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Abstract  13 

Phytoplankton bloom phenology is an important indicator for the monitoring and management of marine resources 14 

and the assessment of climate change impacts on ocean ecosystems. Despite its relevance, there is no long-term 15 

and sustained observational phytoplankton phenological product available for global ocean implementation. This 16 

need is addressed here by providing a  phenological data product (including among other seasonal metrics, the 17 

bloom initiation, termination, duration, and amplitude timing) using satellite derived chlorophyll-a data from the 18 

Ocean Colour Climate Change Initiative. This multi-decadal data product provides the phenology output from 19 

three widely used bloom detection methods at three different spatial resolutions (4, 9 and 25 km) allowing for 20 

both regional and global-scale applications. When compared to each other on global scales, there is  general 21 

agreement between the detection methods and between the different resolutions. Regional differences are evident 22 

in coastal domains (particularly for different resolutions) and in regions with strong transitions (notably for 23 

different detection methods). This product can be used towards the development of national and global 24 

biodiversity assessments, pelagic ecosystem mapping and for monitoring change in climate sensitive regions 25 

relevant for ecosystem services. The dataset is published in the Zenodo repository under the following DOIs, 4 26 

km: https://doi.org/10.5281/zenodo.8402932, 9 km: https://doi.org/10.5281/zenodo.8402847 and 25 km: 27 

https://doi.org/10.5281/zenodo.8402823 (Nicholson et al., 2023a, b, c) and will be updated on annual basis. 28 

https://doi.org/10.5281/zenodo.8402932
https://doi.org/10.5281/zenodo.8402847
https://doi.org/10.5281/zenodo.8402823
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1 Introduction  29 

The seasonal proliferation of phytoplankton across the world’s ocean is a ubiquitous signal visible from space, 30 

and one that plays a crucial role in the Earth system. Phytoplankton “blooms” capture 30-50 billion metric tons of 31 

carbon annually, representing almost half of the total carbon uptake by all plant matter (Buitenhuis et al., 2013; 32 

Carr et al., 2006; Falkowski, 1994; Field et al., 1998; Longhurst et al., 1995). Their key role in driving the strength 33 

and efficiency of the biological carbon pump, the transfer of atmospheric carbon to the deep ocean interior, is a 34 

crucial component of the global carbon cycle and instrumental in the assessment of climate feedbacks and change 35 

(DeVries, 2022; Henson et al., 2011). Phytoplankton also mediate climate through the production of important 36 

atmospheric trace gases such as nitrous oxide, a potent greenhouse gas, and volatile organic carbons such as 37 

dimethyl sulphide, that have a significant impact on cloud formation and global albedo (Charlson et al., 1987; 38 

Korhonen et al., 2008; McCoy et al., 2015; Park et al., 2021). As the foundation of the marine food chain, 39 

phytoplankton are critical to supporting higher trophic levels and a lucrative fisheries industry that impacts global 40 

food security (Gittings et al., 2021; Stock et al., 2017). There is an enormous benefit to society in being able to 41 

predict ecosystem responses to environmental change, by providing the knowledge necessary for competent 42 

decision-making. As such understanding, characterising and accurately predicting changes in the annual cycle of 43 

phytoplankton blooms provides an essential tool for managing marine resources and for predicting future climate 44 

change impacts (Thomalla et al., 2023; Tweddle et al., 2018).  45 

 46 

Phytoplankton phenology refers to the timing of seasonal activities of phytoplankton biomass and is used widely 47 

as an indicator to characterise phytoplankton blooms and to monitor their variability over time. Adjustments in 48 

the characteristics of phenology typically reflect alterations in ecosystem function that may be linked to 49 

environmental pressures such as climate change (Henson et al., 2018; Racault et al., 2012; Thomalla et al., 2023). 50 

Key phenological phases of phytoplankton bloom development include: the time of initiation, the time of 51 

maximum concentration (amplitude), the time of termination and duration as the time between initiation and 52 

termination. These phytoplankton bloom phases are typically driven by seasonal changes in physical forcing (such 53 

as incoming solar radiation, water column mixing and nutrient depletion), which are generally linked to large-54 

scale climate drivers (Racault et al., 2012; Thomalla et al., 2023). The timing of the bloom initiation and amplitude 55 

is particularly critical for efficient trophic energy transfer, which can be impacted negatively through trophic 56 

decoupling. For example, mismatches between bloom timing and zooplankton grazing can lead to suboptimal 57 

food conditions for higher trophic levels which in turn has been linked to the collapse of crucial fisheries (Cushing, 58 

