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Abstract. Understanding urban vertical structures, particularly building heights, is essential for examining the intricate 

interaction between humans and their environment. Such datasets are indispensable for a variety of applications, including 

climate modeling, energy consumption analysis, and socioeconomic activities. Despite the importance of this information, 20 

previous studies have primarily focused on estimating building heights regionally on a grid scale, often resulting in datasets 

with limited coverage or spatial resolution. This limitation hampers comprehensive global analyses and the ability to generate 

actionable insights on finer scales. In this study, we developed a global building height map (3D-GloBFP) at a building 

footprint scale by leveraging Earth Observation (EO) datasets and advanced machine learning techniques. Our approach 

integrated multisource remote sensing features and building morphology features to develop height estimation models using 25 

the eXtreme Gradient Boosting (XGBoost) regression method across diverse global regions. This methodology allowed us to 

estimate the heights of individual buildings worldwide, culminating in the creation of the first global three-dimensional (3-D) 

building footprints (3D-GloBFP). Our evaluation results show that the height estimation models perform exceptionally well 

on a worldwide scale, with R2 ranging from 0.66 to 0.96 and root mean square errors (RMSEs) ranging from 1.9 m to 14.6 m 

across 33 subregions. Comparisons with other datasets demonstrate that our 3D-GloBFP closely matches the distribution and 30 

spatial pattern of reference heights. Our derived 3-D global building footprint map shows a distinct spatial pattern of building 

heights across regions, countries, and cities, with building heights gradually decreasing from the city center to the surrounding 

rural areas. Furthermore, our findings indicate the disparities in built-up infrastructure (i.e., building volume) across different 

countries and cities. China is the country with the most intensive total built-up infrastructure (5.28×1011 m3, accounting for 

23.9 % of the global total), followed by the United States (3.90×1011 m3, accounting for 17.6 % of the global total). Shanghai 35 
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has the largest volume of built-up infrastructure (2.1×1010 m³) of all representative cities. The derived building-footprint scale 

height map (3D-GloBFP) reveals the significant heterogeneity of urban built-up environments, providing valuable insights for 

studies in urban socioeconomic dynamics and climatology. The 3D-GloBFP dataset is available at 

https://doi.org/10.5281/zenodo.11319912 (Building height of the Americas, Africa, and Oceania in 3D-GloBFP) (Che et al., 

2024c), https://doi.org/10.5281/zenodo.11397014 (Building height of Asia in 3D-GloBFP) (Che et al., 2024a), and 40 

https://doi.org/10.5281/zenodo.11391076 (Building height of Europe in 3D-GloBFP) (Che et al., 2024b). 

1 Introduction  

Quantifying the three-dimensional (3-D) building structure is essential in understanding human-natural ecosystems and 

achieving sustainability goals. The World Cities Report 2022 reveals that urban areas already accommodate 55 % of the global 

population, and the figure is expected to grow to 68 % by 2050 (United Nations Human Settlements Programme, 2022). Under 45 

the background of advancing global urbanization, burgeoning populations pose challenges and opportunities to land-use 

efficiency, making vertical urban growth a critical land-use pattern (Chen et al., 2024; Chen et al., 2020). Various urban 

functions have also given rise to distinct 3-D spatial forms within cities (Demuzere et al., 2022). Specifically, commercial 

central areas show a dense concentration of high-rise buildings, residential zones are characterized by rows of relatively tall 

buildings and urban villages are distinguished by dense clusters of low-rise structures (Chen et al., 2023b). In this context, the 50 

accurate three-dimensional mapping of urban areas is a crucial objective for achieving sustainable and resilient cities. Building 

height, as the vertical structure of buildings, can depict the urban vertical morphology, which reflects the biophysical and 

social-economical properties of the cities and supports a variety of urban studies, including climate mitigation, carbon emission, 

living conditions, socioeconomic modeling (Pappaccogli et al., 2020; Xu et al., 2021; Shao et al., 2023; Shang et al., 2020), 

and so on. For instance, accurate measurement of building heights is essential for determining the urban underlying surface, 55 

serving as critical urban parameters in urban climate models to simulate and understand the climate conditions within urban 

areas (Sun et al., 2021). Simultaneously, 3-D building datasets help assess built-up infrastructure spaces and further contribute 

to the 2023 agenda for Sustainable Development Goals (SDGs) aimed at providing adequate, safe, and affordable houses for 

all (Liu et al., 2024). Moreover, building heights provide demographic insights and help delineate functional zones within 

cities, thereby enhancing the estimation of energy use and carbon emissions (Ding et al., 2022).  60 

While Earth Observations have been generally used in 3-D building mapping, the estimation of building height is still limited 

either in spatial resolution or coverage. High-resolution optical images, Synthetic Aperture Radar (SAR), and Airborne Light 

Detection and Ranging (LiDAR) products are the commonly used datasets for extracting building height information in the 

urban domain. High-resolution optical satellite images can provide texture and shadow details within urban areas, which can 

be applied to building height estimation (Cao and Huang, 2021; Liasis and Stavrou, 2016; Chen et al., 2023a). However, the 65 

accuracy is limited by the quality of images, and the effectiveness is reduced in densely built areas (e.g., Central Business 

District (CBD)) where building shadows are overlaid with other objects (Cai et al., 2023). Alternatively, SAR images can 

https://doi.org/10.5281/zenodo.11319912
https://doi.org/10.5281/zenodo.11397014
https://doi.org/10.5281/zenodo.11391076
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reflect the scattering mechanism of buildings through the backscatter coefficients, which are related to building structure 

(Koppel et al., 2017). A variety of studies have been carried out using SAR data for built-up height estimation. Li et al. (2020b) 

and  Zhou et al. (2022) developed an approach to estimate building height using the dual-polarization information (i.e., VV 70 

and VH) from the Sentinel-1 dataset, while the reliability of height estimation under fine-scale (i.e., less than 500m) is 

constrained due to the “bounce scattering” effect (Li et al., 2020b). Instead, LiDAR is regarded as the most reliable data source 

for obtaining building height because it can directly capture the rooftop coordinates from the returned signal (Li et al., 2020a; 

Park and Guldmann, 2019). However, the LiDAR dataset is scarce and scattered, making it difficult to apply over larger areas 

