
We thank the reviewers for their insightful comments and time taken to review our
manuscript. I apologise for the considerable time that has passed since this first round of
revisions, I have recently returned back to work from maternity leave. Please see the
responses below in blue.

“Observed global ocean phytoplankton phenology indices.”

Reviewer 1

This manuscript provides satellite-derived chlorophyll-a data from the Ocean Colour Climate
Change Initiative at 4, 9, and 25 km spatial resolutions. The dataset is valuable and can be
used in a wide range of research topics and real applications. A few concerns are listed
below and the 1 one is the major one.

1. The accuracy of the data in reflecting the phytoplankton phenology has not been
stated with field observation. This is needed to increase the confidence of the
satellite-based data. I suggest the author choose a few typic locations with some field
survey data and compare the direct observation with your data.

We thank the reviewer for the comment regarding the accuracy and validation of the
underlying data used to generate the phenological indices presented here. This is indeed
crucial for ensuring the reliability of the phenological indices. However, we feel it is out of the
scope of this study to conduct an independent validation of the OC-CCI data product. This
has been done extensively by the European Space Agency (ESA), Ocean Color Climate
Change Initiative Team and provided by version 6 documentation
(https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw) and also refer to details in
publication: https://www.mdpi.com/1424-8220/19/19/4285
For example, see below figure comparing OC-CCI data when matched against the CCI
database of in situ data, extracted from OC-CCI v6 documentation (see section 5 from
https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw.)

https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw
https://www.mdpi.com/1424-8220/19/19/4285


The OC-CCI data are validated, error-characterised Essential Climate Variable products that
are widely used and accepted within the scientific community for a range of applications
(refer to list of published papers: https://climate.esa.int/en/projects/ocean-colour/) that
include studies on phytoplankton phenology, primary productivity, and biogeochemical
cycles. The dataset's reliability is thus already well-recognized, and numerous studies have
utilised OC-CCI data without conducting independent validation, relying instead on the
established credibility of the ESA's validation efforts. We note that there are already several
independent regional validation efforts of this product for phytoplankton phenology, we select
two examples for the tropical ocean https://www.nature.com/articles/s41598-018-37370-4
and from the subantarctic Southern Ocean: https://doi.org/10.1093/icesjms/fsv105.
Nevertheless, we do also recognise that these remote sensing satellite products are not
perfect and while regionally variable amplitude biases exist, the OC-CCI product was
generated with the specific intent to be used for global application to generate long-term
system change studies, such as phytoplankton dynamics under climate variability and
change. In many such instances, even if there is a regional bias in satellite estimates relative
to in situ chlorophyll concentrations, the value of satellite application remains critical for
evaluating multi-decadal changes in the characteristics of the seasonal cycle (e.g. in
phenology, variability and magnitude) that reflect a biological response to changes in physico
chemical conditions. (refer to https://www.mdpi.com/1424-8220/19/19/4285).

That said, we have modified the text of the manuscript to recognise the existence of well
documented limitations of satellite remote sensing data products (e.g. regional biases) but
also to reflect on efforts made by OC-CCI to generate a data product of value for generating
climatologies and assessing variability and change. Refer to additional text for example in
the introduction, see italics below, from line 112-127:

“We note however that despite their obvious spatial and temporal advantages,
remotely detected water-leaving radiances emanate from only the first optical depth,
and give little quantitative information about the vertical structure of the water
column, which can be particularly important in low nutrient regions where a
subsurface chl-a maxima is prevalent. In addition, we recognise that the OC-CCI
chl-a data product may exhibit regional biases (that can vary in both magnitude and
direction) and arise from several factors inherent to both satellite remote sensing
technology and the complexities of ocean ecosystems. One example is that
algorithms are often regionally trained on datasets from specific parts of the world,
which can result in discrepancies when applied globally. Despite these regional
biases, satellite ocean colour chl-a data products remain highly valuable, especially
when the goal is to identify patterns in the seasonal cycle of phytoplankton and how
these patterns evolve over time. While local accuracy may be impacted by biases,
the broader trends—such as the timing of spring blooms, the intensity of summer
productivity, or the length of growing season—are still well captured. This is because
biases tend to be relatively consistent over time in any given region, allowing
researchers to focus on changes in these patterns rather than on the absolute
values. These long-term changes in the seasonal cycle are crucial for understanding
how marine ecosystems respond to environmental stressors like warming
temperatures, ocean acidification, and changes in nutrient availability.”

