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Title: 3D-GloBFP: the first global three-dimensional building footprint dataset 

 

Dear Editor and Reviewers,  

Thank you for allowing us to respond to reviewers’ valuable comments that helped us significantly 

improve our analyses and the paper. We carefully and extensively revised our manuscript to 

account for the recommended changes by reviewers. First, we enhanced the Method section by 

providing more details about the division of subregions and dataset comparison. Second, we 

validated the feasibility of our input datasets and the accuracy of estimated results with additional 

experiments. Also, we added a section to discuss Limitations and future works. We believe the 

revised manuscript accounts for all reviewers’ comments, and it is significantly improved as a 

result. We have provided detailed responses to all questions and recommendations by the 

associated editor and reviewers in the attached letter. Revised manuscripts with and without track 

changes are attached for your reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sincerely yours, 

 

Xiaoping Liu  

School of Geography and Planning  

Sun Yat-sen University  

Guangzhou 510275, P.R. China 

liuxp3@mail.sysu.edu.cn 

 

mailto:liuxp3@mail.sysu.edu.cn


Reviewer #1 (Response to Reviewer)  

General comments 

This article uses a practical method based on multimodal data to construct the first global scale 3D 

information dataset of buildings. The data set provided by this study fills the gap in fine-grained 

building height data globally, which is of great significance for urban morphology research and 

climate change analysis. The model validation results are comprehensive and promising; however, 

a more detailed explanation of the technical methods would enhance the paper's clarity (see 

specific comments). Overall, the paper is well-structured, and the dataset is valuable to urban 

studies. 

Response: thank you very much for your helpful comments and suggestions. We have carefully 

revised our manuscript and provided a point-by-point response below. 

Specific comments 

Comment #1: The article uses multiple sources of data for analysis, and it is recommended to 

add ablation experiments between different data to demonstrate the effectiveness of using the 

data. 

Response: thank you for your question. We evaluate the contributions of features in different 

categories with added experiments.  

We evaluated the impacts of input features using the US dataset to further indicate the efficiency 

of the synthetic-used multi-source datasets. We used single category (i.e., radar-only, optical-only, 

terrain-only) and different combinations of features as the model input to estimate the height of 

buildings (Table R1). According to the results, the R2 and RMSE of radar-only model is 0.56 and 

5.24m. The optical features provide effective information of building height estimation, with the 

model’s R2 increased 0.1 and RMSE decreased 0.7m compared with the radar-only model. The 

terrain features significantly increase the accuracy of estimation model, with model’s R2 increased 

0.1 and RMSE decreased 0.8m compared with model2. Additionally, socioeconomic and vector 

features slightly improve the ability of model, with R2 increased 0.05 and RMSE decreased 0.35m 

compared with model3. These results demonstrate that the synthetic use of these features is 

practicable and effective for building the height estimation model.  

Table R1. Performance of models with different feature combinations. 

 Feature combinations R2 RMSE (m) 

Model1: radar-only ①② 0.56 5.24 

Model2: radar + optical ①②③ 0.67 4.57 

Model3: radar + optical + 

terrain 
①②③④⑤⑥ 0.77 3.76 

Model4: radar + optical + 

terrain + socioeconomic 
①②③④⑤⑥⑦⑧ 0.79 3.65 

Model5: radar + optical + 

terrain + socioeconomic + 

vector 

①②③④⑤⑥⑦⑧⑨ 0.82 3.39 

① Sentinel1_VV_mean, Sentinel1_VV_std, Sentinel1_VV_percentile5, Sentinel1_VV_percentile25, 

Sentinel1_VV_percentile50, Sentinel1_VV_percentile75, Sentinel1_VV_percentile95, Sentinel1_VH_mean, 

Sentinel1_VH_std, Sentinel1_VH_percentile5, Sentinel1_VH_percentile25, Sentinel1_VH_percentile50, 

Sentinel1_VH_percentile75, Sentinel1_VH_percentile95 

② PALSAR_HH_mean, PALSAR_HH_std, PALSAR_HH_percentile5, PALSAR_HH_percentile25, 

PALSAR_HH_percentile50, PALSAR_HH_percentile75, PALSAR_HH_percentile95, PALSAR_HV_mean, 

