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Abstract  13 

Phytoplankton bloom phenology is an important indicator for the monitoring and management of marine resources 14 

and the assessment of climate change impacts on ocean ecosystems. Despite its relevance, there is no long-term 15 

and sustained observational phytoplankton phenological product available for global ocean implementation. The 16 

data product presented here addresses this need through the development of phenological detection algorithms 17 

(including among other seasonal metrics, the bloom initiation, termination, duration, and amplitude timing) using 18 

satellite derived chlorophyll-a data from the Ocean Colour Climate Change Initiative. This product provides the 19 

phenology output from three widely used bloom detection algorithms at three different spatial resolutions (4, 9 20 

and 25 km) allowing for both regional and global-scale applications. In this study, the mean global phenology is 21 

characterised according to the three phenological detection methods and the different resolutions, which are 22 

compared to one another. In general, there is good agreement between the detection methods and between different 23 

resolutions on global scales. Regional differences are evident in coastal domains (particularly for resolution) and 24 

in regions with strong transitions between phytoplankton seasonal characteristics. This product can be used 25 

towards the development of national and global biodiversity assessments, pelagic ecosystem mapping and for 26 

monitoring change in climate sensitive regions relevant for ecosystem services. The dataset is published in the 27 

Zenodo repository under the following DOIs, 4 km: https://doi.org/10.5281/zenodo.8402932. 9 km: 28 

https://doi.org/10.5281/zenodo.8402847 and 25 km: https://doi.org/10.5281/zenodo.8402823 (Nicholson et al., 29 

2023a, b, c) and will be updated regularly. 30 

https://doi.org/10.5194/essd-2024-21
Preprint. Discussion started: 29 February 2024
c© Author(s) 2024. CC BY 4.0 License.



 

2 

1 Introduction  31 

The seasonal proliferation of phytoplankton across the world’s ocean is a ubiquitous signal visible from space, 32 

and one that plays a crucial role in the Earth system. Phytoplankton “blooms” capture 30-50 billion metric tons of 33 

carbon annually, representing almost half of the total carbon uptake by all plant matter (Falkowski, 1994; 34 

Longhurst et al., 1995; Field et al., 1998; Carr et al., 2006; Buitenhuis et al., 2013). Their key role in driving the 35 

strength and efficiency of the biological carbon pump, the transfer of atmospheric carbon to the deep ocean 36 

interior, is a crucial component of the global carbon cycle and instrumental in the assessment of climate feedbacks 37 

and change (Henson et al., 2011; Devries, 2022). Phytoplankton also mediate climate through the production of 38 

important atmospheric trace gases such as nitrous oxide, a potent greenhouse gas, and volatile organic carbons 39 

such as dimethyl sulphide, that have a significant impact on cloud formation and global albedo (Charlson et al., 40 

1987; Korhonen et al., 2008; McCoy et al., 2015; Park et al., 2021). As the foundation of the marine food chain, 41 

phytoplankton are critical to supporting higher trophic levels and a lucrative fisheries industry that impacts global 42 

food security (Stock et al., 2017; Gittings et al., 2021). There is an enormous benefit to society in being able to 43 

predict ecosystem responses to environmental change, by providing the knowledge necessary for competent 44 

decision-making. As such understanding, characterising and accurately predicting changes in the annual cycle of 45 

phytoplankton blooms provides an essential tool for managing marine resources and for predicting future climate 46 

change impacts (Tweddle et al., 2018; Thomalla et al., 2023).  47 

 48 

Phytoplankton phenology refers to the timing of seasonal activities of phytoplankton biomass and is used widely 49 

as an indicator to monitor phytoplankton blooms. Adjustments in the characteristics of phenology typically reflect 50 

alterations in ecosystem function that may be linked to environmental pressures such as climate change (Racault 51 

et al., 2012; Henson et al., 2018; Thomalla et al., 2023). Key phenological phases of phytoplankton bloom 52 

