD); tropical South Atlantic (TSA) pattern; tropical 20 
North Atlantic (TNA) pattern; East Atlantic/Western Russia (EAWR) pattern; North Atlantic 21 
Oscillation (NAO); Polar-Eurasian (POL) pattern;and the Arctic Oscillation (AO). 22 
 23 
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 28 
Figure S2: (Top panel) first month, (middle panel) peak month, and (lower panel) final 29 
month of positive BA anomalies at Global Administrative Level 1 during March 2023-February 30 
2024. Peak anomalies are identified relative to the monthly climatology in 2001-2023. The first 31 
and final months of the BA anomaly incorporate the period when BA was continuously above 32 
the climatological mean. Graduated colours are separated seasonally. 33 
  34 
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 35 
 36 
Figure S3: Perimeter and daily progression of the largest fire ever recorded in the EU 37 
(Xanthopoulos et al., 2024; EU Science Hub, 2023), near Alexandroupolis in Macedonia and 38 
Thrace, Greece. Panel (a) shows a Sentinel-2 true colour composite image (10 m resolution) 39 
from 12th September 2023, the day after the fire ceased to grow. The darker colour of recently-40 
burned surfaces contrasts with green unburned forests in surrounding areas. Overlaying the 41 
image are lines marking the perimeter of the Alexandroupolis fire from the Global Fire Atlas. 42 
Panel (b) additionally shows the burn date according to the MODIS BA dataset MCD64A1 43 
(500 m resolution), and for comparison panel (c) shows the burn date from active fire 44 
detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor (375 m 45 
resolution; Schroeder et al., 2014).  46 
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 47 
 48 
Figure  S4: Perimeter and daily progression of extreme individual fires in (a-b) Valparaíso, 49 
Chile, and (c-d) Lahaina, Hawai’i. Panels (a) and (c) show Sentinel-2 true colour composite 50 
images (10 m resolution) from 8th March 2024 and 18th August 2023, on the first cloud-free 51 
day after each fire. Overlaying the image are lines marking the perimeter of the impactful fire 52 
events from the Global Fire Atlas. Panels (b) and (d) additionally show the burn date according 53 
to the MODIS BA dataset MCD64A1 (500 m resolution).  54 
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 55 
Figure  S5: Perimeter and daily progression of extreme individual fires (a-b) near La Grande 56 
Reservoir in Quebec, Canada, and (c-d) in the Great Sandy Desert and Anna Plains, 57 
Australia. Panels (a) and (c) show Sentinel-2 true colour composite images (10 m resolution) 58 
based on observations in the periods 25/04/2023-25/08/2023 and 02/09/2023 to 08/09/2023, 59 
respectively. Overlaying the image (a) are white lines marking the perimeter of the La Grande 60 
fire according to the Global Fire Atlas. Overlaying the image (c) are white areas marking the 61 
area burned by the La Grande fire according to the Global Fire Atlas, and black lines marking 62 
the wildfire perimeter from the Department of Fire and Emergency Services in Western 63 
Australia. Panels (b) and (d) additionally show the burn date according to the MODIS BA 64 
dataset MCD64A1 (500 m resolution). 65 
 66 
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 67 
Figure S6: Summary of the 2023-2024 fire season in Lao PDR. Time series of annual fire 68 
count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest daily rate of growth, 69 
and 95th percentile fire daily rate of growth. Black dots show annual values prior to the latest 70 
fire season, red dots the values during the latest fire season, and blue dashed lines the 71 
average values across all fire seasons.  72 
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 73 
Figure S7: Summary of the 2023-2024 fire season in the state of Western Australia. Time 74 
series of annual fire count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest 75 
daily rate of growth, and 95th percentile fire daily rate of growth. Black dots show annual values 76 
prior to the latest fire season, red dots the values during the latest fire season, and blue dashed 77 
lines the average values across all fire seasons.  78 
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 79 
Figure S8: Summary of the 2023-2024 fire season in Venezuela. Time series of annual fire 80 
count, BA, C emissions, PM2.5 emissions, 95th percentile fire size, fastest daily rate of growth, 81 
and 95th percentile fire daily rate of growth. Black dots show annual values prior to the latest 82 
fire season, red dots the values during the latest fire season, and blue dashed lines the 83 
average values across all fire seasons. 84 
  85 
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 86 
Figure  S9: Monthly BA fraction anomaly at 0.25° for Canada for 2023 compare 2001-2023 87 
climatological average. Boxes indicate focal months and regions in driver attribution 88 
(Section 3.3.7). 89 
 90 
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 91 
Figure S10: Same as Figure S9 for Greece 92 
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Figure  S11: Same as Figure S9 for Western Amazonia 94 
 95 
 96 
  97 
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 100 
Figure S12: shows the co-occurrence of anomalies for 2023 of our four controls in different 101 
regions. In each box of 16 bins, the bottom left corresponds to the negative influence of fuel 102 
and moisture on fire anomalies, the top is the positive influence of fuel moisture, and the right 103 
indicates a positive influence of fuel load. The bottom left box indicates the negative influence 104 
of fire weather and humans, while the right boxes indicate the positive influence of fire weather, 105 
and the top indicates the positive influence of humans. The shading of each bin for each region 106 
indicates how much of that region falls into that bin. The shades themselves represent the 107 
uncertainty range, with grey indicating the 10th percentile and black indicating the 90th 108 
percentile. 109 
 110 
 111 
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Figure  S13: Same as Figure 15 but for the Canadian Western Shield. 113 

 114 

 115 
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Figure S14: Same as Figure 15 but for Western Amazonia. 117 
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 119 
 120 



 15 

 121 
 122 
Figure  S15: Change in median BA anomaly due to socioeconomic factors (population and 123 
land-use change) from FireMIP. Present day BA (2003-2019) for counterfactual (detrended 124 
climate, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 125 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 126 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 127 
South America (NWS, RIGHT). Probability is shown on a log scale.  128 
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 129 
Figure  S16: Change in median BA anomaly due to all forcing (climate change and 130 
socioeconomic factors) from FireMIP. Present day BA (2003-2019) for factual (historical 131 
forcing, orange) compared to early-industrial (1901-1917) in the counterfactual (detrended 132 
climate, blue), for AR6 regions. Top row: North West North America (NWN, LEFT) and North 133 
East North America NEN (RIGHT). Bottom row: Mediterranean (MED, LEFT), and North West 134 
South America (NWS, RIGHT). Probability is shown on a log scale. 135 
  136 
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Figure  S17: Same as Figure 23 but covering 2030-2040 146 
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Figure  S18: Same as Figure 23 but covering 2040-2050  148 
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Figure  S19: Same as Figure 24 but covering 2030-2040 150 
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 151 
Figure  S20: Same as Figure 24 but covering 2040-2050 152 
 153 
  154 
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 156 
Figure  S21: Same as Figure 23 but Western Amazonia covering 2030-2040 August-157 
October. 158 
 159 