1990; Koeller et al., 2009; Seyboth et al., 2016; Stock et al., 2017). Bloom duration impacts the amount of biomass 59 

being generated within a season that can be exported to the ocean’s interior or transferred to higher trophic levels 60 

via the marine food web and can thus play a more important role than bloom magnitude (Barnes, 2018; Rogers et 61 

al., 2019). Bloom timing has also been shown to influence the seasonal cycles of CO2 uptake, primary production 62 

and the efficiency of carbon export and storage (Bennington et al., 2009; Boot et al., 2023; Lutz et al., 2007; 63 

Palevsky and Quay, 2017) Having access to a global data product that characterises the seasonal cycle of 64 

phytoplankton over the last 25 years and into the future can thus provide a valuable tool to users that require an 65 

understanding of key aspects of the growing season and how these may be changing over time. 66 
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Current generation Earth System Models (ESMs) show that phytoplankton phenology is changing and will 67 

continue to change in response to a warming and more stratified ocean (Henson et al., 2018; Yamaguchi et al., 68 

2022). For example, blooms are predicted to initiate later in the mid-latitudes and earlier at high and low latitudes 69 

by ~5 days per decade by the end of the century (Henson et al., 2018). But what about changes in bloom phenology 70 

in the contemporary period? Satellite-based ocean colour remote sensing, which provides estimates of 71 

chlorophyll-a (chl-a) concentrations (a proxy for phytoplankton abundance), is the only observational capability 72 

that can provide synoptic views of upper ocean phytoplankton characteristics at high spatial and temporal 73 

resolution (~1 km, ~daily) and high temporal extent (global scales, for years to decades). In many cases, these are 74 

the only systematic observations available for chronically under-sampled marine systems such as the polar oceans. 75 

In 1997, the first global ocean colour observing satellite (SeaWiFS) was launched and these observations have 76 

been sustained through a successive series of additional ocean colour satellites (MODIS, MERIS, VIIRS, OLCI). 77 

These have all been merged by the European Space Agency into the Ocean Colour Climate Change Initiative 78 

(OC-CCI) remotely-sensed observational data product, which provides ~25 years of ocean colour data for climate 79 

change assessment (Sathyendranath et al., 2019). We note however that despite their obvious spatial and temporal 80 

advantages, remotely detected water-leaving radiances emanate from only the first optical depth, and give little 81 

quantitative information about the vertical structure of the water column, which can be particularly important in 82 

low nutrient regions where a subsurface chl-a maxima is prevalent. In addition, we recognise that the OC-CCI 83 

chl-a observational data product may exhibit regional biases (that can vary in both magnitude and direction) and 84 

arise from several factors inherent to both satellite remote sensing technology and the complexities of ocean 85 

ecosystems. One example is that algorithms are often regionally trained on datasets from specific parts of the 86 

world, which can result in discrepancies when applied globally. Despite these regional biases, satellite ocean 87 

colour chl-a observational data products remain highly valuable, especially when the goal is to identify patterns 88 

in the seasonal cycle of phytoplankton and how these patterns evolve over time. While local accuracy may be 89 

impacted by biases, the broader trends—such as the timing of spring blooms, the intensity of summer productivity, 90 

or the length of growing season—are still well captured. This is because biases tend to be relatively consistent 91 

over time in any given region, allowing researchers to focus on changes in these patterns rather than on the absolute 92 

values. These long-term changes in the seasonal cycle are crucial for understanding how marine ecosystems 93 

respond to environmental stressors like warming temperatures, ocean acidification, and changes in nutrient 94 

availability. 95 

 96 

The estimation of phytoplankton phenology from OC-CCI remote sensing of chl-a  can provide important 97 

information of the rates of change in key indices on a global scale for comparison to those derived from ESM’s. 98 

For example, a recent study by Thomalla et al., (2023) determined the trends in phenology metrics in the Southern 99 

Ocean using 25 years of satellite-derived chl-a (1997-2022) data.  Their results revealed that large regions of the 100 

Southern Ocean expressed significant trends in phenological indices that were typically much larger (e.g. <50 101 

days decade-1) than those reported in previous climate modelling studies (< 5-10 days decade-1), which suggests 102 

that ESM’s may be underestimating ongoing environmental change. Thomalla et al., (2023) conclude, that 103 

seasonal adjustments of this magnitude at the base of the food web may impact the nutritional stress, reproductive 104 

success, and survival rates of larger marine species (e.g., seals, seabirds, and humpback whales), in particular if 105 

they are unable to synchronise their feeding and breeding patterns with that of their food supplies. It is anticipated 106 
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that a similar analysis using these key phytoplankton metrics applied to the global ocean or specific regions of 107 

interest will reveal regional sensitivities of ecosystems to change with important implications for ecosystem 108 