PALSAR_HV_std, PALSAR_HV_percentile5, PALSAR_HV_percentile25, PALSAR_HV_percentile50, 



PALSAR_HV_percentile75, PALSAR_HV_percentile95 

③ Sentinel2_Band2_mean, Sentinel2_Band2_std, Sentinel2_Band2_percentile5, Sentinel2_Band2_percentile25, 

Sentinel2_Band2_percentile50, Sentinel2_Band2_percentile75, Sentinel2_Band2_percentile95,  

Sentinel2_Band3_mean, Sentinel2_Band3_std, Sentinel2_Band3_percentile5, Sentinel2_Band3_percentile25, 

Sentinel2_Band3_percentile50,  

Sentinel2_Band3_percentile75, Sentinel2_Band3_percentile95, 

Sentinel2_Band4_mean, Sentinel2_Band4_std, Sentinel2_Band4_percentile5, Sentinel2_Band4_percentile25, 

Sentinel2_Band4_percentile50,  

Sentinel2_Band4_percentile75, Sentinel2_Band4_percentile95, 

Sentinel2_Band8_mean, Sentinel2_Band8_std, Sentinel2_Band8_percentile5, Sentinel2_Band8_percentile25, 

Sentinel2_Band8_percentile50,  

Sentinel2_Band8_percentile75, Sentinel2_Band8_percentile95 

④ DEM_mean, DEM_std, DEM_percentile5, DEM_percentile25, DEM_percentile50, DEM_percentile75, 

DEM_percentile95 

⑤ DSM_mean, DSM_std, DSM_percentile5, DSM_percentile25, DSM_percentile50, DSM_percentile75, 

DSM_percentile95 

⑥ nDSM_mean, nDSM_std, nnDSM_percentile5, nDSM_percentile25, nDSM_percentile50, 

nDSM_percentile75, nDSM_percentile95 

⑦ population_mean, population_std, population_percentile5, population_percentile25, population_percentile50, 

population_percentile75, population_percentile95 

⑧ nighttimelight_mean, nighttimelight_std, nighttimelight_percentile5, nighttimelight_percentile25, 

nighttimelight_percentile50, nighttimelight_percentile75, nighttimelight_percentile95 

⑨ building area, building perimeter 

Comment #2: Why did you choose to use XGboost instead of random forest or support vector 

machine? Please provide additional experiments or explanations. 

Response: thank you for your question. We have tested the performance of machine learning 

models in preliminary experiments, and finally used eXtreme Gradient Boosting (XGB) model 

due to its accuracy and efficiency (Table R2). Specifically, we compared the model performance 

of Decision Tree (DT), Random Forest (RF), Gradient Boosting Regression (GB), XGB, and 

Support Vector Machine (SVM), using 135291 training samples and 15033 testing samples in 

Africa. The results showed that the XGB model has the highest accuracy (testing R2 = 0.733, 

RMSE = 5.213m). The performance of GB model is slightly inferior to that of the XGB model 

with testing R2 of 0.731 and RMSE of 5.223m. The results of RF model showed overall 

underestimation with lower accuracy (testing R2 = 0.688, RMSE = 5.625m). And the results of DT 

model show significant overestimation for building heights below 50m. The SVM model is 

ineffective to estimate height of buildings. These experiments were conducted using Intel® 

Core™ i9 with Python 3.9.  

 

 

 

 

 

 

 



Table R2. Performance of models with different feature combinations. 

Model Model parameters 
Training 

R2 

Training 

RMSE 

(m) 

Testing 

R2 

Testing 

RMSE 

(m) 

Training 

time 
Scatter plot 

DT 

'max_depth': 10, 

'min_samples_split': 2, 

'min_samples_leaf': 1 

0.723 5.643 0.519 6.988 10s 

 

RF 

'n_estimators': 1000, 

'max_depth': 10, 

'min_samples_split': 2, 

'min_samples_leaf': 1, 

'max_features': 'sqrt', 

'bootstrap': True 

0.758 5.266 0.688 5.625 514s 

 

GB 

'n_estimators': 1000, 

'max_depth': 10, 

'min_samples_split': 2, 

'min_samples_leaf': 1, 

'learning_rate': 0.1, 

'subsample': 0.8, 

'max_features': 'sqrt' 

0.919 3.041 0.731 5.223 67s 

 

XGB 

'max_depth': 10, 

'eta': 0.1,'' 

'lambda': 30, 

'alpha': 20, 

'colsample_bytree':0.7, 

'learning_rate' : 0.1, 

'n_estimators': 1000 

0.986 1.234 0.733 5.213 46s 

 

SVM 

'kernel': 'rbf',   

'C': 1.0,  

'epsilon': 0.1 

0.190 9.064 0.169 9.768 3179s / 

Comment #3: Please explain the specific operation of manual measurement in section 4.2 and 

the basis for the authenticity of manual height measurement values. 