 160 
Figure  S22: Same as Figure S21 but covering 2040-2050 161 
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 163 
Figure 23:  Same as Figure S21 but for 2090-2100. 164 
 165 
 166 
  167 
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Extended Methods 168 
 169 
Data and Data Processing  170 
 171 
ConFire vegetation fraction driving data  172 
 173 
In Section 2.4.4.1, we drive ConFire with tree and none-tree vegetated cover from the Joint 174 
UK Land Environment Simulator Earth System  impacts model (JULES-ES) at version 5.5 175 
(Clark et al., 2011; Mathison et al., 2023)) driven with GSWP3-W5E5 forcings provided at a 176 
0.5° spatial resolution by ISIMIP3a. These runs are freely available at 177 
https://www.isimip.org/impactmodels/details/292/. JULES-ES dynamically models vegetation 178 
cover in response to meteorology, hydrology, nitrogen availability, and land use change. 179 
JULES-ES has been extensively evaluated against snapshots and site-based measurements 180 
of vegetation cover and carbon (Mathison et al., 2023; Burton et al., 2022; Clark et al., 2011; 181 
Burton et al., 2019; Sellar et al., 2019). JULES-ES-ISIMIP has previously been used as driving 182 
data for ConFire to perform future projections (UNEP et al., 2022), though using a previous 183 
round of ISIMIP climate forcing (ISIMIP2b). As per (UNEP et al., 2022), vegetation responses 184 
to JULES-ES’s internal fire model were turned off so as not to double-count the effects of 185 
burning. However, in (UNEP et al., 2022), residual JULES-ES simulated biases in vegetation 186 
cover were allowed to persist, increasing the uncertainty range of local vegetation cover and 187 
resultant burned area responses. We therefore correct the bias in JULES-ES’s vegetation 188 
cover using a trend-preserving empirical quantile mapping bias adjustment method, 189 
implemented using the ibicus software package (Spuler et al., 2024). The method corrects the 190 
bias induced by the JULES-ES model rather than the bias of the climate model, assuming that 191 
this has been removed by the ISIMIP3BASD method (Lange, 2019). 192 
  193 
The bias adjustment approach maps the empirical cumulative distribution function of each 194 
surface cover type at each grid cell derived from the JULES-ES model output to the 195 
corresponding quantiles in the MODIS VCF collection 6.1 remote sensed data (DiMiceli et al., 196 
2017) at this grid cell over the reference period (2002-2019). For  Canada, where collection 197 
6.1 does not extend north of 60DEG, we used collection 6 (Dimiceli and Others, 2015). This 198 
mapping is subsequently applied to the surface information output from JULES-ES driven by 199 
climate models over the historical (1994-2014) and future (2015-2099) period. To preserve 200 
the trend in the vegetation cover over the future periods, additive detrending of the mean is 201 
applied: 202 
 203 

  (1) 204 
 205 
Here 𝐹!"_$%& is the empirical cumulative distribution of the model over the reference period,   206 
𝐹'()*+the inverse cumulative distribution function of the observations, 𝑥!"_&,$ the quantile that 207 
is adjusted and 𝑥!"_$%& and 𝑥!"_&,$ the means of the model output over the reference and 208 
future periods. This mapping is applied over a rolling window of 9 years over the future period. 209 
  210 
The approach ensures that not only the mean but also the shape of the distribution is corrected 211 
without assuming a parametric form, whilst also preserving additive trends driven by the future 212 
climate model. Furthermore ensures continuity between the historical and future period by 213 
using a rolling window over the future period. 214 
 215 
The results were evaluated in terms of the ability of the bias correction method to reduce the 216 
model bias over the historical period, as well as preserve the trend between the future and 217 
historical period. It was found that the method corrects the bias well over the historical period 218 

https://paperpile.com/c/dngKk8/ZuzN+em1n
https://paperpile.com/c/dngKk8/em1n+Y68M+ZuzN+Ubp8+0BHt
https://paperpile.com/c/dngKk8/em1n+Y68M+ZuzN+Ubp8+0BHt
https://paperpile.com/c/dngKk8/RRoi
https://paperpile.com/c/dngKk8/RRoi
https://paperpile.com/c/dngKk8/RRoi
https://paperpile.com/c/dngKk8/LrrP
https://paperpile.com/c/dngKk8/n8WT
https://paperpile.com/c/dngKk8/RV1M
https://paperpile.com/c/dngKk8/RV1M
https://paperpile.com/c/dngKk8/6JtX
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for most regions, variables and gridcells in both the mean and 80th percentile at each grid cell. 219 
The trend between the future and historical period is well preserved in most regions and 220 
gridcells, with less than 0.1% of gridcells overall experiencing an absolute trend modification 221 
larger than 5%. 222 
  223 
To demonstrate the evaluation conducted, Figure S24 shows the results for treecover over 224 
North-Western Canada. The plots for the remaining regions, including tree and no-tree cover, 225 
can be found in a notebook https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment. 226 
Investigating the timeseries of average treecover over the region, we find that the correction 227 
method reduces the bias over the historical period and matches the future period to the 228 
historical period (Figure S24a). The cumulative distribution functions of average tree cover 229 
merged over all spatial locations in observations and model match better after bias adjustment 230 
(Figure S24b). They do not match perfectly, and we note that this is a non-calibrated aspect 231 
that we do not expect to have zero bias but that is important to evaluate. Furthermore, we find 232 
that the improvement in both mean and 80th percentile hold across the region (Figure 24c). 233 
The trend between future and historical period is preserved for the majority of grid-cells, with 234 
the absolute change in trend being close to zero for most grid-cells. 235 
 236 

 237 
Figure S24: Evaluation of the JULES vegetation model bias adjustment for tree cover over 238 
North-Western Canada. a) Timeseries of tree cover over the area for different climate models 239 
both with historical and scenario runs, raw model in solid lines, bias corrected models in 240 

https://github.com/jakobwes/State-of-Wildfires---Bias-Adjustment
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dashed lines and MODIS VCF in black. b) Cumulative distribution function of tree cover values 241 
across region and historical time period for different climate models for observations (blue), 242 
raw models (orange), debiased models (green). c) Absolute model bias in mean and 80th 243 
percentile for the GFDL-ESM4 climate model before (left two plots) and after bias adjustment 244 
(right two plots). d) Absolute difference in trend (difference between future and historical 245 
period) between raw and bias corrected GFDL-ESM4 model for ssp126, ssp370 and ssp585 246 
scenarios. 247 
  248 
 249 
Modelling Frameworks 250 
 251 
PoF  252 
 253 
The Probability of Fire (PoF) system uses gradient-boosted decision trees to provide a 254 
probability forecast of active fire occurrence (McNorton and Di Giuseppe, 2024). The 255 
supervised algorithm which trains an ensemble of decision trees uses regularization 256 
techniques to prevent overfitting [Chen & Guestrin, 2016]. The training, based on 2010-2014 257 
MODIS active fire detections, classifies a positive fire event as any detection within either a 1 258 
km or 9 km grid cell. The 9 km resolution is used for attribution due to cost, whereas the 1 km 259 
resolution provides high resolution forecasts which are displayed in the forecast maps 260 
provided here, in the supplementary material, but are not fully explored in this study. 261 
 262 
The relative contribution of each input control to the model prediction is evaluated using 263 
Shapley values, computed using the Shapley Additive exPlanations python library [Lundberg 264 
& Lee, 2017]. The SHAP value indicates the importance of each feature in a model, where a 265 
positive SHAP value reflects a positive impact on the model prediction and a negative SHAP 266 
value reflects a negative impact. Specifically for this study we use the TreeExplainer, which 267 
computes the SHAP values by interrogating the structure of the decision trees within the model 268 
based on the input feature values. The probability controls are then normalised and grouped 269 
into the four categories given in Table 3 of the main text. By combining these with the total 270 
amount of fires predicted for a given area we can attribute those fires into one of the four 271 
controls. The ‘Other’ control also includes fire occurrences not predicted by the model. This is 272 
computed given by: 273 
 274 