(Ma et al., 2023).  75 

Although multisource datasets offer broader coverage of building height estimation, globally fine-scale (i.e., building scale) 

building height datasets are still absent, disregarding the spatially explicit heterogeneous of building form. Current researchers 

proposed methods based on Digital Surface Models (DSM) and statistical modeling to estimate building heights, enhancing 

the coverage of height estimation. Firstly, widely available digital elevation models (i.e., ALOS DSM and TanDEM-X) provide 

information for height estimation. Esch et al. (2022) acquired global building heights at 90 m resolution by computing the 80 

difference between local maximum and minimum within built-up areas using the SAR-derived TanDEM-X. However, 

uncertainties may arise in rugged regions (Huang et al., 2022). Additionally, Huang et al. (2022) used slope correction to 

mitigate slope effects and derived building height in China. However, the 30 m dataset is also affected by a mixed object 

problem (i.e., one pixel contains both building and surrounding terrain), which smooths the height edge and consequently 

increases the inaccuracy of building height estimations (Esch et al., 2022). Secondly, the statistical modeling method can obtain 85 

continuous building height estimation at the regional (i.e., national or urban agglomeration) scale by training machine learning 

models with multiple explanatory features. Frantz et al. (2021) and Wu et al. (2023) integrated Sentinel-1 and Sentinel-2 

datasets and extracted building height based on the machine learning method, confirming the effectiveness of fusing SAR and 

optical datasets. Arehart et al. (2021) combined various physical morphological features of buildings (e.g., area, compactness, 

and radius) to derive building heights in the United States, providing evidence of the correlation between morphological 90 

features and height. Li et al. (2022) generated a global-scale building height map at 1 km resolution by utilizing optical, SAR, 

and auxiliary geospatial data (e.g., GDP and road networks) based on a random forest model. Moreover, Ma et al. (2023) fused 

height metrics from Global Ecosystem Dynamics Investigation (GEDI) and other explanatory features to obtain the building 

height in the Yangtze River Delta region at 150 m resolution. Nevertheless, due to the complexity of urban functions and 

diverse landscapes, spatially neighboured buildings may vary significantly in height. As a result, the grid resolution height 95 

data (e.g., 1 km) may be insufficient to accurately describe the 3-D spatial structure of buildings, leading to a loss of spatial 

information (Li et al., 2024b). Besides, raster datasets tend to blur building boundaries when representing the building shapes, 

lacking the precision of vector footprints in representing the 3-D morphologies of buildings. Notably, there is currently no 

global dataset that reflects the height of building footprints. 

To fill these gaps, we developed the first global dataset at individual building scale (3D-GloBFP) using open-access 100 

multisource datasets based on machine learning methods. The 3D-GloBFP datasets delineate the 3-D morphology of each 
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building worldwide, capturing the 3-D spatial patterns of buildings in cities of various scales across the world. Specific 

objectives of this study include: (1) integrate and preprocess the multisource remote-sensing datasets and morphology features 

of building vectors; (2) develop the height estimation model in different subregions; (3) produce a building-scale height map 

globally in 2020, and (4) analyze the built-up infrastructures in global countries and cities. The remainder of this paper 105 

describes the adopted datasets (Sect. 2), the estimation method (Sect. 3), the results and discussion (Sect. 4), the data 

availability (Sect. 5), and conclusions (Sect. 6). 

2 Datasets 

2.1 Building footprint datasets 

We derived the global building footprints using datasets from Microsoft building footprints (Microsoft, 2018) and building 110 

boundaries in Shi et al. (2024). The Microsoft building dataset provided 1.3 billion building footprints in the world around the 

year 2020. This dataset was derived from high-resolution satellite imageries using Deep Neural Networks (DNNs) and 

polygonization approaches. The derived building footprints in the Microsoft dataset are highly consistent with the boundary 

of individual buildings, with average precision and Intersection over Union (IoU) around 95 % and 65 %, respectively. Given 

that some regions in East Asia (e.g., China, North Korea, and South Korea) were not included in Microsoft building footprints, 115 

we used building footprints generated by Shi et al. (2024) as an alternative. Shi et al. (2024) extracted these building footprints 

based on high-resolution imageries using deep learning approaches with stable accuracy in different cities (i.e., the precision 

and recall in cities exceed 80 %). These two open-source datasets provided a complete building boundary dataset covering the 

globe, with good quality to support our research.  

2.2 Building height datasets 120 

We collected building footprint data with height information from ONEGEO Map (https://onegeo.co/data/), Microsoft building 

footprints (Microsoft, 2018), Baidu Maps (https://map.baidu.com/), and EMU Analytics (https://www.emu-analytics.com/) to 

ensure maximum coverage of reference building height across all regions globally (Fig. 1). ONEGEO Map integrates data 

from over 40 sources, including OpenStreetMap, USGS, and Google Open Buildings, offering comprehensive building height 

records for various regions worldwide. To obtain a more thorough and densely covered reference building height dataset, we 125 

supplemented it with the Microsoft dataset in the United States and the Baidu dataset in China. Microsoft building height 

released in 2018 provides the height of buildings in 44 states, where only a small fraction is located in the city center containing 

height attributes (i.e., only 2 % of buildings have height records in New York States). In addition, Baidu Map height datasets 

provide the height information in individual vector form in the core built-up areas in cities. This height dataset widely covers 

cities in China (i.e., metropolitans, all the capital provinces, big cities, and some small cities), which helps to ensure the 130 

robustness of the model in predicting building heights across the country. For example, the Baidu dataset includes 603,007, 

443,436, and 23,980 individual buildings of different heights in Beijing, Foshan, and Ganzhou, respectively. The height dataset 

https://map.baidu.com/
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from the Baidu service is consistent with the actual building height, with an accuracy of 86.78 % and a mean deviation of 

approximately 1.02 m, as reported by Liu et al. (2021). We also used the building height dataset from EMU Analytics in 

England. The EMU Analytics height dataset includes nearly 12 million building footprints, with building height calculated 135 

from 1 m resolution LiDAR images. Overall, our combined reference height dataset covers most regions worldwide, providing 

a comparatively reliable training and testing dataset for estimating building heights in various cities and regions globally (Fig. 

S1). 