Response: thank you for your comment. We used manually measured building heights on Google 

Earth Pro as the reference height to evaluate the quality of our height results. We measured the 

length of the ridge lines of the 3D building models using a 3D measurement tool as the height of 

individual building (Fig. R1). The vertical information of these 3D building models is obtained 

using Google Street View, aerial photographs, and satellite images.  

The selecting points in manual measurements can affect the precision of measured height results, 

especially for buildings with complex shapes. To minimize the error, we measured the smooth 

ridge lines of buildings. We tested the stability of the measurement result by repeatedly measuring 

the building heights five times. The measurement results of a 130m building fluctuate within 1m, 

indicating the measurement error is relatively small. Also, the measurement results of a 12.8m 

building fluctuate within 0.1m. This relative measurement error is less than 1%, suggesting the 

method is reliable to obtain reference heights.  



 

Figure R1. Results of measuring the same building five times using the Google 3D measurement 

tool. 

Comment #4: What are the advantages of building scale 3D data over course scale 3D data set? 

Response: thank you for your question. Building-scale 3D data enhances surface morphology 

with finest-scale details, which can support a wider range of urban studies compared to coarse-

scale building height datasets.  

Building-scale 3D data refines urban analysis and simulation by offering precise height 

information for building structures. The vector data scale avoids confusion with other surface 

objects, such as impervious surfaces (e.g., roads and parking lots). This allows for more detailed 

urban morphology analysis and simulations (e.g., digital twin) compared to coarse-scale height 

datasets, including building stock calculation, building carbon emission analysis, fine-scale 

population simulations, and thermal environment analysis. Moreover, building-scale 3D dataset 

can support a broader range of fine-scale analyses when combined with increasingly high-

resolution datasets. As the resolution of remote sensing products have advanced, high-resolution 

datasets are now available, such as 1m land cover and 1m tree height datasets. Building-scale 

datasets can support urban analysis at these high-resolution levels. For example, building-scale 3D 

datasets and tree height dataset can be used to analyzed the cooling effects of shadows from 

buildings and trees in urban area (Tolan et al., 2023). Additionally, building-scale dataset can also 

aggerated to other resolutions for analysis under difference scales. Relevant contents can be found 

in our manuscript as: 

“Besides, our estimated heights accurately showed the spatial heterogeneity of building heights 

between densely high-rise buildings and low-rise buildings, benefiting from a finer resolution at 

the scale of individual buildings. Conversely, the resolution of the other three datasets is 

insufficient to reflect the spatial heterogeneity of building heights due to the significant differences 

in building height within each pixel.” (page 15, line 315-319) 

“The 3D-GloBFP map is the first individual building height dataset to depict the most detailed 

building three-dimensional morphology worldwide, offering great potential to support studies 

ranging from macro-scale global analyses to micro-scale investigations within urban areas. Our 

developed dataset provides precise height information and serve as the base input for urban 

analysis and simulations, such as climate modeling (He et al., 2019), population simulation (Zhao 

et al., 2021), building function classification (Zheng et al., 2024), and disaster assessments 

(Hossain and Meng, 2020). Moreover, our dataset also contributes to studies on the interaction 



between human society and ecosystems (Zhong et al., 2021; Rodriguez Mendez et al., 2024; Gü

neralp et al., 2017; Arehart et al., 2022), such as Urban Heat Island (UHI) assessment (Li et al., 

2020d), carbon footprint accounting (Li et al., 2024a), building shade studies (Watanabe et al., 

2014), and building stock analysis (Frantz et al., 2023). These studies can further contribute to 

addressing environmental issues related to anthropogenic activities, thereby promoting the 

achievement of sustainable development.” (page 25-26, line 493-502) 

Reference: 

Tolan, J., Yang, H.-I., Nosarzewski, B., Couairon, G., Vo, H. V., Brandt, J., Spore, J., Majumdar, S., Haziza, D., 

Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T., White, B., Tiecke, T., and Couprie, C.: Very high 

resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional 

decoder trained on aerial lidar, Remote Sensing of Environment, 300, 113888, 

https://doi.org/10.1016/j.rse.2023.113888, 2024. 