𝑂𝑡ℎ𝑒𝑟 = 𝑆𝐻𝐴𝑃[𝑂𝑡ℎ𝑒𝑟] + 𝑚𝑎𝑥	(0, 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑275 
− 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 276 

           (2) 277 
 278 
Where, SHAP[Other], is the contribution of the ‘Other’ control to the total predicted fires for a 279 
given region and, 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and 𝐴𝑟𝑒𝑎_𝑇𝑜𝑡𝑎𝑙_𝐹𝑖𝑟𝑒𝑠_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are the total 280 
number of observed and predicted fires for the same region. 281 
 282 
ConFire 283 
 284 
ConFire is a burned area attribution tool, used for trend detection and attribution (Kelley et al., 285 
2019), event attribution (Kelley et al., 2021) and future projections (UNEP et al., 2022). 286 
ConFire finds the likelihood of causes of or changes in BA by optimising a simple, semi-287 
empirical process representation model by applying Bayes Theorem. In our case, Bayes 288 
Theorem states that the likelihood of a model configuration described by a parameter set {𝛽} 289 
and monthly explanatory variables (i.e model driving data) {𝑋-.}	 given some training 290 
observation of monthly burned area fraction {𝑂𝑏𝑠-} from MODIS MCD64A1, for cells i, is 291 
proportional to the prior probability of {𝛽} (𝑃({𝛽})) multiplied by the probability of the 292 
observations given that model configuration: 293 
𝑃({𝛽}|{𝑂𝑏𝑠-}, {𝑋-.}) 	∝ 	𝑃({𝛽}) 	× 	𝑃({𝑂𝑏𝑠-}	|	{𝑋.}, {𝛽}	)    (3) 294 

https://paperpile.com/c/dngKk8/98ek
https://paperpile.com/c/dngKk8/oes1
https://paperpile.com/c/dngKk8/oes1
https://paperpile.com/c/dngKk8/5Gd4
https://paperpile.com/c/dngKk8/RRoi
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 295 
We use the zero-inflated logit distribution introduced by (Kelley et al., 2021) as our update 296 
distribution, as this is specifically designed to better represent the tails of the distribution during 297 
fire events: 298 

𝑃({𝑂𝑏𝑠-}	|	{𝑋-.}, {𝛽}) 		= 	I⬚
/

-

𝑃(𝑂𝑏𝑠-|	{𝑋.}- , {𝛽}	) 299 

𝑃(𝑂𝑏𝑠- 	= 	0	|	{𝑋.}- , {𝛽}	) 	= 	 (1 −𝑀({𝑋.}- , {𝛽0})1!) 	× (1 − 𝑃2) 300 
𝑃(𝑂𝑏𝑠- 	> 	0	|	{𝑋.}- , {𝛽}	) 	301 

=	 (1	 − 𝑃(𝑂𝑏𝑠- 	= 	0	|	{𝛽}	)	) 	× ℵ(𝑙𝑜𝑔𝑖𝑡(𝑂𝑏𝑠-) 	− 	𝑙𝑜𝑔𝑖𝑡(𝑀({𝑋.}- , {𝛽0})	), 𝜎) 302 
           (4) 303 
 304 
where {𝛽0} is the set of parameters related solely to the underlying model, M, 𝑙𝑜𝑔𝑖𝑡(𝑥) 	=305 
	𝑙𝑜𝑔 Q 3

('3
R, P0, P1 and 𝜎 are parameters within the full set {𝛽} which describe the model error 306 

and ℵ(𝜇, 𝑠𝑑) is a normal distribution with mean of 𝞵 and standard deviation of sd. 307 
 308 
The model, M, simulates fractional BA (fraction) via a number of controls. For attribution and 309 
outlook, these controls follow (Kelley et al., 2021; Burton et al., 2019): Fuel load, fuel moisture, 310 
ignitions and suppressions. This follows the general model structure of global fire models 311 
(Hantson et al., 2016; Rabin et al., 2017) and is most appropriate for looking at long term, 312 
coarse fire drivers (Moritz et al., 2005). For driver assessment, we separate out an additional 313 
control for “fire weather” and introduce a “snow cover” control. Model BA is the product of 314 
these controls, c: 315 
 316 
𝑀({𝑋.}, {𝛽0}) 	= 	𝐹"43 ×∏ ⬚⬚

! 𝑓({𝑋!}, {𝛽!})      (5) 317 
 318 
Where 	𝐹"43 describes maximum monthly burned area fraction and is an optimizable 319 
parameter in set  {𝛽0}, {𝑋!} are the BA driving variables, {𝛽!} the parameters related to control 320 
c and f is the function that describes the control influence on BA. Each control describes the 321 
expected BA if all other controls imposed no limitation on burning - for example, when c is fuel, 322 
𝑓({𝑋!}, {𝛽!}) describes the BA in perfectly dry conditions with saturated ignitions and no 323 
suppression. To achieve this, f is the logical function: 324 
 325 
𝑓({𝑋!}, {𝛽!}) 	= 	1/ Q1	 − 	𝑒𝑥𝑝Y−𝛽!,2 	− 	∑ ⬚⬚