2.3 Multisource remote sensing datasets 

We integrated SAR images, optical images, terrain images, and images reflecting population and socioeconomic activities to 140 

estimate building height benefit from a wealth and easily accessible imageries provided by Google Earth Engine (Table 1). To 

obtain the heights of buildings in 2020, we primarily used the multisource datasets from 2020, supplemented by imagery from 

adjacent years, to achieve seamless global coverage. Sentinel-1 mission consists of two polar-orbiting satellites performing C-

band synthetic aperture radar imaging, allowing them to acquire images in all weather conditions. We collected the Ground 

Range Detection (GRD) type high-resolution (10m) images with dual polarization (i.e., VV, VH) in Sentinel-1 datasets, as the 145 

backscatter coefficients in GRD images are sensitive to surface roughness and can reflect the buildings’ structure. We also 

used variables from optical images (i.e., Sentinel-2) as the input of our height estimation model. The Copernicus Sentinel-2 

mission includes a constellation of two polar-orbiting satellites, supporting the monitoring of the Earth's surface conditions. 

We used Band2 (Blue), Band3 (Red), Band4 (Green), and Band8 (Near-infrared) in Sentinel-2 in our model at 10 m resolution. 

The radiation of visible bands is correlated with the extent of impervious surfaces and the internal environment within urban 150 

domains (Yuan and Bauer, 2007). The near-infrared band can effectively provide information on building heights by reflecting 

the thermal radiation capability of the surface material. Furthermore, we collected terrain datasets (i.e., the Digital Elevation 

Model (DEM) from the Shuttle Radar Topography Mission (SRTM) at 30m resolution and the Digital Surface Model (DSM) 

at 30m from the Advanced Land Observing Satellite (ALOS)) to represent the physical properties of urban domains. DSM 

data provides vertical information about surface objects, which is helpful for extracting building heights. Primarily, the 155 

difference between DSM and DEM (nDSM) directly reflects the vertical height of surface objects. In addition, we used other 

datasets to expand the number of features and provide auxiliary information on building height, including the Phased Array 

type L-band Synthetic Aperture Radar (PALSAR), WorldPop, and Visible Infrared Imaging Radiometer Suite (VIIRS) 

Day/Night Dataset. Population and nighttime light data are proven to be related to the building structure.  

Table 1. Multiple sources of datasets used in our study 160 

Category Datasets Resolution Acquisition time Provider Link Reference 
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SAR 

Sentinel-1 

(VV, VH) 
10 m 2019-2021 

European 

Union/ESA/

Copernicus 

https://earth.esa.i

nt/ 

Koppel et al. 

(2017); Li et al. 

(2020b) 

PALSAR 

(HH, HV) 
25 m 2020 

JAXA 

EORC 

https://www.eorc

.jaxa.jp/ALOS/ 
Wu et al. (2023) 

Optical 

Sentinel-2 

(band2, 

band3, 

band4, 

band8) 

10 m 2020 

European 

Union/ESA/

Copernicus 

https://earth.esa.i

nt/ 

Frantz et al. 

(2021); Lyu et 

al. (2024) 

Terrain  

DEM 30 m 2000 

NASA/USG

S/JPL-

Caltech 

https://cmr.earth

data.nasa.gov/ 
Huang et al. 

(2022); Geiß et 

al. (2019) 
DSM 30m 2006-2011 

JAXA Earth 

Observation 

Research 

Center 

https://www.eorc

.jaxa.jp/ALOS/ 

CDEM 
0.75 arc-

seconds 
1945-2011 

Natural 

Resources 

Canada 

https://open.cana

da.ca 
/ 

Social-

economical 

WorldPop 92.77 m WorldPop WorldPop 
https://www.worl

dpop.org/ 
Li et al. (2020a) 

Nighttime 

light 
463.83 m 

Earth Observation 

Group, Payne 

Institute for Public 

Policy, Colorado 

School of Mines 

Earth 

Observation 

Group, 

Payne 

Institute for 

Public 

Policy, 

Colorado 

School of 

Mines 

https://payneinsti

tute.mines.edu/ 

Yu et al. (2022); 

Wu et al. (2023) 
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Building 

boundary 

Area and 

perimeter 
vector 

2014-2023 Microsoft 

https://wiki.open

streetmap.org/wi

ki/Microsoft_Bui

lding_Footprint_

Data 
/ 

2019-2023 
Shi et al., 

(2023) 

https://doi.org/10

.5281/zenodo.81

74931 

/ Baidu Map 
https://map.baidu

.com/ 

3 Methods 

In this study, we estimated the height of individual buildings globally based on multisource remote-sensing datasets and vector-

derived datasets (Fig. 1). First, we built a feature collection by integrating the statistical values of remote-sensing datasets and 

the morphological features of buildings. Second, we developed height models in the 33 subregions based on the eXtreme 

Gradient Boosting (XGBoost) method and assessed the model performance by ten-fold cross-validation. Third, we created a 165 

global building height map based on our estimated results. We analyzed the spatial patterns of building heights within cities 

and compared our building height dataset with other existing global and regional building height products. Finally, we analyzed 

the built-up infrastructure for countries and representative cities worldwide. 
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Figure 1. Overall workflow of developing the 3D-GloBFP dataset.  170 

3.1 Feature preparation 

We extracted features from multisource datasets (i.e., radar, optical, terrain, social-economic, and vector) as input features of 

the models with the help of the GEE platform. First, we carried out prerecession for input remote sensing images to acquire 

images with high quality. We removed pixels with a cloud percentage greater than 20 % to obtain high-quality images and 

avoided the stripe effect caused by clouds. All images were reprojected to WGS84 and resampled to 10m. Second, we 175 

aggregated remote sensing images in 2020 to vectors to get statistical information for individual buildings. Datasets from 2019 

and 2021 were utilized for supplementation in areas where imagery was missing. We calculated the statistical values (i.e., 

mean value, standard deviation, and five quantiles (5 %, 25 %, 50 %, 75 %, 95 %)) of all the image pixels within each building 

vector. We created fishnets of different extents with no more than 40000 buildings in each grid due to calculation memory 

limitations on GEE. We exported the remote sensing image attributes for all buildings. Third, we calculated morphology 180 

features based on building vectors, which proved effective in height estimation Arehart et al. (2021). We used five geometry 

features ranging from simple (i.e., perimeter and area) to complex (i.e., compactness, fractality, and Cooke JC index) as the 

input variables of the height estimation model. Compactness, fractality, and Cooke JC index were identified by building 

perimeter and area, measuring the complexity of the footprint of buildings (Table 2). Finally, 114 features were calculated as 

the input features for the height estimation model (Table S1). 185 

Table 2. Shape index of building footprints. 
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Feature Notation or equation Description 

Compactness 
4𝜋 × 𝐴𝑅𝐸𝐴_𝐺𝐸𝑂

𝑃𝐸𝑅𝐼𝑀𝐸𝑇𝐸𝑅_𝐺𝐸𝑂2
 

Circularity or compactness of building 

footprint (Li et al., 2013). 