He, X., Li, Y., Wang, X., Chen, L., Yu, B., Zhang, Y., and Miao, S.: High-resolution dataset of urban canopy 

parameters for Beijing and its application to the integrated WRF/Urban modelling system, Journal of Cleaner 

Production, 208, 373-383, https://doi.org/10.1016/j.jclepro.2018.10.086, 2019. 

Zhao, X., Zhou, Y., Chen, W., Li, X., Li, X., and Li, D.: Mapping hourly population dynamics using remotely sensed 

and geospatial data: a case study in Beijing, China, GIScience & Remote Sensing, 58, 717-732, 

10.1080/15481603.2021.1935128, 2021. 

Zheng, Y., Zhang, X., Ou, J., and Liu, X.: Identifying building function using multisource data: A case study of 

China's three major urban agglomerations, Sustainable Cities and Society, 108, 105498, 

https://doi.org/10.1016/j.scs.2024.105498, 2024. 

Hossain, M. K. and Meng, Q.: A fine-scale spatial analytics of the assessment and mapping of buildings and 

population at different risk levels of urban flood, Land Use Policy, 99, 104829, 

https://doi.org/10.1016/j.landusepol.2020.104829, 2020. 

Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H. X., Hernandez, G. A., Harpprecht, C., Zhang, C., Tukker, A., 

and Behrens, P.: Global greenhouse gas emissions from residential and commercial building materials and 

mitigation strategies to 2060, Nature Communications, 12, 6126, 10.1038/s41467-021-26212-z, 2021. 

Rodriguez Mendez, Q., Fuss, S., Lück, S., and Creutzig, F.: Assessing global urban CO2 removal, Nature Cities, 

10.1038/s44284-024-00069-x, 2024. 

Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel, P. L., Fragkias, M., Li, X., and Seto, K. C.: 

Global scenarios of urban density and its impacts on building energy use through 2050, Proceedings of the 

National Academy of Sciences, 114, 8945-8950, 10.1073/pnas.1606035114, 2017. 

Arehart, J., Pomponi, F., D'Amico, B., and Srubar Iii, W.: A new estimate of building floor space in North America, 

Environmental Science & Technology, 55, 10.1021/acs.est.0c05081, 2021. 

Li, Y., Schubert, S., Kropp, J. P., and Rybski, D.: On the influence of density and morphology on the Urban Heat 

Island intensity, Nature Communications, 11, 2647, 10.1038/s41467-020-16461-9, 2020d. 

Li, M., Koks, E., Taubenböck, H., and van Vliet, J.: Continental-scale mapping and analysis of 3D building 

structure, Remote Sensing of Environment, 245, 111859-111859, https://doi.org/10.1016/j.rse.2020.111859, 2020a. 

Watanabe, S., Nagano, K., Ishii, J., and Horikoshi, T.: Evaluation of outdoor thermal comfort in sunlight, building 

shade, and pergola shade during summer in a humid subtropical region, Building and Environment, 82, 556-565, 

https://doi.org/10.1016/j.buildenv.2014.10.002, 2014. 

Frantz, D., Schug, F., Wiedenhofer, D., Baumgart, A., Virág, D., Cooper, S., Gómez-Medina, C., Lehmann, F., 

Udelhoven, T., van der Linden, S., Hostert, P., and Haberl, H.: Unveiling patterns in human dominated landscapes 

through mapping the mass of US built structures, Nature Communications, 14, 8014, 10.1038/s41467-023-43755-5, 



2023. 

Comment #5: Please explain in detail how to aggregate building scale height data to coarse 

resolution scales for validation. 