development include: the time of initiation, the time of maximum concentration (amplitude), the time of 53 

termination and duration as the time between initiation and termination. These phytoplankton bloom phases are 54 

typically driven by seasonal changes in physical forcing (such as incoming solar radiation, water column mixing 55 

and nutrient depletion), which are generally linked to large-scale climate drivers (Racault et al., 2012; Thomalla 56 

et al., 2023). The timing of the bloom initiation and amplitude is particularly critical for efficient trophic energy 57 

transfer, which can be impacted negatively through trophic decoupling. For example, mismatches between bloom 58 

timing and zooplankton grazing can lead to suboptimal food conditions for higher trophic levels which in turn has 59 

been linked to the collapse of crucial fisheries (Cushing, 1990; Koeller et al., 2009; Seyboth et al., 2016; Stock et 60 

al., 2017). Bloom duration impacts the amount of biomass being generated within a season that can be exported 61 

to the ocean’s interior or transferred to higher trophic levels via the marine food web and can thus play a more 62 

important role than bloom magnitude (Barnes, 2018; Rogers et al., 2020). Bloom timing has also been shown to 63 

influence the seasonal cycles of CO2 uptake, primary production and the efficiency of carbon export and storage 64 

(Lutz et al., 2007; Bennington et al., 2009; Palevsky & Quay, 2017; Boot et al., 2023)  65 

 66 

Current generation Earth System Models (ESMs) show that phytoplankton phenology is changing and will 67 

continue to change in response to a warming and more stratified ocean (Henson et al., 2018; Yamaguchi et al., 68 

2022). For example, blooms are predicted to initiate later in the mid-latitudes and earlier at high and low latitudes 69 
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by ~5 days per decade by the end of the century (Henson et al., 2018). But what about changes in bloom phenology 70 

in the contemporary period? Satellite-based ocean colour remote sensing, which provides estimates of 71 

chlorophyll-a (chl-a) concentrations (a proxy for phytoplankton abundance), is the only observational capability 72 

that can provide synoptic views of upper ocean phytoplankton characteristics at high spatial and temporal 73 

resolution (~1 km, ~daily) and high temporal extent (global scales, for years to decades). In many cases, these are 74 

the only systematic observations available for chronically under-sampled marine systems such as the polar oceans. 75 

In 1997, the first global ocean colour observing satellite (SeaWiFS) was launched and these observations have 76 

been sustained through a successive series of additional ocean colour satellites (MODIS, MERIS, VIIRS, OLCI). 77 

These have all been merged by the European Space Agency into the Ocean Colour Climate Change Initiative 78 

(OC-CCI) data product, which provides ~25 years of ocean colour data for climate change assessment 79 

(Sathyendranath et al., 2019). The estimation of phytoplankton phenology from this data product on a global scale 80 

can provide important information of the rates of change in key indices for comparison to those derived from 81 

ESM’s. For example, using 25 years of satellite-derived chl-a (1997-2022), (Thomalla et al., 2023) recently 82 

revealed that large regions of the Southern Ocean expressed significant trends in phenological indices that were 83 

typically much larger (e.g. <50 days decade-1) than those reported in previous climate modelling studies (< 5-10 84 

days decade-1). Thomalla et al. (2023) conclude, that seasonal adjustments of this magnitude at the base of the 85 

food web may impact the nutritional stress, reproductive success, and survival rates of larger marine species (e.g., 86 

seals, seabirds, and humpback whales), in particular if they are unable to synchronise their feeding and breeding 87 

patterns with that of their food supplies. A similar analysis using these key phytoplankton metrics applied to the 88 

global ocean will reveal regional sensitivities of ecosystems to change with important implications for ecosystem 89 

function and climate. There is also a need to have a global phytoplankton phenology product such as this annually 90 

updated to allow for the continuous monitoring and assessment of the seasonal adjustments of phytoplankton on 91 

global scales (in addition to continued benchmarking for ESMs). These assessments of the sensitivity of key 92 