Fractality 1 −
log(𝐴𝑅𝐸𝐴_𝐺𝐸𝑂)

2 × log(𝑃𝐸𝑅𝐼𝑀𝐸𝑇𝐸𝑅_𝐺𝐸𝑂)
 

Similarity and complexity are reflected 

in the relationship between area and 

perimeter (Basaraner and Cetinkaya, 

2017). 

Cooke JC index 
𝑃𝐸𝑅𝐼𝑀𝐸𝑇𝐸𝑅_𝐺𝐸𝑂

4√𝐴𝑅𝐸𝐴_𝐺𝐸𝑂
− 1 

Shape efficiency with respect to a 

square (Kouskoulas and Koehn, 1974). 

3.2 Height model development 

3.2.1 Division of subregions 

We divided the globe into 33 regions and developed the building height estimation model for each region, considering the non-

uniform spatial distribution of samples and the heterogeneous building heights (Fig. 2). Firstly, we divided the globe into 13 190 

regions based on geographic spatial distance and regional development levels to ensure that each region has enough samples 

to train effective models. For instance, the Central and West Asian countries were considered as a single region for model 

training and estimation with 40040 training samples. However, given China's complex urban 3D structure and significant 

building heterogeneity (Wu et al., 2023), we further divided China into 21 regions. We built a separate height regression model 

for each region to ensure the effectiveness of the height estimation. For instance, considering the inadequacy of samples in 195 

Northwest China, we considered the provinces in Northwest as a single region with 8050 training samples for model training. 

Additionally, we considered the Beijing-Tianjin-Hebei, Yangtze River Delta, and Peral River Delta urban agglomerations as 

three separate regions due to the comparable economic levels and population size.  



10 

 

 

Figure 2. Distribution of subregions. 200 

3.2.2 Model development 

We used a stratified sampling strategy to select training samples and built the height estimation model with the eXtreme 

Gradient Boost (XGBoost) regression method. First, we use a stratified sampling strategy to integrate the samples in each 

subregion. We merged all collected building height samples from each region. In each subregion, we adjusted the number of 

training samples in each interval according to the height distribution found in Esch et al. (2022), to ensure that the height 205 

distribution of the sample set resembles that of each region. Then, we used the XGBoost regression model to train models in 

the subregions. XGBoost is suitable for the height estimation task due to its capability to handle complex nonlinear 

relationships and large-scale datasets. The number of training and testing samples was divided into 9:1. We used the Grid 

SearchCV method to find the parameters (i.e., learning rate, number of estimators, max depth of trees, and lambda and alpha 

in objective function). This method iterates through different parameter combinations and evaluates their performance using 210 
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cross-validation to determine the optimal model parameters. We finally built 33 XGBoost models in all subregions with 

different parameters. 

3.3 Accuracy assessment 

To evaluate the height estimation models, (1) we calculated R2 and RMSE in each subregion. We used ten-fold cross-validation 

to assess the accuracy of the model in each region, with evaluation metrics including R2 and RMSE of Ordinary Least Squares 215 

(OLS) regression. R2 evaluates the explanatory ability of variables for the dependent variable (i.e., building height), while 

RMSE is used to assess the difference between estimated and reference values; (2) we compared our estimated heights with 

manually measured 700 building heights in 14 cities from Google Earth Pro (Fig. 4b). The 3D measurement tool provided an 

opportunity to acquire heights of individual buildings in countries around the world (Figure. 4a); (3) we evaluated the accuracy 

of 3D-GloBFP and four other global datasets, with reference data collected from GIS portals of 17 cities worldwide (Table 220 

S2). The four global height datasets include World Settlement Footprint (WSF) (Esch et al., 2022), Global Human Settlement 

Layer-Built-up height (GHSL-H) (Pesaresi et al., 2021), height in Li et al. (2022), and height in Zhou et al. (2022) (Table S3). 

We compared the spatial distribution of building height within cities. We also aggregated the high-resolution data at 1 km 

resolution to align with the low-resolution data by calculating the average height of all buildings located within each grid cell. 

This approach allows us to compare the differences with the reference data at a consistent resolution across all datasets; (4) we 225 

compared the segments of 3D-GloBFP for the United States, China, and Europe with existing regional datasets (Table S3), 

given the comparatively more affluent data availability within these three regions. In the US, we compared our estimated 

results with two other vector-level datasets from Arehart et al. (2021) and Microsoft (2020), which cover the entire country 

and have the same scale (i.e., building scale) as our datasets. The reference building heights in the US were collected from 6 

city government GIS portals as the reference height, including Boston, Louisville, New York, Boulder, Newport News, and 230 

Portland. These reference heights are independent datasets that were not used for training. In China, we validated the numerical 

distribution, coefficients and spatial patterns of 3D-GloBFP against datasets from Chinese Building Height (CNBH) (Wu et 

al., 2023) and height in Huang et al. (2022), both of which provide coverage for the entire country. We randomly extracted 

20000 buildings from Baidu (https://ditu.baidu.com) within Global Urban Boundaries (GUB) (Li et al., 2020c) as the reference 

heights (Fig. S2) that were not used in training height estimation model as the reference height. Additionally, in Europe, we 235 

contrasted the numerical distribution of building heights from our estimated data with those from WSF, height in Li et al. 

(2022), GHSL-H data, and reference data. We aggregated Urban Atlas Building Height for Europe (UABH-E) 

(https://land.copernicus.eu/en/products/urban-atlas/building-height-2012) to 1 km resolution as the reference height, providing 

building heights in core urban areas in 870 cities across Europe. 