And to the methodology, refer to additional text in italics, on lines 170-176:

https://www.nature.com/articles/s41598-018-37370-4
https://doi.org/10.1093/icesjms/fsv105


“This version marks a substantial change to previous versions (e.g., v5.0, see
Sathyendranath et al., 2021) in that it incorporates Sentinel 3B OLCI data, the
MERIS-4th reprocessing dataset, upgraded Quasi-Analytical algorithm (QAAv6) and
the exclusion of MODIS and VIIRS data after 2019 (refer to D4.2 - Product User
Guide for v6.0 Dataset from
https://climate.esa.int/en/projects/ocean-colour/key-documents/ for further details on
processing and validation). The OC-CCI observational product was generated with
the specific aim of studying phytoplankton dynamics at seasonal to interannual
scales. Indeed, it has been used widely by the scientific community for studying
phytoplankton phenology (e.g. Ferreira et al., 2021; Gittings et al., 2019, 2021;
Racault et al., 2017; Thomalla et al., 2015, 2023). “

2. In the method, a few critical percentage values were used to determine the phytoplankton
phenology parameters, e.g., 75% of the amplitude of the bloom maximum peak magnitude,
5% of the chl-a range, 15% of the total cumulative chi-a concentration and of the median
rate of change in chl-a concentration. Why do you choose different values as critical points
and are there any standards or citations that suggest the use of these values? The reason
should be pointed out in the manuscript. For example, three peaks would be detected in
Figure 1 if a lower critical value is used

The 5% of the chl-a range, 15% of the total cumulative chi-a concentration and of the
median rate of change in chl-a concentration are in accordance with previous literature. The
sensitivities of the different percentages chosen have been explored in these other studies
already. E.g. see excerpt from Brody et al. 2013: “The 15% of the cumulative biomass
threshold we used produced BSDs more closely aligned with the first increases in
chlorophyll biomass, while a 30% threshold would produce BSDs associated with the largest
increases in biomass” and “We determined that a threshold of 15% of the total biomass
(cross) best predicted the bloom initiation date for our study area using two techniques. First,
we visually inspected multiple chlorophyll time series over the entire study area with BSDs
determined using six thresholds (5–30%). From these time series, we found that thresholds
of 10–15% best predicted the bloom initiation date in subtropical regions, while threshold of
15–20% best predicted the bloom initiation date in subpolar regions. We then plotted, for the
six thresholds, the number of occurrences in which chlorophyll levels at each threshold's
BSD exceeded chlorophyll levels prior to the BSD but were not larger than the yearly
chlorophyll median plus one standard deviation. We found that the 15% threshold had the
largest number of points with increasing chlorophyll levels at the BSD, which confirmed the
results of the visual inspection and led to the choice of the 15% threshold.”

We have cited the relevant publications where these thresholds are first mentioned in our
study:

Lines 277-280:
“To note, the above percentage thresholds are in accordance with those used by
previous phenological detection studies (e.g. Ji et al. 2010, Brody et al., (2013);
Hopkins et al., (2015); Thomalla et al., (2011, 2015) and Henson et al., (2018)).”

The 75% of the amplitude of the bloom maximum peak magnitude, which was used to
identify the presence of multiple bloom peaks, was chosen with the objective of identifying

https://climate.esa.int/en/projects/ocean-colour/key-documents/
https://climate.esa.int/en/projects/ocean-colour/key-documents/


well defined peaks that were similar in magnitude (and within a given range of time) from the
main peak. A threshold higher than that ends up not meeting the purpose for counting
multiple peaks, whilst a threshold lower than this is catching subseasonal variability. The
percentage threshold was chosen over a magnitude based threshold as it remains robust in
regions with higher or lower chlorophyll values.