ecosystems to change are relevant for effective marine management programs and early detection of 93 

vulnerabilities in key regions, e.g., those necessary for sustaining fisheries. In addition, a phenology data product 94 

such as this can provide a useful aid for the planning of oceanographic research campaigns among many other 95 

applications. 96 

 97 

In this paper, we present a new data product consisting of global phytoplankton phenological indicators (including 98 

among other metrics bloom initiation, termination, amplitude, and duration) computed using three different 99 

gridded resolutions (4, 9 and 25 km) and with three different methodologies of determining key metrics. The data 100 

product is currently available from 1997 until 2022 and will be updated annually and in sync with any version 101 

updates of the OC-CCI chl-a data product.  102 

2 Methodology  103 

2.1 Data and pre-processing  104 
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Satellite-derived chl-a concentrations (mg m-3) were obtained from the European Space Agency, from OC-CCI 105 

(https://esa-oceancolour-cci.org; (Sathyendranath et al., 2019) at 4 km and 8-day resolution. The latest available 106 

OC-CCI product (version v6.0, released on 04/11/2022) is used in this present study. This version marks a 107 

substantial change to previous versions (e.g., v5.0, see Sathyendranath et al., 2021) in that it incorporates Sentinel 108 

3B OLCI data, the MERIS-4th reprocessing dataset, upgraded Quasi-Analytical algorithm (QAAv6) and the 109 

exclusion of MODIS and VIIRS data after 2019 (refer to D4.2 - Product User Guide for v6.0 Dataset from 110 

https://climate.esa.int/en/projects/ocean-colour/key-documents/). Data provided by OC-CCI covered the period 111 

from 29/08/1997 – 27/12/2022 for the global ocean (90°N – 90°S and 180°E – 180°W).  112 

 113 

The phenological indices described below are calculated using three horizontal resolutions in surface chl-a, the 114 

native 4 km resolution as provided by OC-CCI and a regridded 9 km and 25 km horizontal resolution. The 4 km 115 

and 9 km resolutions are considered important for smaller-scale regional needs such as coastal applications and 116 

field campaigns. The 25 km resolution is the most computationally efficient for users to work with, it results in a 117 

reduction of missing data and is useful for global open-ocean applications. For the 9 km and 25 km resolutions, 118 

chl-a is regridded onto a regular grid through bilinear interpolation using the xESMF Python package (Zhuang et 119 

al., 2023). In all resolutions for phenological detection, data gaps were reduced further by applying a linear 120 

interpolation scheme in sequential steps of longitude, latitude, and time (Racault et al., 2014). A two-point limit 121 

(e.g., the maximum number of consecutive empty grid cells to fill) is chosen for the interpolation to avoid 122 

overfilling of regions that contain larger coherent data gaps. We further apply a 3 time-step (24 days) rolling mean 123 

along the time dimension to avoid any outliers that may result in fake detection points. However, for the Seasonal 124 

Cycle Reproducibility (SCR) computations only interpolation (time, lat and lon) is carried out, this is discussed 125 

further below. 126 

2.2 Phenological Indices and Detection 127 

Phytoplankton blooms typically manifest as a seasonal cycle, with a bloom initiation that identifies the timing of 128 

the ramp up in phytoplankton growth and biomass accumulation followed by bloom peaks within the growing 129 

season (which could be multiple) and finally the bloom termination, which defines the end of the growing season. 130 