3.4 Built-up infrastructure analysis 240 

We analyzed the built-up infrastructures by calculating the total building volume in countries and cities. First, we summed the 

building volume for each country and created a global distribution map of built-up infrastructure across the world. To quantify 
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each country’s contribution to the global built-up infrastructure, we calculated the proportion of each country's total building 

volume relative to the global total. Next, we focused on the built-up infrastructures in representative cities across various 

continents worldwide. We analyzed both 3D (i.e., building volume) and 2D (i.e., building area) built-up infrastructures to 245 

provide a detailed comparison. Specifically, we compared the total amounts and rankings of 3D and 2D built-up infrastructures 

across these cities. The boundaries of countries and cities were derived from GADM maps (https://gadm.org/). This analysis 

allowed us to gain a deeper understanding of the spatial distribution characteristics and total volume features of built-up 

infrastructures in the world. 

4 Results and discussion 250 

4.1 Performance of the building height estimation model 

The estimated building height showed consistency with reference building height across all regions in the world (Fig. 3). 

Across different areas, the R2 between the estimated and reference building height ranges from 0.66 (i.e., Europe) to 0.96 

(South America). R2 of around 40 % of regions exceeded 0.80, indicating the similarity between estimated and reference 

height. The RMSEs vary significantly across different areas, ranging from 1.92 m (i.e., South America) to 14.60 m 255 

(Japan, North and South Korea). 62 % of the RMSEs are less than 10 m, indicating that in most of the regions, our 

estimated heights are in agreement with reference heights on the building scale. The estimated heights in 5 areas are very 

close to the reference height with RMSEs less than 5 m, including the United States (3.35 m), Russia (4.99 m), Med 

America (2.40 m), Australia (2.23 m), and South America (1.92 m). Additionally, low-rise buildings show less 

uncertainty compared with high-rise buildings. RMSEs of low-rise buildings (height<20 m) are generally below 6 m, 260 

especially in Western countries such as the United States (2.44 m in 0-10 m interval and 2.64 m in 10-20 m interval), 

and South America (1.43 m in 0-10 m interval and 4.75 m in 10-20 m interval). On the contrary, high-rise buildings 

(height≥20 m) have more significant uncertainties in the estimation results. The resolution of coarse-resolution remote 

sensing dataset (e.g., DSM with a 30 m resolution and nighttime light with a 463.83 m resolution) make it difficult to 

capture the heterogeneity features of super tall buildings, especially in densely built urban cores. Moreover, height and 265 

material of high-rise buildings, as well as the side-looking scene illumination Sentinel sensor, can cause complex 

multipath effects, complicating radar signal propagation, and ultimately affecting the accuracy of height estimations 

(Frantz et al., 2021; Stilla et al., 2003). It is worth noting that the uncertainty of high-rise buildings contributes significantly 

to regional RMSE. For instance, in Africa, the overall RMSE is 9.87 m, with high-rise buildings (i.e., ≥50 m) showing 

an RMSE of 25.52 m, while buildings below 10 m and in 10-20 m intervals have RMSEs of 3.86 m and 5.28 m, 270 

respectively.  
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Figure 3. Model performance in subregions. (a) R2 and RMSE of models in the subregions. (b)RMSEs of representative 

subregions within different height intervals.  

4.2 Comparison with Google Earth building heights 275 

The validation results with interpreted heights from Google Earth Street Views indicated the estimated results are consistent 

with the reference heights in the metropolitans of countries around the world, particularly for those landmark buildings. We 

manually measured 700 buildings in 14 metropolitans across the northern and southern hemispheres (e.g., New York, London, 

Brasilia, and Cape Town) (Fig. 4a-b) and compared these measurements with our estimated heights. The correlation results 

suggest that our estimated heights show relatively high agreement with measured heights, with an R2 of 0.85 and RMSE of 280 

11.01 m (Fig. 4c). The examples of landmark buildings further confirm the effectiveness in estimating individual building 

heights, especially for high-rise buildings with more considerable uncertainty as mentioned in Section 4.1 (Fig. 4d). For 

instance, the Federal Reserve Bank in Chicago, with a height of 113.3 m, where the difference between estimated and measured 

height is only 2.2 m.  
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 285 

Figure 4. Comparison of estimated and interpreted heights using the 3-D Google Earth Street Views. (a) Diagram of 

measurement method in Googe Earth Pro. (b) Distribution of cities with measured building heights. (c)  Overall performance 

of estimated heights worldwide. (d) Measured and estimated the height of individual buildings within cities. Images in (a) and 

(d) are from © Google. 

4.3 Comparison with existing building height products 290 

4.3.1 Comparison with global height products 

Our estimated building heights provided more details of urban morphology and show more accurate results compared to the 

other four existing global datasets (Fig. 5), including WSF (at 90 m spatial resolution), Global Human Settlement Layer: Height 

(GHSL-H) (at 100 m spatial resolution) (Pesaresi et al., 2021), height in Zhou et al. (2022) (at 500 m spatial resolution), and 
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height in Li et al. (2022) (at 1 km spatial resolution). First, we mapped the estimated height and other four datasets and 295 

compared them to the ONEGEO Map reference height to evaluate the spatial pattern of building heights. Our estimated 

building height result show similar spatial patterns to the reference building heights in representative cities around the world. 

Specifically, the estimated heights are close to the reference height data for high-rise buildings, capturing the high-density 

building core of the town in the CBDs of various major cities (e.g., Downtown in Houston (Fig. 5a, Region 1), CBD of Yuexiu 

District in Guangzhou (Fig. 5b, Region 2), and Kowloon in Hong Kong (Fig. 5c, Region 3)). However, GHSL-H (Pesaresi et 300 

al., 2021), height in Zhou et al. (2022), and height in Li et al. (2022) can only reflect the vague spatial location of the city 

center, presenting various degrees of significant underestimations in the specific numerical values of building heights. The 

underestimation of high-rise buildings and skyscrapers is relatively substantial in GHSL-H (Pesaresi et al., 2021) and height 

in Li et al. (2022). Zhou et al. (2022) notably underestimate urban centers because they include nonbuilding impervious 

surfaces (e.g., streets and parking lots). Furthermore, compared to the WSF dataset, our estimated height can reflect a complex 305 

urban landscape with mixed high- and low-rise buildings. For instance, the spatial distribution of our derived dataset is closer 

to the reference dataset in Kowloon, Hong Kong, while the WSF (Esch et al., 2022) height dataset results in clusters of high-

rise buildings. Additionally, our estimated heights are also more consistent with the reference datasets for low-rise building 

areas. For low-rise buildings within urban cores, such as the urban villages in Guangzhou (Fig. 5b, Region 4) and the low-rise 

structures in Tokyo's city center (Fig. 5d, Region 5), our data can provide relatively accurate numeric estimations and spatial 310 

patterns of their heights. For low-rise buildings in the surrounding area of cities, such as the southern of Santa Monica Blvd in 