Response: thank you for your question. We aggregated the building-scale height dataset to 1km-

resolution to compare with other existing coarse-resolution products according to Eq1: 

�̅� =  
∑ 𝐻𝑖

𝑁
𝑖=1

𝑁
                                                             (1) 

where �̅� is the aggregated results in 1km pixel, 𝑁 is the number of buildings in 1km pixel, and 𝐻𝑖 

is the height of buildings in the 1km pixel.  

Specifically, we calculated the average height of all buildings located within each grid cell. In this 

process, each 1km pixel represents the height of buildings with other built-up regions excluded 

(e.g., roads and parking lots) in the computation. Details can be found in our manuscript as: 

“We also aggregated the high-resolution data at 1 km resolution to align with the low-resolution 

data by calculating the average height of all buildings located within each grid cell. This 

approach allows us to compare the differences with the reference data at a consistent resolution 

across all datasets.” (page 11, line 223-225) 

Comment #6: What are the contributions of statistical values in the model? 

Response: thank you for raising this concern. The statistical values can improve the accuracy of 

the models, especially for high-rise buildings. We compared the RMSEs for models trained with 

mean values alone versus models trained with all statistical values (i.e., standard deviation, 5%, 

25%, 50%, 75%, and 95% quantiles) of pixels intersecting with each building boundary (Fig. R2). 

We evaluated the contributions of statistical values using RMSEs across different height intervals 

(i.e., <10m, 10-20m, 20-30m, 30-50m, 50-100m, >100m). The results show that the statistical 

values slightly enhance the accuracy of estimating results in low-rise buildings and significantly 

increased the accuracy of high-rise buildings. For instance, the model using statistical values 

reduce the RMSE by 3m in estimating buildings with height of 30-50m. Furthermore, these 

quantiles reduce the RMSE by approximately 6m and 7m in estimating buildings with height of 

50-100m, and >100m. The statistical values can reflect the complex variations of pixel values 

within building boundaries of high-rise buildings, providing the model with comprehensive 

information and enhanced its accuracy. However, the statistical value does not significantly 

increase the model accuracy for low-rise buildings (i.e., buildings lower than 20m), due to the 

similar values of pixels within buildings. 

 

Figure R2. RMSEs of models with and without quantiles as input features. 



Reviewer #2 (Response to Reviewer)  

This paper presents the world's first three-dimensional building footprint dataset, 3D-GloBFP, 

which integrates multi-source remote sensing data and various reference building height data. By 

employing machine learning methods, it generates high-precision global building height data. This 

dataset holds significant importance across multiple application domains, including urban 

planning, environmental monitoring, disaster management, and energy consumption analysis. The 

research demonstrates substantial promise and value, providing a crucial foundation for the 

acquisition and application of global 3D building data. I believe that 3D-GloBFP is an 

indispensable foundational dataset for urban research. During the review process, I identified 

several areas that require further clarification and improvement. 

Response: thank you very much for your constructive comments. We have carefully revised our 

manuscript and provided further responses for your further review. 

Comment #1: In Section 3.2.1 "Division of Subregions," the information of training and testing 

samples (e.g., the total amount) for each sub-region should be explicitly provided. Clearly 

specifying the selection criteria and distribution of these samples will help readers better 

understand the process of model training and validation. 

Response: thank you for pointing out this issue. We enhanced the description of our training and 

testing datasets, including adding the information of distribution and the number of samples in 

each subregion: 

“We divided the globe into 33 regions and developed the building height estimation model for 

each region, considering the non-uniform spatial distribution of samples and the heterogeneous 

building heights. Firstly, we divided the globe into 13 regions based on geographic spatial 

distance and regional development levels to ensure that each region has enough samples to train 

effective models. For instance, the Central and West Asian countries were considered as a single 

region for model training and estimation with 40040 training samples. However, given China's 

complex urban 3D structure and significant building heterogeneity (Wu et al., 2023), we further 

divided China into 21 regions. We built a separate height regression model for each region to 

ensure the effectiveness of the height estimation. For instance, considering the inadequacy of 

samples in Northwest China, we considered the provinces in Northwest as a single region with 

8050 training samples for model training. Additionally, we considered the Beijing-Tianjin-Hebei, 

Yangtze River Delta, and Peral River Delta urban agglomerations as three separate regions due to 

the comparable economic levels and population size.” (page 8-9, line 189-195) 



 
Figure 3. Distribution of subregions. 