The phenological indices applied here are based on those applied to the SO in(Thomalla et al., 2023). To calculate 131 

the phenological indices for initiation and termination, we apply three main detection methods used by the 132 

community (refer to Brody et al., 2013) which are detailed below (iii and iv). Each detection method has its 133 

strengths and weaknesses, and therefore the choice of method for application can be determined by the user needs, 134 

which are elaborated on in (Brody et al., 2013). These methods were chosen over other approaches (e.g., Rolinski 135 

et al., 2007; Platt et al., 2009) due to the method’s suitability for estimates across global scales as it is capable of 136 

encompassing a wide range of different shapes in phytoplankton blooms (Racault et al., 2012). In this data product, 137 

all three approaches are provided globally at all three resolutions. Below we outline the series of steps 138 

implemented for estimating the global phenological indices and provide an accompanying flow chart (Figure 1) 139 

to illustrate the succession of steps being implemented. In addition, we provide some example applications at four 140 

key observing stations (Figure A1) to facilitate a visualisation of the derived phenological indices from four annual 141 

time series. 142 
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 143 

(i) Bloom maximum climatology: The climatological peak (maximum amplitude) of the bloom was identified as 144 

the local maximum in chl-a occurring within each grid cell's 25-year climatology. This approach was necessary 145 

because the timing of bloom events varies globally, i.e., southern hemisphere blooms typically occur during austral 146 

spring - summer (September - February), while northern hemisphere blooms occur in boreal spring - summer 147 

(April - August)(Racault et al., 2012). Furthermore, both hemisphere tropics tend to be approximately 6 months 148 

out of phase with both hemisphere higher latitude regions. As such, it would be inappropriate to use a fixed date 149 

period (or “bloom slice” see below) to identify bloom occurrence on global scales. Instead, for each grid cell we 150 

calculate the 8-day mean climatology. The date of the maximum climatological bloom for each pixel is then used 151 

to centre the timing of the phenology detection algorithms described below.  152 

 153 

(ii) Identification of bloom peaks: For every pixel on a year-by-year basis we take the climatological bloom 154 

maximum peak ±6 months and determine the date and magnitude of the bloom maximum peak for each year. To 155 

ensure that seasonal blooms with more than one peak could be accounted for, multiple bloom peaks were defined 156 

as a second, third, or nth local maxima where the chl-a concentration reached at least 75% of the amplitude of the 157 

bloom maximum peak magnitude and were a minimum of 24 days (i.e., 3 x 8 day time intervals) away from the 158 

bloom maximum peak for that year. These additional peaks were found within ±6 months of the maximum peak. 159 

An example of such a multi-peak bloom detection is provided in Figure 1 and Figure A1c. The additional peaks 160 

were identified with the Python SciPy (Virtanen et al., 2020) function ‘find_peaks’. 161 

 162 

(iii) The ‘bloom slice’: The bloom slice, used to find the bloom initiation and termination dates, is identified for 163 

each pixel as the 6 month time span preceding and following from the maximum bloom peak (ii). Or in the case 164 

of multi-modal blooms, 6-months preceding the first and following the last peak respectively. 165 

  166 

(iv) Bloom initiation: The bloom initiation date for each bloom slice as described in (iii) is calculated as the first 167 

date before either the bloom maximum, or the first peak in the event of multi-modal blooms, according to the 168 

following thresholds: 169 

1. Biomass-based threshold method (TS): First determine the range as the difference in chl-a concentration 170 

between the bloom maximum and preceding minimum. Then identify the bloom initiation as the first 171 

date that the chl-a concentration was greater than the minimum chl-a concentration plus 5% of the chl-a 172 

range.  173 

2. Cumulative biomass-based threshold method (CS): First remove any values preceding the bloom slice 174 

minimum chl-a concentration and any values greater than 3 times the median of the bloom slice, before 175 

calculating the cumulative sum of chl-a. Then identify the first date that the chl-a concentration was 176 

greater than 15% of the total cumulative chl-a concentration. 177 

3. The rate of change method (RC): First determine the rate of change of the bloom slice and then identify 178 

the first date that the chl-a rate of change was greater than 15% of the median rate of change in chl-a 179 

concentration. 180 

 181 
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(v) Bloom termination: The bloom termination date for each bloom slice was similarly calculated as the first date 182 

after the bloom maximum, or the last peak in the event of multi-modal blooms, according to the following 183 

thresholds:  184 

1. TS: the first date that the chl-a concentration was less than the minimum chl-a concentration plus 5% of 185 

the chl-a range.  186 

2. CS: the first date that the chl-a concentration was less than 15% of the total cumulative chl-a 187 

concentration. 188 

3. RC: the first date that chl-a rate of change was less than 15% of the median rate of change in chl-a 189 

concentration. 190 

 191 

(vi) Bloom duration: The bloom duration was calculated as the number of days between the bloom initiation and 192 

termination dates. This is applied to each phenological detection method described above (TS, CS and RC).  193 