West Hollywood, Los Angeles (Fig. 5e, Region 6), and the northwest of Geelong (Fig. 5f, Region 7), our building-scale results 

can reflect the morphology of these low-rise structures. However, other datasets generally show slight overestimations, 

especially the estimations by Li et al. (2022). For instance, building heights in northwest Geelong are below 5 m, whereas in 

Li et al. (2022), the building heights are between 5-10 m in that area. Besides, our estimated heights accurately showed the 315 

spatial heterogeneity of building heights between densely high-rise buildings and low-rise buildings, benefiting from a finer 

resolution at the scale of individual buildings. Conversely, the resolution of the other three datasets is insufficient to reflect the 

spatial heterogeneity of building heights due to the significant differences in building height within each pixel.  
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Figure 5. Comparison of 3D-GloBFP maps with multi-scale building height products in 10 cities across the world. (a) 320 

Los Angeles. (a) Houston. (b) Guangzhou. (c) Hong Kong. (d) Tokyo. (e) Los Angeles. (f) Geelong. (g) London. (h) Vancouver. 

(i) Singapore. (j) Lima. Note: the areas boxed represent: ① Downtown Houston. ② CBD of Yuexiu District. ③ Kowloon in 

Hong Kong. ④ Urban village in Guangzhou. ⑤ City center of Tokyo.  ⑥ South of Santa Monica Boulevard, West Hollywood. 

⑦ Northwest Geelong, respectively. The satellite images are from © Esri, © Maxar, © Earthstar Geographics, and the GIS 

user community. 325 

Additionally, the height distribution and correlation results also confirm the superiority of our derived datasets in cities across 

the northern and southern hemispheres in the world (Fig. 6). Our results showed a good agreement with the reference dataset, 

with a peak difference of 1.25 m. Notably, 3D-GloBFP can depict the bimodal distribution of building height. In contrast, 

other estimation results are mostly unimodal and have some degree of underestimation (i.e., Esch et al. (2022) and Zhou et al. 

(2022)) or overestimation (i.e., Li et al. (2022) and Pesaresi et al. (2021)) (Fig. 6a). Moreover, the correlation results indicate 330 

that our building height dataset is consistent with the reference height, with an R of 0.82 and RMSE of 6.14 m (Fig. 6b). Our 

estimations are closer to the reference dataset across different height intervals. However, all these datasets show a tendency to 

overestimate low-rise buildings and underestimate high-rise buildings. Specifically, WSF (Esch et al., 2022) dataset shows a 

significant overestimation of low-rise buildings, particularly those under 20 m, with an R of 0.43 and RMSE of 12.40 m (Fig. 

6c). GHSL-H  (Pesaresi et al., 2021) and height in Zhou et al. (2022) significantly underestimated the height of high-rise 335 

buildings (>50 m), resulting in a deviation of the fitted line from the 1:1 line (Fig. 6d-e). The height dataset in Li et al. (2022) 

slightly underestimated high-rise buildings, but the underestimation is more severe compared to our estimations (Fig. 6f).  
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Figure 6. Comparison of reference height, 3D-GloBFP, and other existing global products. (a) Histogram of reference 

height, estimated height, and other four existing height products. (b) Scatter plot of estimated heights and reference heights. 340 

(c) Scatter plot of WSF (Esch et al., 2022)  and reference heights. (d) Scatter plot of GHSL-H (Pesaresi et al., 2021) and 

reference heights. (e) Scatter plot of height in Zhou et al. (2022) and reference heights. (f) Scatter plot of height in Li et al. 

(2022) and reference heights. Note: The red dashed lines represent the regression lines fitting the reference heights against the 

estimated heights for each dataset. The white solid line represents the 1:1 line.  

4.3.2 Validation in the US, China, and Europe 345 

Our 3D-GloBFP showed the most similar numerical distribution patterns to the reference heights across the United States, 

China, and Europe (Fig. 7). The comparison in the US indicates that our 3D-GloBFP can capture the bimodal distribution of 

building heights, with peaks approximately around 5 m and 12 m. Furthermore, the distribution of 3D-GloBFP in China 

consists of reference heights, with the peaks at 13.39 m and 16.13 m, respectively. Besides, the distribution pattern of 3D-

GloBFP in Europe closely resembles the reference height despite slight overestimations. Conversely, the height in Li et al. 350 

(2022) and GHSL-H (Pesaresi et al., 2021) are generally overestimated the building heights across these three regions, while 

the height in WSF (Esch et al., 2022) and results in Zhou et al. (2022) show certain underestimation compared to the reference 

heights. 
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Figure 7. Histogram of reference height, 3D-GloBFP, and other existing products in The United States (a), China (b), 355 

and Europe (c).  

In the respective regional comparisons, first, we found that our 3D-GloBFP outperforms other building-scale height datasets 

in the US. Our derived results can better characterize the building heights than dataset provided by Microsoft (Microsoft, 2020) 

and height in Arehart et al. (2021), with an R of 0.68, and RMSE of 16.42 m (Fig. 8b). Overall, our estimated heights tend to 

underestimate building heights, especially in high-rise buildings. However, the underestimation is more evident in Microsoft 360 

building heights (Microsoft, 2020) and heights in Arehart et al. (2021), with an R of 0.48 and 0.38, respectively (Fig. 8c-d). 

The RMSE of height in Arehart et al. (2021) and reference height (i.e., 15.13 m) is slightly smaller than in our derived height 

dataset and reference dataset. Nevertheless, the height in Arehart et al. (2021) more significantly overestimated the height in 

low-rise buildings (<8 m) and underestimated the height of high-rise buildings (>40 m). It is worth noting that higher data 

resolution (i.e., building scale) often reveals more details of local height variations and urban landscape differences, leading 365 

to increased uncertainty. 