7 𝛽!,7 	× 𝑋7[R    (6) 326 
 327 
 328 
where 𝛽!,7 is the contribution of driving variable 𝑋7 to the control  and −𝛽!,2 is a parameter that 329 
can shift the midpoint of the sigmoid curve. 330 
 331 
All variables 𝑋. where normalised to be between [0, 1] based on the training data to aid priors 332 
selection and optimization - though analytically this should have no impact on our results. Our 333 
priors fix the direction each drive can influence a control (drivers and direction are listed in 334 
Table 3 and 5) but beyond this relatively uninformed. Priors for 𝛽!,7 where described by a log-335 
normal distribution with a 𝜇 of 0 and 𝜎 of 10, and set to be positive for liberative drivers (one 336 
that increases the strength of a control) and negative for suppressive (ones that reduce the 337 
strength of a control). 𝛽!,2 priors were set to a normal distribution with a mean of 0.5 and a 338 
standard deviation of 1.  	𝐹"43  and P0 priors were set as a uniform distribution between 0 and 339 
1 𝝈 was set to a half-normal with mean of 0 and standard deviation of 10. 340 
 341 
We sampled the posterior distribution using Bayesian inference following a similar protocol 342 
to (Barbosa, 2024) with the pymc python package version 5 (Abril-Pla et al., 2023), 343 
employing 100 chains each over 1000 warm-up iterations (that were not subsequently used) 344 
and 100 sample iterations using the No-U-Turns Hamilton Monte Carlo sampler (Hoffman 345 

https://paperpile.com/c/dngKk8/5Gd4
https://paperpile.com/c/dngKk8/5Gd4+Ubp8
https://paperpile.com/c/dngKk8/LIZQ+bAhI
https://paperpile.com/c/dngKk8/0Vmt
https://paperpile.com/c/dngKk8/NfjC
https://paperpile.com/c/dngKk8/WiAy
https://paperpile.com/c/dngKk8/Q1a7
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and Gelman, 2011)  while utilising 50 % of the data or a minimum of 6000 grid cells. To 346 
sample the posterior distribution, we then randomly sample 50 iterations from each chain, 347 
thereby approximating the posterior with 1000 ensemble members. As per (Barbosa, 2024), 348 
for evaluation (Figure S28-S39) we trained the first half of the period and tested on the 349 
second half. For the rest of the results, we trained on the full period. 350 
 351 
We obtaining probability distributions from the model posterior for our results, ConFire offers 352 
two probability, which we have adapted slightly from (Kelley et al., 2021) :  353 
 354 

1. The likelihood of different levels of burning for a specific event (i.e a grid cell in a 355 
given timestep) which considers uncertainty explained by the model and residual 356 
uncertainty described by our error parameter, 𝞼 . We use this when we are 357 
comparing a single grid of cells and months, such as for evaluation, and for 358 
assessing the un. The likelihood of a Burned Area, BA, under drivers, X, which can 359 
be out-of-training sample, is: 360 
 361 
𝑃(	𝐵𝐴|	(𝑋. , 𝛽|		{𝑂𝑏𝑠-}, {𝑋-.})) 	= 	∫ ⬚⬚

8 𝑃(𝛽|		{𝑂𝑏𝑠-}, {𝑋-.}) 	× 𝑃(𝐵𝐴|𝛽)	𝑑𝛽	   (7)                  362 
 363 
Where 𝑃(𝐵𝐴|𝛽) is take from equation 4. 364 
 365 
When building distributions for multiple grid cells or time periods, as with building a 366 
climatology in Section 3.3, we convolute the probability distributions of individual 367 
time periods and cells following equations in  (Kelley et al., 2021). Converting 368 
probabilities over a large number of cells gives us the second measure.  369 
 370 

2. The emergent probability of different mean levels of BA over many events explained 371 
directly by the model and its driving variables. We use this when assessing the 372 
emergent likelihood of burning in Section 3.4 and Section 3.5. This is the same as 373 
taking the mean of n simulations in equation 7 as n tends to infinity. Doing this, 374 
𝑃({𝑂𝑏𝑠-}	|	{𝑋-.}, {𝛽})	from equation 4 will tend towards a BA of model M output 375 
weighted by the likelihood of a zero BA: 376 
 377 

𝐷(𝐵𝐴) 	= 	 𝑙𝑖𝑚
9→;

ab⬚
9

-<(

𝑃(	𝐵𝐴|	(𝑋. , 𝛽|		{𝑂𝑏𝑠-}, {𝑋-.}))	/	𝑛d	 379 

  378 
   = ∫ ⬚⬚

8 𝑀({𝑋.}- , {𝛽0}) 	× (1 −𝑀({𝑋.}- , {𝛽0})=) 	× (1 − 𝑃2)	𝑑	𝛽 (8) 380 
 381 
For attribution and future projections, ConFire produces correctly ranked by consistently 382 
biassed probability distributions (Supplement Section “Change in Likelihood of High 383 
Burned Area in 2023 due to Total Climate Forcing and Socioeconomic factors”). The 384 
final step is therefore to introduce a correction factor. As this distribution bias is constant 385 
across  the observed BA distribution, a simple scaling factor is all that's needed. To do this, 386 
we  assign the likelihood associated with the BA in equation 8 with a scaled burned area 387 
(𝐵𝐴∗) so that the mean of the sample distribution matches the mean of the observation for 388 
the period 2003-2019. 389 
 𝐵𝐴∗ 	= 	𝐵𝐴	 × 𝛴({𝑂𝑏𝑠-}	/	∫ ⬚(2	 𝐷(𝐵𝐴)	× 𝐵𝐴	𝑑𝐵𝐴      (9) 390 
 391 
𝐵𝐴∗ is then used in equation 8. 392 
 393 
Attributing Fire Weather 394 
 395 

https://paperpile.com/c/dngKk8/Q1a7
https://paperpile.com/c/dngKk8/NfjC
https://paperpile.com/c/dngKk8/5Gd4
https://paperpile.com/c/dngKk8/5Gd4
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Bias Correction 396 
We evaluated the individual variables in the FWI (see evaluation), and found that each variable 397 
was slightly biased compared to ERA5 reanalysis. We therefore applied a bias correction to 398 
the final FWI, rather than bias-correcting each individual variable.  399 
 400 
We bias-corrected the HadGEM3 2023 large ensemble based on a bias assessment of the 15 401 
historical members from 1960-2013 vs. ERA5 observation-driven FWI, using a simple linear 402 
regression on fwi transformed using: 403 
 404 
 𝑓𝑤𝑖∗ 	= 	𝑙𝑜𝑔(𝑒𝑥𝑝(𝑓𝑤𝑖) 	− 1)         (10) 405 
to remove the physical bound at 0. We use this instead of using a straight log transformation 406 
as it ensures numerical stability at higher values, crucial when dealing with extreme FWI 407 
values, thereby avoiding blow-up effects. It also preserves the extreme tail of the FWI 408 
distribution, allowing us to accurately capture and analyse critical events associated with high 409 
fire risk.. 410 
 411 
We perform a simple linear regression on ERA5 and on each historical member to obtain the 412 
basic regression parameters: 413 
𝑓𝑤𝑖∗	~	𝑓𝑤𝑖∗,2 + 𝛥&@- × 𝑡        (11) 414 

Where t is time, and t = 0 is set to 2023, 𝛥&@- is the rate of change, or trend, of 𝑓𝑤𝑖∗ and 𝑓𝑤𝑖∗,2 415 
is the estimated 𝑓𝑤𝑖∗for 2023. Our bias correction is therefore based on present-day levels of 416 
warming, taking account of the additional warming from 2013-2023 (assuming the trend from 417 
1960-2013 continues to 2023 linearly). If anything this is likely conservative given that warming 418 
rates may have increased more rapidly in the last 10 years.  419 
 420 
We generate the bias-corrected 2023 ensemble by correcting each of the 525 present-day 421 
ensemble members against each of the 15 historical members (creating an ensemble of 7875 422 
members). Due to the perturbation procedure used to generate the 2023 ensemble from the 423 
historic (Ciavarella et al., 2018), we can not assume that present-day members pair to 424 
historical members. We therefore iterate over all possible pairs: 425 
 426 
𝑓𝑤𝑖∗,!)$$%!A%B	 = i𝑓𝑤𝑖∗,2,CDEF + Y𝑓𝑤𝑖∗,- − 𝑓𝑤𝑖∗,2,7[ × 𝜎GY𝑓𝑤𝑖∗,7[