 194 

(vii) Integrated and mean bloom chl-a: The seasonally integrated bloom chl-a was calculated using the NumPy 195 

(Harris et al., 2020) trapezoidal function as the chl-a concentration integrated between the bloom initiation and 196 

termination dates. The seasonal mean chl-a was calculated as the average chl-a between the bloom initiation and 197 

termination dates. These are applied to each of the three phenological detection methods described above (TS, CS 198 

and RC).  199 

 200 

(viii) SCR: The variance of the seasonal cycle was calculated as defined in Thomalla et al., (2023), where the SCR 201 

is the Pearson’s correlation coefficient of the annual seasonal cycle correlated against the climatological mean 202 

seasonal cycle. A value of 100% is indicative of an annual seasonal cycle that is a perfect repetition of the 203 

climatological mean, while a value of 0% means that there is no annually reproducible mean seasonal cycle. 204 

Unlike for phenological indices i-vii, for SCR the original OC-CCI v6.0 data were used for the three different grid 205 

resolutions, however with only spatial-temporal interpolation for gap filling and no rolling mean to avoid 206 

smoothing out temporal variability. For SCR for each pixel the bloom slice is restricted to 12 months (i.e., January 207 

to December). 208 

 209 

To generate climatological means we used the Python SciPy function ‘circmean’ which calculates circular means 210 

for samples in a range. For example, we need to avoid a situation where the mean bloom initiation between a year 211 

with a bloom in December (e.g., day of year = 350) and a year with a bloom in January (e.g., day of year = 20) is 212 

incorrectly calculated as an average bloom initiation date in July (e.g., day of year = 185), where the correct mean 213 

is in January (e.g., day of year 3).  214 

 215 
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 216 
Figure 1: Methodological flow chart outlining the steps taken to calculate the phytoplankton seasonal metrics. An 217 

example time-series illustrating the performance of the resulting phenological indices for a bimodal (double peak) 218 

bloom in the Southern Ocean (45˚S, 7.5˚W) is provided for the three different phenological methods, biomass-219 

based threshold (TS), cumulative sum (CS) and rate of change (RC). *See Methodology for pre-processing steps. 220 

3 Results and Discussion 221 

3.1 Global open-ocean phytoplankton seasonal metrics 222 

A significant degree of regional variability is evident in the mean distribution of seasonal metrics (bloom 223 

amplitude, timing, and seasonality) (Figure 2). Bloom magnitude metrics (max bloom chl-a, mean bloom chl-a 224 

and integrated bloom chl-a; Figure 2a-c) are all higher in the high-latitudes and in the coastal regions, particularly 225 

in the Eastern Boundary Current Systems, and lowest in the oligotrophic subtropical gyres. There is a general 226 

equator-to-pole symmetry in the timing of phytoplankton blooms between the northern and southern hemispheres. 227 
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In the subpolar regions phytoplankton blooms initiate in the northern hemisphere during Boreal Spring to early 228 

summer (March-May) and in the southern hemisphere in Austral Spring to early summer (September-November) 229 

in response to light availability (Sverdrup, 1953) (Figure 2d). While in the subtropics, where there is ample light 230 

throughout the year, blooms typically initiate in autumn to winter in response to nutrient supplies through winter-231 

driven deepening of the mixed-layer (Fauchereau et al., 2011; Thomalla et al., 2011). In both the Antarctic and 232 