19 

 

 

Figure 8. Building-scale comparison to Microsoft height (Microsoft, 2020) dataset and height in Arehart et al. (2021) in 

the United States. (a) Distribution of cities with reference building height. (b) Scatter plot of estimated heights and reference 

heights. (c) Scatter plot of Microsoft heights (Microsoft, 2020) and reference heights. (d) Scatter plot of height in Arehart et 370 

al. (2021)and reference heights.  

Second, our 3D-GloBFP is similar to the reference height in terms of distribution and spatial patterns in China. The distribution 

results demonstrate that our 3D-GloBFP more accurately depicts the distribution of building height in China, showing superior 

consistency with the reference datasets across all height intervals. Conversely, CNBH (Wu et al., 2023) and Huang et al. (2022) 

demonstrate an overall underestimation of building heights, lacking precision in estimating the high-rise buildings in urban 375 

centers. Likewise, our derived height dataset shows the closest height values to the reference data among the three datasets, 

with an R of 0.67 and an RMSE of 13.17 m. Notably, our correlation results surpass those datasets in Huang et al. (2022) and 

Wu et al. (2023) datasets, with R of 0.32 and 0.59, respectively. Although all the uncertainties in the estimated high-rise 

buildings are relatively more considerable, the heights of Huang et al. (2022) and Wu et al. (2023) showed a more significant 

difference between estimated and reference heights. The spatial distribution maps further confirm the similarity between our 380 

estimated height and the reference height. Our height dataset can capture the spatial distribution and values of high-rise 

buildings, including landmarks such as the Lujiazui Financial and Trade Zone in Shanghai (Region 1) and the CBD in 

Chaoyang District in Beijing (Region 2). In contrast, CNBH (Wu et al., 2023) notably underestimates heights in the CBD areas. 

While height in Huang et al. (2022) approximates the spatial patterns in Beijing, it significantly underestimates clustered high-

rise buildings in the Lujiazui Financial and Trade Zone in Shanghai. Furthermore, our height dataset can identify the low-rise 385 

residential buildings of old urban areas (e.g., buildings near Tongfu Middle Road in Guangzhou (Region 3)). Conversely, 
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CNBH (Wu et al., 2023) overestimates the heights of low-rise buildings in old urban areas. The results in Huang et al. (2022) 

are similar to the reference height in old urban areas. However, the results of Huang et al. (2022) misidentified contiguous 

taller buildings (20-36 m) around old urban areas as high-rise buildings (>36 m), which may contribute to resolution limitations, 

resulting in insufficient recognition of height heterogeneity within complex urban landscapes. 390 

 

Figure 9. Comparison of height in China by Huang et al. (2022) and Wu et al. (2023). (a) Distribution of test points in 

GUBs. (b) Scatter plot of estimated heights and reference heights. (c) Scatter plot of height in Huang et al. (2022) and reference 

heights. (d) Scatter plot of height in Wu et al. (2023) and reference heights. (e) Spatial patterns of building height in Shanghai, 

Beijing, and Guangzhou. Note: the areas boxed represent: ① Lujiazui Financial and Trade Zone. ② CBD in Chaoyang District. 395 

③  Community near Tongfu Middle Road, respectively. The satellite images are from © Esri, © Maxar, © Earthstar 

Geographics, and the GIS user community. 

Additionally, the numerical distribution of 3D-GloBFP is more consistent with the reference height than the other three 

products in Europe (Fig. 10). The distribution of 3D-GloBFP closely resembled that of the reference data, with similar peak 

values. The reference data shows the highest frequency of building heights in the range of 2.5-5 m, while the estimated data 400 

indicates the highest frequency of building heights in the range of 5-7.5 m. However, we observed an overestimation of low-

rise buildings of 3D-GloBFP in Europe. Moreover, height in Li et al. (2022) and GHSL-H (Pesaresi et al., 2021) show more 

obvious overestimations. In contrast, WSF (Esch et al., 2022) underestimate the buildings with heights larger than 

approximately 5 m.  
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 405 

Figure 10. Distribution of building height in Europe. (a) 3D-GloBFP. (b) WSF (Esch et al., 2022). (c) Height in Li et al. 

(2022). (d) GHSL-H (Pesaresi et al., 2021).  

4.4 Mapping of global building height 

The global building height exhibited a distinct spatial pattern across regions, countries, and within cities (Fig. 11). Our global-

coverage height maps indicate that low-rise buildings dominate globally, while high-rise buildings are dispersed. Low-rise 410 

buildings are commonly found in urban centers and outskirts across countries and regions, while high-rise buildings are 

predominantly concentrated in relatively developed areas within cities. The building height map suggests a noticeable surface 

roughness of the built-up environment globally. For instance, in developed regions like eastern China and the eastern United 

States, there are more high-rise buildings. Meanwhile, in developing regions such as Sub-Africa, building heights are 

comparatively lower. Our building-scale height maps reveal significant height heterogeneity within the cities. Specifically, 415 

high-rise buildings are generally located in the commercial land of urban centers, with building heights gradually decreasing 

from the city center to the surrounding rural areas in a radial pattern. 



22 

 

 

Figure 11. Spatial variations of building heights in the world. (a) Map of 3D-GloBFP. (b-j) Large view of representative 

cities in the world at building scale. (k-o) Large view of representative regions in the world at 1km scale. Note: Colorbars of 420 

k-o are the same as that in (a). 

4.5 Global disparities in built-up infrastructure 

4.5.1 Global distribution of built-up infrastructure 

Our findings revealed a notably uneven distribution of built-up infrastructure across different countries globally. We calculated 

the total built-up infrastructure (i.e., a sum of building volume) (Fig. 12a). We determined its global proportion for each country 425 

based on 3D-GloBFP (Fig. 12b). We found that developed nations and certain rapidly emerging economies show a more 

significant proportion of the total volume of built-up infrastructures. In contrast, countries and regions with lower levels of 

economic development hold relatively lower volumes of built-up infrastructures. The built-up infrastructures in China, the US, 

and several European countries significantly surpass that of other regions, contributing the majority of the global built-up 

infrastructure. Specifically, China is the country with the largest total built-up infrastructure volume globally  (5.28×1011 m3, 430 

accounting for 23.9 % of the global total), followed by the United States (3.90×1011 m3, accounting for 17.6 % of the global 

total). Other countries with significant infrastructure volumes include Germany (9.39×1010 m3, accounting for 4.2 % of the 
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global total), Indonesia (6.62×1010 m3, accounting for 3.0 % of the global total), and France (5.66×1010 m3, accounting for 

2.5 % of the global total). The total volume of built infrastructure in Africa is relatively low, accounting for a small percentage 

of the global total (e.g., Angola (2.53×109 m3, accounting for 0.11 % of the global total), Zimbabwe (2.10×109 m3, accounting 435 

for 0.09 % of the global total), Tanzania (3.99×109 m3, accounting for 0.18 % of the global total)).   