Reference: 

Wu, W.-B., Ma, J., Banzhaf, E., Meadows, M. E., Yu, Z.-W., Guo, F.-X., Sengupta, D., Cai, X.-X., and Zhao, B.: A 

first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and 

machine learning, Remote Sensing of Environment, 291, 113578, https://doi.org/10.1016/j.rse.2023.113578, 2023. 

Comment #2: I noticed that there are some missing tiles in Ghana and incomplete regions in 

Guangdong, please ensure that the dataset is complete globally. 

Response: thank you for raising this concern. We completed the building footprints with height 

attributes of our datasets. The updated results of Ghana and Guangdong are showed in Fig R3 and 

Fig R4. 

 

Figure R3. 3D-GloBFP in Ghana. 



 

Figure R4. 3D-GloBFP in Guangdong. 

Comment #3: In China, reference building heights used as training samples were mostly 

concentrated in city centers. Please clarify the accuracy of the model's estimates for building 

heights in different urban areas (e.g., urban fringe). This is crucial for validating the model's 

applicability in diverse environments. 

Response: thank you for the great question. We evaluated the model performance across different 

urban regions, including city center, suburban area, and urban fringe. The results show that the 

estimated results are consistent with reference data in various city environments.  

To assess the model performance in different regions, we divided the cities into several rings 

based on road network, and calculated the R2 and RMSE between estimated and reference height. 

It is worthy to note that these reference samples were not used for model training. We selected 

Shanghai, Guangzhou-Foshan, and Chengdu as samples cities due to their heterogeneity of 

building heights from city center to fringe areas.  

The model shows relatively high reliability in estimating building heights across different rings 

(Fig. R5). In Shanghai, the model performs well in the Middle Ring (R2 = 0.88, RMSE = 8.91 m), 

indicating the model can capture the height distributions in city center. The R2 of suburban and 

outer ring areas is 0.90 with an RMSE of approximately 13.7 m. Although the RMSE is relatively 

higher in suburban ring and outer areas, the estimated results generally agree well with reference 

height in different regions. In Guangzhou-Foshan metropolitan area, the model’s accuracy of the 

areas outside outer ring (R2 = 0.73, RMSE = 9.51 m) is slightly higher than in the Middle Ring (R2 

= 0.66, RMSE = 14.02 m). The results indicate that the model performs well across different 

regions of Guangzhou-Foshan, with more accurate estimates in outer ring and outside areas. In 

Chengdu, the model's performance in the Middle Ring (R2 = 0.40, RMSE = 9.41 m) is slightly 

lower than in the outside outer ring area (R2 = 0.74, RMSE = 7.77 m), suggesting higher accuracy 

in the more peripheral areas. Buildings in city centers have more complex functions and higher 

height heterogeneity compared to suburbs, which may make it challenging to accurately estimate 

building heights accurately. Overall, these results demonstrate that the model performs effectively 

across different urban regions, providing supports for the model’s application in various urban 

environments.  



 

Figure R5. Model performance from the urban core to fringe areas. (a) Shanghai, (b) Guangzhou-

Foshan, (c) Chengdu.  

Comment #4: For high-rise buildings, especially super tall buildings, what are the potential 

reasons for height underestimation? It is recommended to include a detailed error analysis and 

explanation. 

Response: thank you for your question. We discussed the reason about the underestimation of 

high-rise buildings in Section 4.1 as: 

“The resolution of coarse-resolution remote sensing dataset (e.g., DSM with a 30 m resolution and 

nighttime light with a 463.83 m resolution) make it difficult to capture the heterogeneity features 

of super tall buildings, especially in densely built urban cores. Moreover, height and material of 

high-rise buildings, as well as the side-looking scene illumination Sentinel sensor, can cause 

complex multipath effects, complicating radar signal propagation, and ultimately affecting the 

accuracy of height estimations (Frantz et al., 2021; Stilla et al., 2003).” (page 12, line 263-268) 

Reference: 

Frantz, D., Schug, F., Okujeni, A., Navacchi, C., Wagner, W., van der Linden, S., and Hostert, P.: National-scale 



mapping of building height using Sentinel-1 and Sentinel-2 time series, Remote Sensing of Environment, 252, 

112128-112128, https://doi.org/10.1016/j.rse.2020.112128, 2021. 