function and associated societal impacts. There is also a need for the continuous monitoring and ongoing 109 

assessment of the seasonal adjustments of phytoplankton on global scales (in addition to continued benchmarking 110 

for ESMs), which would require regular updates of key phenological metrics going forward. Such information is 111 

relevant for effective marine management programs and early detection of vulnerabilities in key regions, e.g., 112 

those necessary for sustaining fisheries. In addition, a phenology data product such as this can provide a useful 113 

aid for the planning of oceanographic research campaigns that wish to align with or determine their occupation 114 

relative to key aspects of the growing season. Finally, this data product could also be valuable to support those 115 

users without the programming know-how or access to computationally expensive resources that are required to 116 

generate it. 117 

 118 

Here we present a new global phytoplankton phenological data product with indicators that include among other 119 

metrics bloom initiation, termination, amplitude, and duration. These metrics are computed using three different 120 

gridded resolutions (4, 9 and 25 km) and with three different methodologies of determining phenology. This 121 

derived observational data product facilitates the global characterisation of the climatological seasonal cycle and 122 

can be used to identify the sensitivity of the seasonal cycle to change (through the analysis of trends and 123 

anomalies). The phenology data product is currently available from 1997 until 2022 and will be updated annually 124 

and in sync with any version updates of the OC-CCI chl-a observational data product.  125 

2 Methodology  126 

2.1 Data and pre-processing  127 

Satellite-derived chl-a concentrations (mg m-3) were obtained from the European Space Agency (ESA), from OC-128 

CCI (https://esa-oceancolour-cci.org; (Sathyendranath et al., 2019) at 4 km and 8-day resolution. The latest 129 

available OC-CCI product (version v6.0, released on 04/11/2022) is used in this present study. This version marks 130 

a substantial change to previous versions (e.g., v5.0, see Sathyendranath et al., (2021)) in that it incorporates 131 

Sentinel 3B OLCI data, the MERIS-4th reprocessing dataset, upgraded Quasi-Analytical algorithm (QAAv6) and 132 

the exclusion of MODIS and VIIRS data after 2019 (refer to D4.2 - Product User Guide for v6.0 Dataset from 133 

https://climate.esa.int/en/projects/ocean-colour/key-documents/ for further details on processing and validation). 134 

The OC-CCI observational data product was generated with the specific aim of studying phytoplankton dynamics 135 

at seasonal to interannual scales. Indeed, it has been used widely by the scientific community for studying 136 

phytoplankton phenology (e.g., Anjaneyan et al., 2023; Delgado et al., 2023; Ferreira et al., 2021; Gittings et al., 137 

2019, 2021; Racault et al., 2017; Silva et al., 2021; Thomalla et al., 2015, 2023). Data provided by OC-CCI 138 

covered the period from 29/08/1997 – 27/12/2022 for the global ocean (90°N – 90°S and 180°E – 180°W). 139 

 140 

The phenological indices described below are calculated using three horizontal resolutions in surface chl-a, the 141 

native 4 km resolution as provided by OC-CCI and a regridded 9 km and 25 km horizontal resolution. The 4 km 142 

https://climate.esa.int/en/projects/ocean-colour/key-documents/
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and 9 km resolutions are considered important for smaller-scale regional needs such as coastal applications and 143 

field campaigns. The 25 km resolution is the most computationally efficient for users to work with, it results in a 144 

reduction of missing data and is useful for global open-ocean applications. For the 9 km and 25 km resolutions, 145 

chl-a is regridded onto a regular grid through bilinear interpolation using the xESMF Python package (Zhuang et 146 

al., 2023). In all resolutions for phenological detection, data gaps were reduced further by applying a linear 147 

interpolation scheme in sequential steps of longitude, latitude, and time (Racault et al., 2014). A two-point limit 148 

(e.g., the maximum number of consecutive empty grid cells to fill) is chosen for the interpolation to avoid 149 

overfilling of regions that contain larger coherent data gaps. We further apply a 3 time-step (24 days) rolling mean 150 

along the time dimension to avoid any outliers that may result in fake detection points. However, for the Seasonal 151 

Cycle Reproducibility (SCR) computations only interpolation (time, lat and lon) is carried out, this is discussed 152 

further below. 153 

2.2 Phenological Indices and Detection 154 

Phytoplankton blooms typically manifest as a seasonal cycle, with a bloom initiation that identifies the timing of 155 

the ramp up in phytoplankton growth and biomass accumulation followed by bloom peaks within the growing 156 

season (which could be multiple) and finally the bloom termination, which defines the end of the growing season. 157 