Arctic polar regions, phytoplankton blooms initiate in Austral (December) and Boreal summer (July), when the 233 

sea-ice cover melts. The timing of bloom maximum follows the same equator-to-pole symmetry as bloom 234 

initiation (Figure 2g), with high latitude regions peaking in Austral and Boreal summer, whereas the subtropics 235 

peak in Austral and Boreal winter. This large-scale meridional structuring of the bloom timing is as expected and 236 

similarly found in previous large-scale satellite based phenological studies(Sapiano et al., 2012; Kahru et al., 2011; 237 

Racault et al., 2012). There is a larger degree of spatial heterogeneity in bloom termination (Figure 2e), particularly 238 

evident in regions such as the high latitude North Atlantic and sub-Antarctic, with terminations that extend up to 239 

6 months later in comparison to surrounding areas which were initiated at a similar time. This manifests in zonal 240 

asymmetries across the different basins for bloom duration (Figure 2f), with considerably longer blooms occurring 241 

in the Pacific basin compared with the Atlantic and Indian basins. SCR covers a large range of variability across 242 

latitudinal bands. Notably, SCR (Figure 2h) is oftentimes low in regions where bloom duration is long, and this 243 

relationship is strongest in the tropical Pacific (r ~ -0.4). In the Southern Ocean, long-sustained but highly variable 244 

blooms were proposed as a response to intermittent physical forcing (high-frequency wind and meso to 245 

submesoscale dynamics) that entrain nutrients and postpone the seasonal termination (Thomalla et al., 2011). 246 
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247 
Figure 2: Global distribution of phytoplankton seasonal metrics. Mean [1998 – 2022] maps of (a) bloom max 248 

chlorophyll (chl-a), (b) mean chl-a over bloom duration, (c) integrated chl-a over bloom duration, (d) bloom 249 

initiation, (e) bloom termination, (f) bloom duration, (g) bloom max chl-a date, and (h) seasonal cycle 250 

reproducibility (SCR). Phenological indices (b-f) are determined using the Biomass-based threshold method as 251 

defined in Henson et al., 2018; Thomalla et al., 2023. 252 

3.2 Comparison between phenology detection methods 253 

Phytoplankton blooms can initiate rapidly, slowly, be short lived, intermittent, or sustained over a growing season, 254 

with different detection methods being more or less sensitive to these varying characteristics of the seasonal bloom 255 

(Thomalla et al., 2023; Brody et al., 2013). In this data product we have chosen to provide three methods of 256 

application to all resolutions and allow the user to determine which method (or all) is most appropriate for their 257 

region and application. For example, the TS method, based on the range of bloom amplitude (refer to methods), 258 

may be more suitable for studies wanting to investigate the match or mismatch between phytoplankton and upper 259 

trophic levels (explanation provided in Brody et al., (2013). The RC method, which identifies the bloom initiation 260 

as the time when chl-a increases rapidly, is likely more suitable for investigating the physical or biochemical 261 
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mechanisms that create conditions in which the bloom occurs (Brody et al., 2013). Whereas the CS method could 262 

be used to identify either of the features above (Brody et al., 2013). It is also interesting and potentially valuable 263 

to determine when and where different methods of determination agree or disagree. The coefficient of variation 264 

is used here to assess the agreement between climatological means from different methods of detection across 265 

regional domains (with strong agreement represented by values closest to zero).  266 

Across large regions of the global ocean, there is strong agreement between methodological approaches (Figure 267 

3). The largest disagreements between phenological detection methods are in bloom termination (Figure 3a), with 268 

the most notable differences evident in the boundaries of the southern hemisphere subtropical regions and of the 269 

northern boundary of the subAntarctic zone. With bloom initiation, the largest difference in the detection methods 270 

similarly occur in the southern hemisphere notably within the subtropical gyres and within the Antarctic Marginal 271 