Stilla, U., Soergel, U., and Thoennessen, U.: Potential and limits of InSAR data for building reconstruction in 

built-up areas, ISPRS Journal of Photogrammetry and Remote Sensing, 58, 113-123, 

https://doi.org/10.1016/S0924-2716(03)00021-2, 2003. 

 

Reviewer #3 (Response to Reviewer)  

The study by Che et al. represents a significant advancement in the field of urban geography and 

Earth observations. The development of the 3D-GloBFP dataset is a groundbreaking achievement 

that fills a critical gap in the availability of global, high-resolution, and accurate building height 

information. The methodology employed is innovative and rigorous, resulting in a dataset with 

exceptional performance and reliability. The implications and applications of the 3D-GloBFP 

dataset are vast, spanning from climate modeling to sustainable development policies. Overall, 

this study deserves high praise for its contributions to the scientific community and beyond. 

However, to further strengthen the research, I would suggest addressing the following minor 

issues: 

Response: thank you very much for your positive comments. We have carefully revised our 

manuscript based on your comments. We provided a detailed response to your comments below. 

Comment #1: The division of the 33 regions mentioned in the paper is not particularly clear 

and requires a brief elaboration or a reference to the specific figure where they are illustrated.  

Response: thank you for your suggestion. We included Figure 3, which shows the distribution of 

subregions and the number of training samples within each: 

“We divided the globe into 33 regions and developed the building height estimation model for 

each region, considering the non-uniform spatial distribution of samples and the heterogeneous 

building heights. Firstly, we divided the globe into 13 regions based on geographic spatial 

distance and regional development levels to ensure that each region has enough samples to train 

effective models. For instance, the Central and West Asian countries were considered as a single 

region for model training and estimation with 40040 training samples. However, given China's 

complex urban 3D structure and significant building heterogeneity (Wu et al., 2023), we further 

divided China into 21 regions. We built a separate height regression model for each region to 

ensure the effectiveness of the height estimation. For instance, considering the inadequacy of 

samples in Northwest China, we considered the provinces in Northwest as a single region with 

8050 training samples for model training. Additionally, we considered the Beijing-Tianjin-Hebei, 

Yangtze River Delta, and Peral River Delta urban agglomerations as three separate regions due to 

the comparable economic levels and population size.” (page 9, line 189-200) 



 

Figure 3. Distribution of subregions. 

Reference: 

Wu, W.-B., Ma, J., Banzhaf, E., Meadows, M. E., Yu, Z.-W., Guo, F.-X., Sengupta, D., Cai, X.-X., and Zhao, B.: A 

first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and 

machine learning, Remote Sensing of Environment, 291, 113578, https://doi.org/10.1016/j.rse.2023.113578, 2023. 

Comment #2: The first sentence of several paragraphs in the result section introduces the 

methodology, but it is recommended to revise them to summarize the findings of the current 

paragraph instead. You may place the corresponding methodology in the method section, or 

write it after the figure caption. 

Response: thank you for your comments. We checked the first sentences of all the paragraphs in 

the result section and summarized the findings at the beginning of paragraphs, including: 

“Our 3D-GloBFP showed the most similar numerical distribution patterns to the reference 

heights across the United States, China, and Europe (Fig. 7).” (page 17, line 346-347) 

“In the respective regional comparisons, first, we found that our 3D-GloBFP outperforms other 

building-scale height datasets in the US.” (page 18, line 357-358) 

“Second, our 3D-GloBFP is similar to the reference height in terms of distribution and spatial 

patterns in China.” (page 19, line 372) 

The description of methodology was reorganized in method section. 

Comment #3: While most of the results presented in this paper appropriately utilize the present 

simple tense, there are some instances where the past tense has been used inappropriately, see 

for example, line 149. 