The phenological indices applied here are based on those applied to the SO in Thomalla et al. (2023). To calculate 158 

the phenological indices for initiation and termination, we apply three main detection methods used by the 159 

community (e.g. Brody et al., 2013; Ji et al., 2010), which are detailed below (iii and iv). Each detection method 160 

has its strengths and weaknesses, and therefore the choice of method for application can be determined by the user 161 

needs, which are elaborated on in Brody et al. (2013). These methods were chosen over other approaches (e.g. 162 

Platt et al., 2009; Rolinski et al., 2007) due to the method’s suitability for estimates across global scales as it is 163 

capable of encompassing a wide range of different shapes in phytoplankton blooms (Racault et al., 2012). In this 164 

derived observational data product, all three approaches are provided globally at all three resolutions. Below we 165 

outline the series of steps implemented for estimating the global phenological indices and provide an 166 

accompanying flow chart (Figure 1) to illustrate the succession of steps being implemented. In addition, we 167 

provide some example applications at four key observing stations (Figure A1) to facilitate a visualisation of the 168 

derived phenological indices from four annual time series. 169 

 170 

(i) Bloom maximum climatology: The climatological peak (maximum amplitude) of the bloom was identified as 171 

the local maximum in chl-a occurring within each grid cell's 25-year climatology. This approach was necessary 172 

because the timing of bloom events varies globally, i.e., southern hemisphere blooms typically occur during austral 173 

spring - summer (September - February), while northern hemisphere blooms occur in boreal spring - summer 174 

(April - August) (Racault et al., 2012). Furthermore, both hemisphere tropics tend to be approximately 6 months 175 

out of phase with both hemisphere higher latitude regions. As such, it would be inappropriate to use a fixed date 176 

period (or “bloom slice” see below) to identify bloom occurrence on global scales. Instead, for each grid cell we 177 

calculate the 8-day mean climatology. The date of the maximum climatological bloom for each pixel is then used 178 

to centre the timing of the phenology detection methods described below.  179 

 180 
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(ii) Identification of bloom peaks: For every pixel on a year-by-year basis we take the climatological bloom 181 

maximum peak ±6 months and determine the date and magnitude of the bloom maximum peak for each year. To 182 

ensure that seasonal blooms with more than one peak could be accounted for, multiple bloom peaks were defined 183 

as a second, third, or nth local maxima where the chl-a concentration reached at least 75% of the amplitude of the 184 

bloom maximum peak magnitude and were a minimum of 24 days (i.e., 3 x 8 day time intervals) away from the 185 

bloom maximum peak for that year. The 75% threshold was chosen to identify peaks with similar magnitude to 186 

the bloom maximum peak so as to allow for the occurrence of a multiple peak growing season. Choosing a 187 

threshold higher than this would likely exclude recognisable bloom peaks (which could lead to an underestimate 188 

of the bloom duration), while choosing a lower threshold may include sub-seasonal variability and lead to an 189 

overestimation of the bloom duration. These additional peaks were found within ±6 months of the maximum peak. 190 

An example of such a multi-peak bloom detection is provided in Figure 1 and Figure A1c. The additional peaks 191 

were identified with the Python SciPy (Virtanen et al., 2020) function ‘find_peaks’. 192 

 193 

(iii) The ‘bloom slice’: The bloom slice, used to find the bloom initiation and termination dates, is identified for 194 

each pixel as the 6-month time span preceding and following from the maximum bloom peak (ii). Or in the case 195 

of multi-modal blooms, 6-months preceding the first and following the last peak respectively. 196 

  197 

(iv) Bloom initiation: The bloom initiation date for each bloom slice as described in (iii) is calculated as the first 198 

date before either the bloom maximum, or the first peak in the event of multi-modal blooms, according to the 199 

following thresholds: 200 

1. Biomass-based threshold method (TS): First determine the range as the difference in chl-a concentration 201 

between the bloom maximum and preceding minimum. Then identify the bloom initiation as the first 202 

date that the chl-a concentration was greater than the minimum chl-a concentration plus 5% of the chl-a 203 

range.  204 

2. Cumulative biomass-based threshold method (CS): First remove any values preceding the bloom slice 205 

minimum chl-a concentration and any values greater than 3 times the median of the bloom slice, before 206 

calculating the cumulative sum of chl-a. Then identify the first date that the chl-a concentration was 207 

greater than 15% of the total cumulative chl-a concentration. 208 

3. The rate of change method (RC): First determine the rate of change of the bloom slice and then identify 209 

the first date that the chl-a rate of change was greater than 15% of the median rate of change in chl-a 210 

concentration. 211 

To note, the choice of above chosen percentage thresholds are in accordance with those used by previous 212 

phenological detection studies (Brody et al., 2013; Henson et al., 2018; Hopkins et al., 2015; Ji et al., 2010; 213 