⬚
⬚
𝜎GY𝑓𝑤𝑖∗,CDEF[j	 (12)   427 

𝜎G(𝑓𝑤𝑖∗) = 	𝑠𝑑𝑒𝑣(𝑓𝑤𝑖∗ −	𝛥&@- × 𝑡)  428 

Where i is a present-day ensemble member, and j is a historical member.  429 
 430 
We finish by applying the  inverse of the transformation from equation 10 :		431 
𝑓𝑤𝑖	!)$$%!A%B	 	= 	𝑙𝑜𝑔(𝑒𝑥𝑝(𝑓𝑤𝑖∗,!)$$%!A%B	) 	+ 	1)		 	 	 	 	 (13)	432 

 433 

Probability Ratio 434 

We use the ERA5 2023 FWI for our event threshold in each region, using the month of peak 435 
anomaly from Figure S2 in each region. We use this threshold to calculate the probability ratio 436 
(PR) of the event occurring with and without climate change.  To calculate the PR, we find the 437 
number of ensemble members that exceed the 2023 ERA5 FWI value in the bias-corrected 438 
ALL simulation, and divide this by the number of members that exceed the same value in the 439 
bias-corrected NAT simulation, bootstrapping 10,000 times to giving the probability of 440 
exceeding the observed 2023 FWI value in a world with and without climate change plus 441 
uncertainty bound for the 5-95th percentile. 442 
PR = p(ALL) / p(NAT) 443 
 444 

https://paperpile.com/c/dngKk8/I0TB
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FireMIP 445 
 446 
For the multi-model ensemble we use simulations from the ISIMIP3a fire sector, as published 447 
in (Burton & Lampe et al. 2023). The 7 models reporting BA for ISIMIP3a are shown in the 448 
table below. The methodology follows the ISIMIP3a Impacts Attribution protocol, as outlined 449 
in (Mengel et al., 2021), where the factual historical simulations are driven with GSWP3-W5E5 450 
reanalysis data, and the counterfactual simulations are the same historical data which has 451 
been detrended via quantile mapping (Mengel et al., 2021).  452 
 453 
As outlined in (Hantson et al., 2016), the spread in the absolute BA is large amongst the 454 
observations, models and regions and therefore a normalised relative anomaly (RA) rather 455 
than absolute BA is used for the analysis. To calculate the RA in present day BA, we subtract 456 
the counterfactual mean, and divide by the counterfactual mean. By comparing both factual 457 
and counterfactual experiments to the counterfactual mean, we are looking at the fractional 458 
increase in BA driven by climate change compared to a baseline without climate change. 459 
Based on model performance by AR6 region, a region-specific weighting is also applied. The 460 
weighting is based on the model's distance to the observed BA temporal RA using both 461 
FireCCI5.1 and GFED5. To measure the uncertainty, random noise is generated and scaled 462 
by the climatological RMSE of each model. This noise is then added to the modelled relative 463 
anomaly, this process is repeated 1000 times. Then, bootstrapping is applied to the monthly 464 
regional BA RA (now with noise added in) according to the weight for each model. Uncertainty 465 
is calculated by taking the 2.5-97.5th percentile of the resultant histogram. All results are 466 
reported as P50 [P2.5, P97.5]. The methods are explained in full in (Burton & Lampe et al. 467 
2023). 468 

https://paperpile.com/c/dngKk8/eIOe/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/dngKk8/Jzfp
https://paperpile.com/c/dngKk8/Jzfp
https://paperpile.com/c/dngKk8/LIZQ
https://paperpile.com/c/dngKk8/eIOe/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/dngKk8/eIOe/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
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Table S1: FireMIP Models used for attributing median burned area. Table reproduced from (Burton & Lampe et al. 2023)  469 

Model CLASSIC INFERNO LPJ-GUESS- 
SIMFIRE- 
BLAZE 

LPJ- 
GUESS- 

SPITFIRE 

ORCHIDEE- 
MICT- 

SPITFIRE 

SSiB4/TRIFFID VISIT 

Fire Model CLASSIC INFERNO SIMFIRE SPITFIRE SPITFIRE Li After (Thonicke 
et al., 2001)  

Land / Vegetation CLASSIC JULES LPJ-GUESS LPJ-GUESS ORCHIDEE SSiB VISIT 

Dynamic 
Veg 

Physiology Yes Yes, via 
TRIFFID 

Yes Yes Yes Yes, via TRIFFID Yes 

LAI Yes Yes, via 
TRIFFID 

Yes Yes Yes Yes Yes 

Bio- 
geography 

No Yes, via 
TRIFFID 

Yes Yes Yes Yes No 

Nitrogen Cycle Yes Yes Yes Yes No Yes Yes, but C-N 
coupling is 

limited 

No. PFTs 9 13 17 17 19 7 33 (biome 
types) 

No. Soil Layers 20 4 2 2 11 3 2 

Fuel Vegetation and 
litter 

Vegetation & 
top soil layer 
as proxy for 

litter 

Vegetation, litter Litter Vegetation and 
litter 

Vegetation and 
litter Litter 

Ignitions Natural Prescribed 
lightning 

Prescribed 
lightning 

SIMFIRE 
describes annual 

BA + fire-
climatology -> 

daily BA used as 
Fire-Probability 

Prescribed 
lightning 

Prescribed 
lightning 

Prescribed 
lightning Probabilistic 

based on fuel 
wetness 

https://paperpile.com/c/dngKk8/eIOe/?prefix=Burton%20%26%20Lampe%20et%20al.&noauthor=1
https://paperpile.com/c/dngKk8/K8LX
https://paperpile.com/c/dngKk8/K8LX
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Anthropog
enic 

Prescribed 
population 

density 

Prescribed 
Population 

density 

SIMFIRE 
includes 

suppression by 
humans 

Prescribed 
population 

density 

Prescribed 
population 

density 

Prescribed 
population density No 

Suppression Prescribed 
population 

density 

Crops, 
population 

density 

Crops (100%), 
prescribed 
population 

density 
(Hyde3.1) 

Crops, 
population 

density 

Prescribed 
population 

density, crops 

Prescribed 
population density 

and GDP 
Low fuel load 

Spread Wind speed and 
soil moisture 

None Daily BA (no 
explicit spread) 