 

Figure 12. Built-up infrastructures in the world. (a) Total built-up infrastructures in each country. (b) The shares of built-

up infrastructures in each country. 

4.5.2 Comparison in building volume and area of representative cities 440 

The building volume and area of representative cities varied significantly across different regions worldwide. The disparity in 

building volume across cities is pronounced. For instance, Shanghai, China (2.06×1010 m3) exhibits a building volume 

approximately 21 times larger than that in Pyongyang, North Korea (9.85×108 m3). We found that Chinese representative cities 

with building volume exceed that of representative cities elsewhere in the world due to their higher population density and 

larger administrative divisions. It is worth noting that while the building area of Beijing (9.76×108 m2) surpasses that in 445 

Shanghai (8.49×108 m2), the building volume in Shanghai (2.1×1010 m3) is more significant than Beijing (1.3×1010 m3) due to 
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its more efficient utilization of vertical urban space, resulting in higher average building heights of 16.7 m in Shanghai 

compared to 10.0 m in Beijing. In North America, the sum of building areas is similar in representative cities, but New York 

City has significantly larger building volumes (6.99×109 m3). This disparity can be attributed to the limited and expensive land 

resources in New York, which promotes the city's adoption of vertical development strategies, particularly in Manhattan, where 450 

numerous high-rise buildings are concentrated. Despite having the most extensive building area (7.06×109 m2) among 

European representative cities, London's overall volume is lower (7.06×109 m3) due to its lower average height, influenced by 

the abundance of low-rise and historical buildings that occupy significant space within the urban landscape. In contrast, the 

building volume of representative cities in South America, Africa, and Australia are generally small (e.g., Brazillia, Brazil, 

with 2.70×108 m3 building volume, Cape Town, South Africa, with 1.48×109 m3 building volume, Sydney, Australia, with 3.3455 

×108 m3 building volume).  

 

 

Figure 13. Building volume and area in representative cities in the world. (a) The sum of the building footprint volume. 

(b) The sum of the building footprint area. 460 

4.6 Limitations and future work 

While this study provides valuable insights, several limitations must be acknowledged. First, the coverage is limited in certain 

regions, leading to tiled spatial gaps within some countries. These gaps are due to the limited coverage of Microsoft building 

footprints at the time of data creation. As more building footprint datasets become available, we will continue to update and 

enhance 3D-GloBFP using comprehensive open-source data. Second, the current version of 3D-GloBFP shows relatively lower 465 

accuracy in areas with limited building height samples (i.e., suburb of South America). Integrating additional data (i.e., ground 

survey data and LiDAR datasets) to create more representative samples can enhance the accuracy of building height estimation. 

Additionally, the current version of 3D-GloBFP represents building height of a single year (i.e., 2020), as the model inputs 

(i.e., multi-source datasets) were collected around that time. This temporal limitation restricts the dataset’s ability to reflect 
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changes over time. We are also committed to producing 3D building datasets with temporal information to capture the dynamic 470 

changes of urban landscape. 

5 Data availability 

The 3D-GloBFP dataset is available at https://doi.org/10.5281/zenodo.11319913 (Building height of the Americas, Africa, and 

Oceania in 3D-GloBFP) (Che et al., 2024c), https://doi.org/10.5281/zenodo.11397015 (Building height of Asia in 3D-GloBFP) 

(Che et al., 2024a), and https://doi.org/10.5281/zenodo.11391077 (Building height of Europe in 3D-GloBFP) (Che et al., 475 

2024b). The dataset is stored in shapefile format with building height in the attribute table.  

6 Conclusions 

In this study, we released a global building height dataset at the individual building scale, providing detailed building footprint 

information along with heights. Initially, we developed 31 height estimation models based on integrated multisource remote 

sensing and building morphology features. Next, we assessed the model performance and the dataset quality by cross-480 

validation with other existing national and regional building height datasets. Our results showed that the derived height dataset 

has a high agreement with reference data in regions worldwide, with the models’ R2 ranging from 0.66 to 0.96 and RMSEs 

ranging from 1.9 m to 14.6 m. Moreover, estimated results are consistent with the measured height in Google Earth Street 

Views with an R2 of 0.85. Our estimated heights also show numerical distribution and spatial patterns that are more similar to 

the reference heights than other existing datasets. Then, we provided a seamless building height map globally. The detailed 485 

building height map reveals the distinct landscape heterogeneity within global cities. We also found significant variations in 

building volume and area within cities across representative cities in each continent due to different development patterns and 

stages. Finally, we analyzed the built-up infrastructures in countries and cities by summarizing the total building volume. The 

results reveal a significant variation in built-up infrastructure distribution across countries, with developed nations and certain 

emerging economies holding a larger proportion. Furthermore, substantial disparities in both 3D and 2D built-up 490 

infrastructures are evident across representative cities worldwide, influenced by factors such as different development stages 

and patterns. 

The 3D-GloBFP map is the first individual building height dataset to depict the most detailed building three-dimensional 

morphology worldwide, offering great potential to support studies ranging from macro-scale global analyses to micro-scale 

investigations within urban areas. Our developed dataset provides precise height information and serve as the base input for 495 

urban analysis and simulations, such as climate modeling (He et al., 2019), population simulation (Zhao et al., 2021), building 

function classification (Zheng et al., 2024), and disaster assessments (Hossain and Meng, 2020). Moreover, our dataset also 

contributes to studies on the interaction between human society and ecosystems (Zhong et al., 2021; Rodriguez Mendez et al., 

2024; Güneralp et al., 2017; Arehart et al., 2022), such as Urban Heat Island (UHI) assessment (Li et al., 2020d), carbon 
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footprint accounting (Li et al., 2024a), building shade studies (Watanabe et al., 2014), and building stock analysis (Frantz et 500 

al., 2023). These studies can further contribute to addressing environmental issues related to anthropogenic activities, thereby 

promoting the achievement of sustainable development. 
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