Thomalla et al., 2011, 2015, 2023). 214 

(v) Bloom termination: The bloom termination date for each bloom slice was similarly calculated as the first date 215 

after the bloom maximum, or the last peak in the event of multi-modal blooms, according to the following 216 

thresholds:  217 

1. TS: the first date that the chl-a concentration was less than the minimum chl-a concentration plus 5% of 218 

the chl-a range.  219 
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2. CS: the first date that the chl-a concentration was less than 15% of the total cumulative chl-a 220 

concentration. 221 

RC: the first date that chl-a rate of change was less than 15% of the median rate of change in chl-a 222 

concentration.(vi) Bloom duration: The bloom duration was calculated as the number of days between the bloom 223 

initiation and termination dates. This is applied to each phenological detection method described above (TS, CS 224 

and RC).  225 

 226 

(vii) Integrated and mean bloom chl-a: The seasonally integrated bloom chl-a was calculated using the NumPy 227 

(Harris et al., 2020) trapezoidal function as the chl-a concentration integrated between the bloom initiation and 228 

termination dates. The seasonal mean chl-a was calculated as the average chl-a between the bloom initiation and 229 

termination dates. These are applied to each of the three phenological detection methods described above (TS, CS 230 

and RC).  231 

 232 

(viii) SCR: The variance of the seasonal cycle was calculated as defined in Thomalla et al., (2023), where the SCR 233 

is the Pearson’s correlation coefficient of the annual seasonal cycle correlated against the climatological mean 234 

seasonal cycle. A value of 100% is indicative of an annual seasonal cycle that is a perfect repetition of the 235 

climatological mean, while a value of 0% means that there is no annually reproducible mean seasonal cycle. 236 

Unlike for phenological indices i-vii, for SCR the original OC-CCI v6.0 data were used for the three different grid 237 

resolutions, however with only spatial-temporal interpolation for gap filling and no rolling mean to avoid 238 

smoothing out temporal variability. For SCR for each pixel the bloom slice is restricted to 12 months (i.e., January 239 

to December). 240 

 241 

The cyclical nature of the year day calendar presents a significant challenge when calculating means and standard 242 

deviations of phenological indices. For example, we need to avoid a situation where the mean bloom initiation 243 

between a year with a bloom in December (day of year = 340) and a year with a bloom in January (day of year = 244 

10) is incorrectly calculated as an average bloom initiation date in July (day of year = 175). To address this, as 245 

similarly applied in Thomalla et al. 2023, we used the Python SciPy function circmean (or circstd for standard 246 

deviation), which calculates circular means for samples within a specified range, correctly identifying the mean 247 

as day of year 357. 248 

 249 
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 250 
 251 

Figure 1: Methodological flow chart outlining the steps taken to calculate the phytoplankton seasonal metrics. An 252 

example time-series illustrating the performance of the resulting phenological indices for a bimodal (double peak) 253 

bloom in the Southern Ocean (45˚S, 7.5˚W) is provided for the three different phenological methods, biomass-254 

based threshold (TS), cumulative sum (CS) and rate of change (RC). *See Methodology for pre-processing steps. 255 

3 Results and Discussion 256 

3.1 Global open-ocean phytoplankton seasonal metrics 257 

A significant degree of regional variability is evident in the mean distribution of seasonal metrics (bloom 258 

amplitude, timing, and seasonality) (Figure 2). Bloom magnitude metrics (max bloom chl-a, mean bloom chl-a 259 

and integrated bloom chl-a; Figure 2a-c) are all higher in the high-latitudes and in the coastal regions, particularly 260 

in the Eastern Boundary Current Systems, and lowest in the oligotrophic subtropical gyres. There is a general 261 
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equator-to-pole symmetry in the timing of phytoplankton blooms between the northern and southern hemispheres. 262 

In the subpolar regions phytoplankton blooms initiate in the northern hemisphere during Boreal Spring to early 263 

summer (March-May) and in the southern hemisphere in Austral Spring to early summer (September-November) 264 

in response to light availability (Sverdrup, 1953) (Figure 2d). While in the subtropics, where there is ample light 265 

throughout the year, blooms typically initiate in autumn to winter in response to nutrient supplies through winter-266 

driven deepening of the mixed-layer (Fauchereau et al., 2011; Thomalla et al., 2011). In both the Antarctic and 267 

Arctic polar regions, phytoplankton blooms initiate in Austral (December) and Boreal summer (July), when the 268 

sea-ice cover melts. The timing of bloom maximum follows the same equator-to-pole symmetry as bloom 269 

initiation (Figure 2g), with high latitude regions peaking in Austral and Boreal summer, whereas the subtropics 270 

peak in Austral and Boreal winter. This large-scale meridional structuring of the bloom timing is as expected and 271 

similarly found in previous large-scale satellite based phenological studies (Kahru et al., 2011; Racault et al., 272 