Rothermel 
equations 

including wind 
speed, tree 

fraction, grass 
fraction, fuel 
moisture, fuel 

load and 
characteristics 

wind speed, tree 
fraction, grass 
fraction, fuel 
moisture, fuel 

load 

Wind speed and 
soil moisture None 

Model inputs SW & LW 
radiation, 

precipitation, air 
temperature, 

specific 
humidity, wind 

speed, 
atmospheric 

pressure, 
population 

density, lightning 

SW & LW 
radiation, 

precipitation, 
air 

temperature, 
specific 

humidity, wind 
speed, 

population 
density, 
lightning  

SW radiation,  
precipitation, air 

temperature 
(mean, min, 

max), relative 
humidity, wind 

speed 

SW radiation, 
precipitation, air 

temperature, 
specific humidity, 

wind speed, 
atmospheric 

pressure,  
population 

density, lightning 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific humidity, 
wind speed, 
atmospheric 

pressure, PFT 
map, population 

density 

SW & LW 
radiation, 

precipitation, air 
temperature, 

specific humidity, 
wind speed, 
atmospheric 

pressure, 
population density, 

and GDP, peat 
map, land cover 

change 

Air 
temperature, 

precipitation, air 
vapor pressure, 

cloudiness, 
wind 

Resolution 1 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 0.5 deg 

References  

(Melton et al., 2020)  

(Burton et al., 
2019, 2020; 
Mangeon et 
al., 2016) 

(Rabin et al., 
2017; Smith et 
al., 2014; Knorr 

et al., 2014) 

 

(Rabin et al., 
2017; Smith et 

al., 2014; 
Thonicke et al., 

2010; Lehsten et 
al., 2009) 

(Yue et al., 2014, 
2015) 

(Huang et al., 
2021, 2020; Li et 
al., 2012; Hugelius 
et al., 2013; Li et 
al., 2013) 

(Ito, 2019) 

470 

https://paperpile.com/c/dngKk8/OJLr
https://paperpile.com/c/dngKk8/Ubp8+ANih+uCDJ
https://paperpile.com/c/dngKk8/Ubp8+ANih+uCDJ
https://paperpile.com/c/dngKk8/Ubp8+ANih+uCDJ
https://paperpile.com/c/dngKk8/Ubp8+ANih+uCDJ
https://paperpile.com/c/dngKk8/bAhI+dSKA+1G9P
https://paperpile.com/c/dngKk8/bAhI+dSKA+1G9P
https://paperpile.com/c/dngKk8/bAhI+dSKA+1G9P
https://paperpile.com/c/dngKk8/bAhI+dSKA+1G9P
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/bAhI+dSKA+b2zC+I36e
https://paperpile.com/c/dngKk8/y5DH+Z5L3
https://paperpile.com/c/dngKk8/y5DH+Z5L3
https://paperpile.com/c/dngKk8/MJN8+UReo+jkLJ+8mc6+uuYL
https://paperpile.com/c/dngKk8/MJN8+UReo+jkLJ+8mc6+uuYL
https://paperpile.com/c/dngKk8/MJN8+UReo+jkLJ+8mc6+uuYL
https://paperpile.com/c/dngKk8/MJN8+UReo+jkLJ+8mc6+uuYL
https://paperpile.com/c/dngKk8/MJN8+UReo+jkLJ+8mc6+uuYL
https://paperpile.com/c/dngKk8/ykDb
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 471 
 472 
Evaluation 473 
POF 474 
 475 
The PoF model, trained on observed fire activity, provides a daily probability of fire occurrence 476 
based on the input variables described in Table 3 of the main text. The three cases explored 477 
in the main study can be visualised as fire risk maps at a 1 km resolution, higher than the 9 478 
km used for attribution. The 1km predictions show that whilst PoF often fails to capture the 479 
true total number of active fires, the relative attribution is likely to be accurate given by the 480 
models ability to capture the spatiotemporal pattern of fire activity reflected by the forecast 481 
danger shown in the figures below. Of the three case studies the model accurately reflects fire 482 
activity for Canada and Western Amazonia, and whilst high fire danger is modelled over 483 
Alexandroupolis, Greece, it fails to capture the severity of the event. 484 
 485 

 486 
 487 

 488 
Figure S25: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 489 
as a danger rating for the 15th May over Canada (top). MODIS active fire detections for the 490 
same day and domain (bottom). 491 
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 492 

 493 
Figure S26: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 494 
as a danger rating for the 21st August over Northern Greece (top). MODIS active fire 495 
detections for the same day and domain (bottom). 496 
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 497 

 498 
Figure S27: Spatial representation of the day 1 PoF forecast at ~1km resolution expressed 499 
as a danger rating for the 9th September over Western Amazonia (top). MODIS active fire 500 
detections for the same day and domain (bottom). 501 
 502 
 503 
ConFire 504 
 505 
The ConFire model simulates a probability distribution of BA which, unlike most numerical or 506 
ensemble-based models, requires a probabilistic technique for evaluation. 507 
The uncertainty range of the ConFire is crucial for the analysis in this study. We obtain 508 
confidence in our results by seeing if the shift of the model's probability distributions is 509 
significant compared to the size of the uncertainty of that distribution. Suppose the uncertainty 510 
range is larger than any change when testing for i.e, attributing with or without climate change, 511 
future changes, or seasonal anomaly. In that case, the framework will tell us, and our results 512 
will show that these are unlikely/not significant. Conversely, if the change in distribution is 513 
larger than the model's uncertainty range, we can make a confident statement even if that 514 
model is uncertain.  515 
 516 
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As the precision of the modeling framework is inherent in the analysis itself, the main aspect 517 
to evaluate is the ability of the model's probability distribution to represent the range of 518 
uncertainties when tested against observations accurately. To do this, we followed the 519 
evaluation procedure outlined in (Barbosa, 2024), which we summarise here. 520 
 521 
We trained the model during the first half of each period used in the analysis and performed 522 
subsequent evaluations on the second half. The training period for near-real-time driver 523 
assessment was 2014-2018, and for the attribution/future projections run, 2003-2011. The 524 
evaluation period was 2019-2023 for driver assessment and 2012-2019 for attribution/future 525 
projections. Using a different period from the optimization ensures an independent model 526 
evaluation and provides an indication of how well the framework captures uncertainty in out-527 
of-temporal sample observations.  528 
 529 
The FLAME system (Barbosa, 2024) that we merge with ConFire automatically generates a 530 
series of evaluations which we show for region region in turn in the subsequent two sections. 531 
While the techniques are outlined in (Barbosa, 2024), these automated figures have not 532 
previously been published. So alongside the evaluation procedure below is a guide to interpret 533 
if these plots show a good model performance. 534 
 535 
For the evaluation period, we assess how well the model predicts new observations by testing 536 
how likely the observations are given the optimized model (equation 7). While this sounds 537 
counter-intuitive, we do this rather than test the model given the observations because the 538 
model doesn't yield a single answer or a set of numbers, but rather a distribution of model 539 
parameters and output, reflecting inherent uncertainty in the processes. This approach allows 540 
for comprehensive testing of the entire model's posterior probability distribution at once and 541 
provides insight into the model's ability to generate the observed distribution and capture the 542 
uncertainty in the modeled process. We approximate the probability of an observation given 543 
our model by sampling 10 parameter ensemble members from each of our 100 chains, 544 
providing us with 1000 ensemble members, and sample the likelihood as per (Kelley et al., 545 
2021). The example below, taken from Figure S32, shows how we summarise this for each 546 
observation (scatter plot left) and all observations in a time series for each cell (middle and 547 
right). If the model performed perfectly, the probability of the observations given the model will 548 
all be close to 1, as the scatter plot indicated for BA fractions above ~ 0.0003. The model won't 549 
always capture the uncertainty required to generate the observations. This generally happens 550 
at specific burned areas (like low ones in this example). Areas where this happens often are 551 
highlighted on the map  with the map in the middle showing the performance at the 5th 552 
percentile of the time series. 553 
 554 

