Preprints
https://doi.org/10.5194/essd-2024-218
https://doi.org/10.5194/essd-2024-218
13 Jun 2024
 | 13 Jun 2024
Status: this preprint is currently under review for the journal ESSD.

State of Wildfires 2023–24

Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos

Abstract. Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos

Status: open (until 04 Jul 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CC1: 'Review period', Robert Gieseke, 13 Jun 2024 reply
  • RC1: 'Comment on essd-2024-218', Piers M. Forster, 21 Jun 2024 reply
  • RC2: 'Comment on essd-2024-218', David Carlson, 26 Jun 2024 reply
  • RC3: 'Comment on essd-2024-218', Marco Turco, 27 Jun 2024 reply
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos

Data sets

Update of: The Global Fire Atlas of individual fire size, duration, speed and direction N. Andela and M. W. Jones https://doi.org/10.5281/zenodo.11400062

State of Wildfires 2023-24: Anomalies in Burned Area, Fire Emissions, and Individual Fire Characteristics by Continent, Biome, Country, and Administrative Region M. W. Jones et al. https://doi.org/10.5281/zenodo.11400540

State of Wildfires 2023-24: ConFire data D. I. Kelley et al. https://doi.org/10.5281/zenodo.11420743

Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos

Viewed

Total article views: 1,087 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
855 216 16 1,087 36 7 9
  • HTML: 855
  • PDF: 216
  • XML: 16
  • Total: 1,087
  • Supplement: 36
  • BibTeX: 7
  • EndNote: 9
Views and downloads (calculated since 13 Jun 2024)
Cumulative views and downloads (calculated since 13 Jun 2024)

Viewed (geographical distribution)

Total article views: 987 (including HTML, PDF, and XML) Thereof 987 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 28 Jun 2024
Download
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–24 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Altmetrics