2012; Sapiano et al., 2012). There is a larger degree of spatial heterogeneity in bloom termination (Figure 2e), 273 

particularly evident in regions such as the high latitude North Atlantic and sub-Antarctic, with terminations that 274 

extend up to 6 months later in comparison to surrounding areas which were initiated at a similar time. This 275 

manifests in zonal asymmetries across the different basins for bloom duration (Figure 2f), with considerably 276 

longer blooms occurring in the Pacific basin compared with the Atlantic and Indian basins. SCR covers a large 277 

range of variability across latitudinal bands. Notably, SCR (Figure 2h) is oftentimes low in regions where bloom 278 

duration is long, and this relationship is strongest in the tropical Pacific (r ~ -0.4). In the Southern Ocean, long-279 

sustained but highly variable blooms were proposed as a response to intermittent physical forcing (high-frequency 280 

wind and meso to submesoscale dynamics) that entrain nutrients and postpone the seasonal termination (Thomalla 281 

et al., 2011). 282 
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283 
Figure 2: Global distribution of phytoplankton seasonal metrics. Mean [1998 – 2022] maps of (a) bloom max 284 

chlorophyll (chl-a), (b) mean chl-a over bloom duration, (c) integrated chl-a over bloom duration, (d) bloom 285 

initiation, (e) bloom termination, (f) bloom duration, (g) bloom max chl-a date, and (h) seasonal cycle 286 

reproducibility (SCR). Phenological indices (b-f) are determined using the Biomass-based threshold method as 287 

defined in Henson et al., 2018; Thomalla et al., 2023. 288 

3.2 Comparison between phenology detection methods 289 

Phytoplankton blooms can initiate rapidly, slowly, be short lived, intermittent, or sustained over a growing season, 290 

with different detection methods being more or less sensitive to these varying characteristics of the seasonal bloom 291 

(Brody et al., 2013; Ji et al., 2010; Thomalla et al., 2023). In this derived observational data product we have 292 

chosen to provide three widely used bloom detection methods for all three resolutions allowing the user to 293 

determine which method (or all) is most appropriate for their region and application (Figure 3 and Figure A2). 294 

Indeed, these methods each have their strengths and weaknesses. For example, as explained in Brody et al. (2013), 295 

the biomass based TS method will likely capture the bloom start dates at the largest increase in chlorophyll 296 

concentrations. It is thus more suitable for studies wanting to investigate the match or mismatch between 297 
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phytoplankton and upper trophic levels as the match-mismatch hypothesis is based on the timing of the high 298 

phytoplankton biomass period (Cushing, 1990). This method has been found to be relatively insensitive to the 299 

percentage of the threshold used (Brody et al., 2013; Siegel et al., 2002).  The RC method, which identifies the 300 

bloom initiation as the time when chl-a increases rapidly, is likely more suitable for investigating the physical or 301 

biochemical mechanisms that create conditions in which the bloom occurs (Brody et al., 2013). Whereas the CS 302 

method could be used to identify either of the features above, Brody et al. (2013) showed that, while there are 303 

sensitivities of the CS method to the threshold chosen, the 15% threshold as applied here, is most appropriate at 304 

capturing bloom initiation dates of both subpolar and subtropical regions and thus most appropriate to be applied 305 

across global scales. It is interesting and potentially valuable to determine when and where different methods of 306 

determination agree or disagree, and we advocate for users to apply all three methods so that they may interrogate 307 

the differences and make informed decisions about choosing one over another or utilising all three to define a 308 

range in the desired metric. In Figure 3, the standard deviation (STD) between the three methods is applied 309 

globally  to assess the agreement between climatological means from the different methods.  310 

Across large regions of the global ocean, there is good agreement between the different methodological 311 

approaches (e.g. the global mean STD for the phenological timing indices is ~8-days) (Figure 3 a- b) All methods 312 

produce similar large-scale patterns (Figure A2 a-c, g-f, m-o). There are however some specific regions where 313 

larger differences in timing emerge of ~30-50 days (Figure 3 and Figure A2 d-f, j-l), which are of a similar order 314 

of magnitude as reported by Brody et al. (2013) who found areas with differences exceeding two months. The 315 

largest differences for both bloom initiation and termination tend to coincide with transitional zones such as at  316 

the boundaries between the subtropical and subpolar gyres in both hemispheres and in all three basins  (Figure 317 