https://paperpile.com/c/dngKk8/NfjC
https://paperpile.com/c/dngKk8/NfjC
https://paperpile.com/c/dngKk8/NfjC
https://paperpile.com/c/dngKk8/5Gd4
https://paperpile.com/c/dngKk8/5Gd4
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 555 
 556 
 557 
We also determine the percentile of our observations within the model's posterior probability 558 
distribution. In an unbiased model, we expect the observation's position to be random. We can 559 
start by doing this visually, as shown in the example from Figure S30: Observational BA (top 560 
left) should generally fall between the two simulation maps (bottom) that span the 5-95 561 
percentile of the model distribution. Taking the cell highlighted in blue for example - the lower 562 
model estimate is close to zero and the upper is higher than the observations, indicating a 563 
good performance at capturing the observations. Evaluating include parameters representing 564 
noise or stochasticity in the system, that is not always included in the main analysis. Given the 565 
inherent randomness in fire in our study regions, this does result in very broad BA distributions 566 
in the model so a larger difference between the maps showing the BA in the model's tails 567 
(“simulation - 5%” and “simulation - 95%”) is to be expected. 568 

 569 
 570 
We compare the observations (x-axis) likely range (5-95 percentile) of the model's probability 571 
distribution. Similarly to the maps above, if the model captures the uncertainties, the 572 
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observations should fall within this range - i.e the 1:1 line should fall inside the span of the 573 
model, as seen in this example from Figure S36. We also calculate the mean position of the 574 
observations. This is simply the probability of BA greater than the observation, calculated by 575 
integrating equation 7 for BAs in the range [0, 𝐵𝐴]. For simulations used in attribution, we also 576 
build histograms (right, taken from Figure S39) of this bias across different percentiles of the 577 
observations. This shows us if there is any part of the distribution that has a substantially 578 
different bias. In an unbiased model, these observational positions in the framework's 579 
probability distribution should average (“Mean Y:” in the histogram)  to 0.5. Numbers close to 580 
1 indicate the observations on average tend towards the higher BA in the distribution, and the 581 
model generally underestimates BA. This alone does not show if the model performs poorly, 582 
and a consistent bias across all parts of the BA distribution indicates correct ranking, though 583 
the need for scaling for attribution analysis (see Supplement Section “Modelling 584 
Frameworks > Confire”). 585 
 586 

 587 
We also map out the mean position of the observations of the times series. Again, in an 588 
unbiased model, given enough timestep, this should average out to 0.5 for each gridcell. 589 
However, given the small number of timesteps, we map is the observational position in the 590 
frameworks posterior tends to be significantly different to 0.5 using a t-test to calculate a p-591 
value for if the mean of the posterior position of the monthly observations for a given grid cell 592 
is significantly different from 0.5. Low p-values indicate where the model is biased, which tends 593 
to suggest too low or high burning. 594 
 595 

 596 
 597 

 598 

 599 

Drivers of Regional Burned Area Extremes 600 
 601 
The model has shown a consistent ability to capture observations within its uncertainty range 602 
across all regions, indicating a robust representation of uncertainty. It also demonstrates a 603 
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high likelihood of aligning with actual observations, indicating strong alignment between 604 
model outputs and real-world data. It effectively represents BA anomalies based on the 605 
driving variables, demonstrating strong explanatory power across different regions. 606 
 607 
However, the model consistently exhibits a low bias in estimating BA across regions, often 608 
underestimating the BA, particularly in specific high-burn regions such as deforestation 609 
areas in Western Amazonia and patches of high BAin northern Canada. This highlights the 610 
common need across regions for better integration of data on human influences and 611 
interactions with fire. It may also hint at the need for better representation of none-linearity 612 
between drivers and BA. 613 
 614 
 615 

Canada 616 
Our evaluation indicates that the model's assessment of uncertainty does a reasonable job 617 
of capturing the observational range, particularly for high BA. The top row of Figure S28 618 
demonstrates this - the observed (on the left) falls between the 5-95% range of the model. 619 
However, there are patches of high BA that are slightly farther north than in the 620 
observations. The model accurately identifies low burning in agricultural regions in southern 621 
Saskatchewan and Alberta, and it suggests lower burning in the north while still 622 
acknowledging the possibility of some burning.  623 
 624 
The probability of observations given the model is very high, especially for medium to high 625 
BA ranging from 0.03% to 3% (Figure S28 left middle row). This demonstrates that the 626 
modelling framework does a reasonable job of generating observations within this 627 
range..Except for a few locations, even the worst performances tend to show a likelihood of 628 
observations given a model of > 0.95.  For very high BA, the probability decreases but 629 
generally falls within the model's uncertainty range (bottom left), and ranked indicating that 630 
the model can effectively identify high burning anomalies. However, it tends to 631 
underestimate the increase in BA during such anomalies (i.e in Figure 14). Infact, the model 632 
tends to be biases towards slightly lower BA in many regions of Canada (bottom middle 633 
map), though only significantly so in the South and West of the country (bottom left map). 634 
Interestingly, the BA picked up by the driving variables alone also effectively reproduces 635 
spatial patterns of BA and regions of high anomalies in 2023, suggesting that the driving 636 
variables used are good at explaining the observed patterns in BA. 637 
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 638 
Figure S28: Evaluation plot for driver attribution configuration in Section 3.3 over Canada. 639 
(top row) observed and simulated BA fraction (%). (Middle row) the likelihood of the out-of-640 
sample observations given the models probability distribution and (bottom row) observations 641 
position in the model distribution. See top of this section for interpretation guide. 642 
 643 
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 644 
Figure S29: BA % over Canada for May-September for driver attribution configuration in 645 
section 3.3 over (left) 2014-2023 (middle) 2023 and (right) for 2023 anomaly compared to 646 
2014-2023, expressed as a factor of increase (red) or fractional decrease (blue).  The top row 647 
is observations, the middle row in ConFire includes stochasticity (equation 7) and the bottom, 648 
just considers the influence of drivers (equation 8).  For ConFire, the size of the dot in each 649 
grid cell shows the likelihood (larger = higher likelihood) of a BA fraction (or BA change) being 650 
greater than a given threshold (where the threshold is represented as a coloured dot, see 651 
legend at the base). High BA overlap smaller. i.e on the left, a large pale orange dot indicates 652 
a high likelihood of annual average BA exceeding 0.1%, with a small dark red dot indicating a 653 
small but non-zero likelihood of exceeding 3% 654 