Ice Zone against the Antarctic continent where data is particularly sparse (Figure 3b). Dissonance is also evident 272 

at the transition between the subtropical and subpolar Northern Hemisphere. This is not too surprising, given that 273 

these boundaries represent areas of significant biogeochemical signatures and regime shifts between 274 

phytoplankton seasonal characteristics with strong north-south gradients in bloom metrics (Figure 2). While there 275 

are no other comparisons of these detection methods on a global scale, such differences were similarly seen in 276 

(Brody et al., 2013) for the North Atlantic bloom, their Figure 4, where the largest differences between bloom 277 

initiation methods occurred at the sharp transition boundaries between the subtropical and subpolar latitudes. 278 

There is general agreement in bloom duration between the different methods (Figure 3c), with only a ~20-day 279 

difference in the climatological global median between TS and the other methods, data not shown. Similarly, for 280 

integrated and mean bloom chl-a (Figure 3d, e) there is in general little difference between the methods of 281 

detection, with largest differences, as with duration, occurring in the Southern Ocean, particularly around sub-282 

Antarctic Islands, and a localised region of the Atlantic where the Amazon River discharges occurs.  283 
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284 
Figure 3: Comparisons between phenological detection methods, the Threshold method (TC), the Cumulative 285 

Sum method (CS) and the Relative Change method (RC), for selected seasonal phytoplankton bloom metrics, 286 

including (a) bloom termination, (b) bloom initiation, (c) bloom duration, (d) bloom integrated chl-a and (e) 287 

bloom mean chl-a. The coefficient of variation (CoV) is calculated as the inter-method standard deviation 288 

normalised to the inter-method mean, please note the different scale in panels (a) and (b).  289 

3.3. High-resolution phenology indices  290 

The phenology data product presented here is offered at three different horizontal resolutions (4, 9 and 25 km), 291 

which when compared on a global scale (Figure 4) shows little to no difference in the overall mean distribution 292 

of three selected phytoplankton seasonal metrics, including bloom mean chl-a (Figure 4a), bloom duration (Figure 293 

4b) and SCR (Figure 4c). Given that the large-scale distributions of the seasonal metrics remain virtually the same 294 

there is little benefit for the user to use the more computationally expensive 4 km product for applications across 295 

these larger scales.  296 
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 297 
Figure 4: Probability Density Functions (PDF) of annual mean (calculated from 1998 to 2022) phytoplankton 298 

seasonal cycle metrics, compared across three different spatial resolutions (4, 9 and 25 km) for (a) bloom mean 299 

chlorophyll-a, (b) bloom duration and (c) seasonal cycle reproducibility (SCR). The TS phenology method is used 300 

for (a) and (b). 301 

 302 

There are, however, notable differences in the resolution of the product on smaller regional scales which appear 303 

qualitatively different when compared at two example sites (Figure 5). The sites were selected to reflect regions 304 

where a critical dependence is anticipated on the timing and magnitude of seasonal phytoplankton production. 305 

The Benguela upwelling system (Figure 5a-c), off the west coast of South Africa is an essential region for 306 

supporting key fisheries, while the subAntarctic Kerguelen Island (Figure 5d-f) is a vulnerable marine ecosystem 307 

that supports a number of key species. The coarseness of the 25 km product is clearly evident in both sites at these 308 

scales, it is considerably more pixelated and there are notable patches where there are differences in the resultant 309 

phenological metric between resolutions. For example, in the near-shore of St Helena Bay the integrated bloom 310 

chl-a climatology (2017-2022) differs between resolutions from 1654 mg m-3 bloom-1, 1841 mg m-3 bloom-1, and 311 

1843 mg m-3 bloom-1, for the 25 km, 9 km and 4 km maps respectively. At Kerguelen Island, interaction of the 312 