3a,b).  This is not too surprising, given that these boundaries represent areas of significant biogeochemical 318 

signatures and regime shifts between phytoplankton seasonal characteristics with strong north-south gradients in 319 

bloom metrics (Figure 2). While there are no other comparisons of these detection methods on a global scale, such 320 

differences were similarly seen in Brody et al. (2013) for the North Atlantic bloom, their Figure 4, where the 321 

largest differences between bloom initiation methods occurred at the sharp transition boundaries between the 322 

subtropical and subpolar latitudes. In general, there is stronger agreement between methods in the higher subpolar 323 

latitudes compared to subtropical latitudes, as evidenced by slightly elevated STDs in the subtropical gyres (Figure 324 

3a,b). The subtropical oligotrophic regions are characterised by phytoplankton seasonal cycles that typically have 325 

lower bloom amplitudes, are more gradual and have longer durations (Figure 2). The TS method tends to produce 326 

earlier bloom initiations and earlier terminations in these subtropical regions (Figure A2 d-e, j-k). In these regions 327 

the chl-a min-max range is relatively small, thus a 5% threshold may be exceeded earlier in both termination and 328 

initiation. The RC method, based on the rate of change, is likely to produce later bloom timing dates in more 329 

gradual blooms. There is agreement in the resultant bloom durations between the different methods, with similar 330 

large-scale patterns being reproduced by all three methods (Figure 3c, Figure A2m-o).  Unsurprisingly, in the 331 

oligotrophic regions, differences between the methods in bloom duration do not translate to large differences in 332 

the integrated and mean bloom chlorophyll because of the low magnitude of the chlorophyll (Figure 2a-c, Figure 333 

3 c-e). There are however, corresponding regions with more noteworthy disagreements in both duration and mean 334 

and integrated bloom chlorophyll, for example in the energetic regions of the Antarctic Circumpolar Current, 335 
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particularly near sub-Antarctic Islands, and localised coastal regions with significant river runoff, such as in the 336 

Atlantic where the Amazon River discharge occurs. These areas of large STDs between the methods are driven 337 

predominantly by the TS method (Figure A2p-r), which tends to result in shorter blooms, due to later initiations 338 

and earlier terminations (Figure A2 d, e, j, k).  339 

 340 

Figure 3: Comparisons between phenological detection methods. Shown are standard deviations (STD) 341 

calculated between the biomass-based threshold method, the cumulative biomass-based threshold method and 342 

the relative of change method , for selected seasonal phytoplankton bloom metrics, including (a) bloom 343 

initiation, (b) bloom termination, (c) bloom duration, (d) bloom integrated chl-a and (e) bloom mean chl-a.  344 

3.3. High-resolution phenology indices  345 

The derived phenology data product presented here is offered at three different horizontal resolutions (4, 9 and 25 346 

km), which when compared on a global scale (Figure 4) shows little to no difference in the overall mean 347 

distribution of three selected phytoplankton seasonal metrics, including bloom mean chl-a (Figure 4a), bloom 348 

duration (Figure 4b) and SCR (Figure 4c). Given that the large-scale distributions of the seasonal metrics remain 349 

virtually the same there is little benefit for the user to use the more computationally expensive 4 km product for 350 

applications across these larger scales.  351 
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 352 
Figure 4: Probability Density Functions (PDF) of climatological mean (calculated from 1998 to 2022) 353 

phytoplankton seasonal cycle metrics, compared across three different spatial resolutions (4, 9 and 25 km) for (a) 354 

bloom mean chlorophyll-a, (b) bloom duration and (c) seasonal cycle reproducibility (SCR). The TS phenology 355 

method is used for (a) and (b). 356 

 357 

There are, however, notable differences in the resolution of the product on smaller regional scales which appear 358 

qualitatively different when compared at two example sites (Figure 5). The sites were selected to reflect regions 359 

where a critical dependence is anticipated on the timing and magnitude of seasonal phytoplankton production. 360 

The Benguela upwelling system (Figure 5a-c), off the west coast of South Africa is an essential region for 361 

supporting key fisheries, while the subAntarctic Kerguelen Island (Figure 5d-f) is a vulnerable marine ecosystem 362 

that supports a number of key species. The coarseness of the 25 km product is clearly evident in both sites at these 363 

scales, it is considerably more pixelated and there are notable patches where there are differences in the resultant 364 

phenological metric between resolutions. For example, in the near-shore of St Helena Bay the integrated bloom 365 

chl-a climatology (2017-2022) differs between resolutions from 1654 mg m-3 bloom-1, 1841 mg m-3 bloom-1, 366 

and 1843 mg m-3 bloom-1, for the 25 km, 9 km and 4 km maps respectively. At Kerguelen Island, interaction of 367 