Response: thank you for the comment. We checked the tense throughout the paper. We used the 



simple past tense to describe the completed process and present the research findings. And the 

simple present tense is used to describe the contents of figures and tables. The language has been 

polished by professional editing. The revised sentences in the article include: 

“The validation results with interpreted heights from Google Earth Street Views indicated the 

estimated results are consistent with the reference heights in the metropolitans of countries around 

the world, particularly for those landmark buildings.” (page 13, line 276) 

“Our estimated building heights provided more details of urban morphology and show more 

accurate results compared to the other four existing global datasets.” (page 14, line 292) 

“The building volume and area of representative cities varied significantly across different regions 

worldwide.” (page 23, line 441) 

Comment #4: Expanding the discussion of challenges and future work would provide valuable 

insights into the dataset's limitations and potential for growth. 

Response: thank you for your suggestion. First, improving the accuracy of building height 

estimations across various scenarios remains a key challenge. For instance, in densely built urban 

cores with more high-rise buildings, the complex structures and dense spatial patterns can lead to 

an underestimation of high-rise buildings. Furthermore, generating three-dimensional building 

footprints with temporal information is also a challenge. The dataset reflects the building structure 

for only a single year, whereas building heights may vary over time due to new construction and 

the demolition of existing buildings. In future work, we plan to use LiDAR datasets and filed 

survey data to improve the accuracy of building height estimation, especially for high-rise 

buildings. Also, we aim to develop multi-temporal building datasets to capture the dynamic 

changes in three-dimensional urban landscapes.  

We have revised the manuscript to include a more detailed examination of the challenges and the 

future work: 

“The resolution of coarse-resolution remote sensing dataset (e.g., DSM with a 30 m resolution and 

nighttime light with a 463.83 m resolution) make it difficult to capture the heterogeneity features 

of super tall buildings, especially in densely built urban cores. Moreover, height and material of 

high-rise buildings, as well as the side-looking scene illumination Sentinel sensor, can cause 

complex multipath effects, complicating radar signal propagation, and ultimately affecting the 

accuracy of height estimations (Frantz et al., 2021; Stilla et al., 2003).” (page 12, line 263-268) 

“Second, the current version of 3D-GloBFP shows relatively lower accuracy in areas with limited 

building height samples (i.e., suburb of South America). Integrating additional data (i.e., ground 

survey data and LiDAR datasets) to create more representative samples can enhance the accuracy 

of building height estimation. Additionally, the current version of 3D-GloBFP represents building 

height of a single year (i.e., 2020), as the model inputs (i.e., multi-source datasets) were collected 

around that time. This temporal limitation restricts the dataset’s ability to reflect changes over 

time. We are also committed to producing 3D building datasets with temporal information to 

capture the dynamic changes of urban landscape.” (page 24-25, line 465-471) 



Comment #5: Identifying gaps in current knowledge, discussing opportunities for integrating 

additional data sources, and outlining plans for updating and maintaining the dataset over time 

would demonstrate the authors' commitment to ongoing improvement and research. 

Response: thank you for your insightful comments. The limitations of the dataset include the 

accuracy in areas with limited samples and the coverage in some countries. First, areas with fewer 

samples, primarily undeveloped areas or cities with inadequate data show lower precision. Second, 

spatial coverage of three-dimensional building height data is incomplete in some regions due to 

the lack of detailed building boundary extraction, particularly in rural areas of certain countries. 

To address these issues, we will integrate additional data sources, including ground survey data, 

LiDAR, and other publicly available remote sensing data to enhance the accuracy of building 

height estimation models. Additionally, we will regularly update the dataset as more building 

boundary datasets become available. 

We have summarized the gaps and plans for integrating datasets and updating the proposed dataset 

to enhance the manuscript: 

“4.6 Limitations and future work 

While this study provides valuable insights, several limitations must be acknowledged. First, the 

coverage is limited in certain regions, leading to tiled spatial gaps within some countries. These 

gaps are due to the limited coverage of Microsoft building footprints at the time of data creation. 

As more building footprint datasets become available, we will continue to update and enhance 

3D-GloBFP using comprehensive open-source data. Second, the current version of 3D-GloBFP 

shows relatively lower accuracy in areas with limited building height samples (i.e., suburb of 

South America). Integrating additional data (i.e., ground survey data and LiDAR datasets) to 

create more representative samples can enhance the accuracy of building height estimation.” 

(page 24, line 461-467) 

By addressing these points, the authors can enhance the readability and presentation of their work, 

thereby ensuring that the 3D-GloBFP dataset becomes an invaluable asset to the scientific 

community. 

 

 