Polar Front with shallow bathymetry generates persistent fine-scale ocean dynamics that set strong regional 313 

gradients in phytoplankton production (Park et al., 2014). These fine-scale gradients are clearly seen in the spatial 314 

variability of bloom duration captured by the higher resolution products. The ‘footprint’ of the island is evident 315 

in the extended bloom durations occurring over the shallow plateau associated with the island where there is 316 

considerable resuspension of dissolved iron, a key limiting nutrient (Blain et al., 2001). These examples highlight 317 

how this data product can be applied to derive valuable indicators for use in national biodiversity assessments, 318 

pelagic ecosystems mapping and marine resource management with the added potential of monitoring change in 319 

climate sensitive regions relevant for ecosystem services. For regional studies or applications in coastal domains 320 

it is recommended that users favour the high spatial resolution product, as it could facilitate detection of finer 321 

scale delineations of phenoregions in transitional waters or detect fine scale distributions in phenology metrics 322 

that are associated with physical or oceanographic features such as eddies, bays, and upwelling cells. While some 323 

phenology indicators produced from daily data could offer additional insights into coastal regions with high 324 

temporal variability (e.g., Ferreira et al., 2021), our dataset offers a resource for areas where long gaps in the time-325 

series could negate the use of daily data.  326 

 327 
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 328 
Figure 5: Regional domains comparing the impact of different resolutions (a,d) 25 km, (b,e) 9 km and (c,f) 4 km 329 

on (a-c) bloom integrated chl-a and (d-f) the bloom duration averaged from 2017-2022 for (a-c) the Benguela 330 

Upwelling System off the west coast of South Africa and (d-f) Kerguelen, a Sub-Antarctic island in the Southern 331 

Ocean. 332 

4 Data availability  333 

The data are available on the Zenodo repository under the following DOIs, 4 km: 10.5281/zenodo.8402932, 9 km: 334 

10.5281/zenodo.8402847 and 25 km: 10.5281/zenodo.8402823 (Nicholson et al., 2023a, b, c). Chl-a data, used to 335 

develop the phytoplankton phenology product, is available from the Ocean Colour–CCI dataset (v.6.0) at 336 

https://esa-oceancolour-cci.org. 337 

5 Conclusions  338 

The data product presented here provides a 25-year continuous record of key phytoplankton seasonal cycle metrics 339 

(phytoplankton bloom phenology, bloom seasonality and bloom magnitude) on a global-scale. It includes three 340 

different phenology detection methods that are widely used by the community. We do not advocate for a particular 341 

method over another, the strengths and weaknesses of these different approaches have been highlighted in other 342 

studies (e.g., Brody et al., 2013), it is up to the user to choose which (if not all) is the most appropriate for their 343 

research applications. The data product is also provided at three different horizontal resolutions (4, 9 and 25 km) 344 

for regional versus global-scale application. This product is applicable for a broad range of national to international 345 

research and industry applications. Its primary strength is that it can be used to assess, monitor, and understand 346 

regional to global-scale characteristics in phytoplankton phenology and to detect change associated with 347 

environmental drivers, which is critical for effective management of marine ecosystems and fisheries. This data 348 
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product will undergo regular updates for future applications and extended time series analysis, which typically 349 

happens every two years. It will also be updated when data is temporally extended or when the OC-CCI releases 350 

any version updates beyond v.6.0 that will include backwards corrections for previous years, so the entire dataset 351 

aligns with the latest version of OC-CCI. This preactive helps to prevent the retention of erroneous values within 352 

the data set.  353 

Appendix A 354 

 355 
 356 

Figure A1: Examples of phytoplankton bloom seasonal cycles and comparisons in phenological detection 357 

methods at key sustained observing stations across the global ocean. For (a) Hawaii Ocean Time-series (HOT, 358 

21° 20.6'N, 158° 16.4'W), (b) Southern Ocean Time Series Observatory (SOTS, 140°E, 47°S), (c) Bermuda 359 

Atlantic Time-series Study (BATS, 31° 50' N, 64° 10'W) and (d) Porcupine Abyssal Plain (PAP-SO, 49°N, 360 

16.5°W) sustained observatory time-series.  361 
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