the Polar Front with shallow bathymetry generates persistent fine-scale ocean dynamics that set strong regional 368 

gradients in phytoplankton production (Park et al., 2014). These fine-scale gradients are clearly seen in the spatial 369 

variability of bloom duration captured by the higher resolution products. The ‘footprint’ of the island is evident 370 

in the extended bloom durations occurring over the shallow plateau associated with the island where there is 371 

considerable resuspension of dissolved iron, a key limiting nutrient (Blain et al., 2001). These examples highlight 372 

how this data product can be applied to derive valuable indicators for use in national biodiversity assessments, 373 

pelagic ecosystems mapping and marine resource management with the added potential of monitoring change in 374 

climate sensitive regions relevant for ecosystem services. For regional studies or applications in coastal domains 375 

it is recommended that users favour the high spatial resolution product, as it could facilitate detection of finer 376 

scale delineations of phenoregions in transitional waters or detect fine scale distributions in phenology metrics 377 

that are associated with physical or oceanographic features such as eddies, bays, and upwelling cells. While some 378 

phenology indicators produced from daily data could offer additional insights into coastal regions with high 379 

temporal variability (e.g., Ferreira et al., 2021), our dataset offers a resource for areas where long gaps in the time-380 

series could negate the use of daily data.  381 

 382 
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 383 
Figure 5: Regional domains comparing the impact of different resolutions (a,d) 25 km, (b,e) 9 km and (c,f) 4 km 384 

on (a-c) bloom integrated chl-a and (d-f) the bloom duration averaged from 2017-2022 for (a-c) the Benguela 385 

upwelling system off the west coast of South Africa and (d-f) Kerguelen, a subAntarctic island in the Southern 386 

Ocean. 387 

4 Data availability  388 

The data are available on the Zenodo repository under the following DOIs, 4 km: 10.5281/zenodo.8402932, 9 km: 389 

10.5281/zenodo.8402847 and 25 km: 10.5281/zenodo.8402823 (Nicholson et al., 2023a, b, c). Chl-a data, used to 390 

develop the phytoplankton phenology product, is available from the Ocean Colour–CCI dataset (v.6.0) at 391 

https://esa-oceancolour-cci.org. 392 

 393 

5 Conclusions  394 

The derived observational data product presented here provides a 25-year continuous record of key phytoplankton 395 

seasonal cycle metrics (phytoplankton bloom phenology, bloom seasonality and bloom magnitude) on a global-396 

scale. It includes three different phenology detection methods that are widely used by the community. We do not 397 

advocate for a particular method over another, the strengths and weaknesses of these different approaches have 398 

been highlighted in other studies (e.g., Brody et al., 2013), it is up to the user to choose which (if not all) is the 399 

most appropriate for their research applications. The data product is also provided at three different horizontal 400 

resolutions (4, 9 and 25 km) for regional versus global-scale application. This product is applicable for a broad 401 

range of national to international research and industry applications. Its primary strength is that it can be used to 402 

assess, monitor, and understand regional to global-scale characteristics in phytoplankton phenology and to detect 403 

https://esa-oceancolour-cci.org/
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change associated with environmental drivers, which is critical for effective management of marine ecosystems 404 

and fisheries. This data product will undergo regular updates for future applications and extended time series 405 

analysis, which typically happens every two years. It will also be updated when data is temporally extended or 406 

when the OC-CCI releases any version updates beyond v.6.0 that will include backwards corrections for previous 407 

years, so the entire dataset aligns with the latest version of OC-CCI. This preactive helps to prevent the retention 408 

of erroneous values within the data set.  409 

Appendix A 410 

 411 
 412 

Figure A1: Examples of phytoplankton bloom seasonal cycles and comparisons in phenological detection 413 

methods at key sustained observing stations across the global ocean. For (a) Hawaii Ocean Time-series (HOT, 414 

21° 20.6'N, 158° 16.4'W), (b) Southern Ocean Time Series Observatory (SOTS, 140°E, 47°S), (c) Bermuda 415 

Atlantic Time-series Study (BATS, 31° 50' N, 64° 10'W) and (d) Porcupine Abyssal Plain (PAP-SO, 49°N, 416 

16.5°W) sustained observatory time-series.  417 

 418 
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 419 

Figure A2. Comparisons between phenological detection methods. The climatological means [1998 - 2022] for  420 

(a-c) bloom initiation, (g-i) bloom termination, and (m-o) bloom duration. The differences between the 421 

climatological means for the biomass-based threshold method (TS), the cumulative biomass-based threshold 422 

method (CS) and the rate of change method (RC) are provided for bloom initiation (d-f), bloom termination (j-l) 423 

and bloom duration (p-r). 424 

 425 
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