 655 

Greece 656 
The model effectively represents uncertainties surrounding observed BA and accurately 657 
captures the gradient between low burning in the northwest of Greece and high burning 658 
around the southeastern coast. The model's observations show extremely high likelihood 659 
across all BA, with only a slight dip to around 0.75 likelihood in a few months in coastal 660 
Thessaly. Additionally, there is a consistent pattern of underestimating BA across all areas of 661 
Greece, although this is only significant in a few places. 662 
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 663 
Figure S30: same as Figure S28 for Greece 664 
 665 
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 666 
 667 
Figure S31: same as Figure S29 but for Greece in August 668 

 669 

Western Amazonia 670 
The model captures observations within its uncertainty range, but it fails to differentiate 671 
between high burning in deforestation regions in the south and north of the country. This 672 
suggests that vital data on deforestation and its interaction with fire may have been missed. 673 
The model is able to generate observations out of its sample, indicated by a high likelihood 674 
given observations. However, it does not generate very low BA, particularly in places where 675 
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high BA are also commonly observed in regions of deforestation. This suggests that the 676 
model may fail to capture variations in BA in these human-dominated areas. Similar to the 677 
other two regions, the model demonstrated a low bias. However it can accurately capture BA 678 
anomalies based solely on the model drivers. 679 

 680 
Figure S32: same as Figure S28 for Western Amazonia 681 
 682 
 683 
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 684 
Figure S33:  same as Figure S29 but for Western Amazonia in September and October. 685 
 686 
 687 
 688 
Change in Likelihood of High Burned Area in 2023 due to Total Climate Forcing and 689 
Socioeconomic factors 690 
 691 
The framework utilising ISIMIP3a reanalysis data has been found to outperform its near-real-692 
time counterpart in simulating BA. It effectively represents high BA and extremes across all 693 
regions. Furthermore, the probability of observations given the model is generally higher in 694 
areas with extreme fires or high BA, indicating the model's reliability  for attribution analysis. 695 
 696 
However, in regions of significant land use change, such as Western Amazonia, the model 697 
struggles with reproducing higher BA, indicating a common challenge across regions in 698 
capturing detailed land use interactions.   699 
 700 
While observations consistently fall within range of the model distribution,  the model 701 
demonstrates consistent low bias. This simple scaling is suggested to align the model with 702 
observations, highlighting a need for calibration to improve accuracy across regions. 703 
 704 
 705 

Canada 706 
The analysis using isimip reanalysis data shows that the framework performs much better 707 
than its near-real-time counterpart in assessing the drivers of BA (Figure S34). Although 708 
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there are still large uncertainty ranges, the highest BA in the distribution closely match the 709 
high BA observed. In Canada, the model generally performs slightly worse in generating 710 
observations, but it still tends towards a probability of observations given the model of 711 
greater than 0.75. However, the model shows that high BA are very likely, indicating that the 712 
model is useful in representing extremes - critical for attribution analysis. Overall, the model 713 
exhibits less bias than its near real-time version, with observations falling on average around 714 
0.6-0.9 throughout the model's distribution. This consistent pattern across the observed 715 
distribution suggests that a simple scaling is required for attribution application (Figure 35). 716 
 717 

 718 
Figure S34: same as Figure S28 for attribution and future projections configuration used in 719 
section 3.4 and section 3.5. 720 
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 721 
Figure S35: The position of the observed BA in the model's probability distribution over the 722 
evaluation period using attribution and future projections configuration from Section 3.4 and 723 
Section 3.5 over Canada. Histograms are for observed percentiles indicated in the top left 724 
corner.  See start of section for interpretation guide. 725 
 726 

Greece 727 
Over the longer evaluation periods, observations tend to be much noisier across Greece 728 
than in the near real-time driver analysis (Figure S36). However, there is still a noticeable 729 
trend towards more burning in the Southeast. This trend is well captured by the model, 730 
including the more noisy spatial distribution in the observations. The probability of observing 731 
a given model can be quite low, but it tends to be higher in areas where extreme fires were 732 
observed and in areas with high burn areas, making it useful for attribution applications. 733 
Additionally, while the model is biased low, similar to Canada, this bias is consistent across 734 
the observed BA distribution (Figure S37). 735 
 736 
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 737 
Figure S36: same as Figure S34 for Greece 738 



 48 

 739 
Figure S37: same as Figure 35 for Greece 740 
 741 

Western Amazonia 742 
The framework outperforms its near real time counterpart in simulating higher BA around 743 
Manaus, although it still struggles to reproduce higher BA in regions of land use change 744 
(Figure S38). Observations fall within the model range and, like the other two regions, the 745 
observations indicate that the model tends to perform better at generating observed BA at 746 
higher levels of burning. Overall, this is the least biased region out of the three, although the 747 
model still tends to underestimate BA, with the observations falling at around 0.7-0.8 of the 748 
model distribution (Figure S39). This pattern is consistent across the distributions . 749 
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 750 
Figure S38: same as Figure S34 for Western Amazonia. 751 
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 752 
Figure S39:  same as Figure 35 for Western Amazonia 753 
 754 
 755 
Fire Weather attribution 756 
 757 
We evaluated each of the component variables used in the FWI against ERA5 reanalysis for 758 
the historical period 1960-2013. In each case, HadGEM3 was slightly biased across the 759 
timeseries, generally simulating conditions that were too hot and dry in Greece (Figure S40). 760 
This led to an overall larger bias in the resultant FWI (Figure S43). We therefore applied a 761 
linear bias-correction to the HadGEM3 ensemble of FWI (see Data and Data Processing). 762 
Results before and after the bias-correction is applied are shown below for each region.  763 
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 764 
 765 
Figure S40: : Individual component variables of the FWI compared to ERA5 reanalysis across 766 
the historical period (1960-2013), and resultant FWI. Here one member from the HadGEM3 767 
historical ensemble is shown (yellow) against ERA5 (black) for one region (Greece), for 768 
illustration 769 
 770 
 771 
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 772 
Figure S41: Bias correction for Canada. Historical ensemble of HadGEM3 (yellow) compared 773 
to ERA5 (grey) 95th percentile of FWI for the historical period (1960-2013), shown as 774 
probability density before correction (a) and after correction (b), and one member shown as a 775 
timeseries (c, where HadGEM3 is shown in red, ERA5 in blue and corrected HadGEM3 in 776 
purple). HadGEM3 ensemble for 2023 shown before bias-correction (d). ERA5 2023 event 777 
shown as black vertical line on all probability density plots.  778 
 779 
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 780 
Figure S42: As for Figure S41, but for Western Amazonia 781 
 782 

 783 
Figure S43: As for Figure S41, but for Greece at 90th percentile FWI 784 
 785 
 786 
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