We have added the above explanation into the manuscript, lines 250-255:
“The 75% threshold was chosen to identify peaks with similar magnitude to the bloom
maximum peak so as to allow for the occurrence of a multiple peak growing season.
Choosing a threshold higher than this would likely exclude recognisable bloom peaks
(which could lead to an underestimate of the bloom duration), while choosing a lower
threshold may include sub-seasonal variability and lead to an overestimation of the
bloom duration”

3. Lines 210 to 214, it is not very clear to me, please re-edit to make your idea more clear.

We have edited the relevant lines to be clearer as follows:
“The cyclical nature of the year day calendar presents a significant challenge when
calculating means of phenological indices. For example, we need to avoid a situation
where the mean bloom initiation between a year with a bloom in December (day of
year = 340) and a year with a bloom in January (day of year = 10) is incorrectly
calculated as an average bloom initiation date in July (day of year = 175). To address
this, as similarly applied in Thomalla et al. 2023, we used the Python SciPy function
circmean, which calculates circular means for samples within a specified range,
correctly identifying the mean as day of year 357.”

4. Line 260, please describe the explanation provided in Brody et al., (2013) shortly here, so
that the readers could understand the reason easier and more directly.

We have edited the text from line 260 to include the explanation from Brody et al., 2013:
“For example, as explained in Brody et al, (2013), the TS method which is based on
the range of bloom amplitude (refer to methods) will capture the bloom start dates at
the largest increase in chlorophyll concentrations. It is thus more suitable for studies
wanting to investigate the match or mismatch between phytoplankton and upper
trophic levels as the match-mismatch hypothesis is based on the timing of the high
phytoplankton biomass period [Cushing, 1959].”

5. Figure 3 and the relevant text compare the three detection methods using CoV values, it
is not clear if the three methods all differ from each other or only one of them resulted in
descripency when CoV is large. A conclusive sentence is needed in the text. For example,
the comparison between three values in line 312 is very clear that the integrated bloom chl-a
climatology (2017-2022) is similar using 9 and 4 km maps, but is different from that
determined using a 25 km map.

We thank the reviewer for raising this important point. We have decided to change Figure 3
to the standard deviation of the climatological means of the three methods, which allows an
easier interpretation of the magnitude of the differences between the methods.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrc.20167#jgrc20167-bib-0003


Figure 3: Comparisons between phenological detection methods. Shown are standard
deviations (STD) calculated between the biomass-based threshold method, the cumulative
biomass-based threshold method, and the relative of change method, for selected seasonal
phytoplankton bloom metrics, including (a) bloom initiation, (b) bloom termination, (c) bloom
duration, (d) bloom integrated chl-a and (e) bloom mean chl-a. .

We have also included an additional figure in the Appendices which provides the
climatological means of each method and the differences between them (e.g. TS - RC,
TS-CS and CS-RC). This allows the user to have a better understanding of the magnitude of
the differences between the methods globally.



Figure A2. Comparisons between phenological detection methods. The climatological means
[1998 - 2022] for (a-c) bloom initiation, (g-i) bloom termination, and (m-o) bloom duration.
The differences between the climatological means for the biomass-based threshold method
(TS), the cumulative biomass-based threshold method (CS) and the rate of change method
(RC) are provided for bloom initiation (d-f), bloom termination (j-l) and bloom duration (p-r).

The text of section “3.2 Comparisons of phenology detection methods” has thus been
substantially revised to reflect the changes to the figures. We have also included a bit more
discussion around the disagreements of the methods. For example, refer to added text in
section 3.2



“In general, there is stronger agreement between methods in the higher subpolar
latitudes compared to subtropical latitudes, as evidenced by slightly elevated STDs in
the subtropical gyres (Figure 3a,b). The subtropical oligotrophic regions are
characterised by phytoplankton seasonal cycles that typically have lower bloom
amplitudes, are more gradual and have longer duration (Figure 2). The TS method
tends to produce earlier bloom initiations and earlier terminations in these subtropical
regions (Figure A2 d-e, j-k). In these regions the chl-a min-max range is relatively
small, thus a 5% threshold may be exceeded earlier in both termination and initiation.
While, on the other hand the RC method, based on the rate of change, is likely to
produce later bloom timings dates in more gradual blooms”

“Unsurprisingly, in the oligotrophic regions, differences between the methods in
bloom duration do not translate to large differences in the integrated and mean bloom
chlorophyll because of the low magnitude of the chlorophyll (Figure 1a-c, Figure 3
c-e). There are, however, corresponding regions of larger disagreements in duration
and mean and integrated bloom chlorophyll, for example in energetic regions of the
Antarctic Circumpolar Current, particularly near sub-Antarctic Islands, and localised
coastal regions with significant river runoff, such as in the Atlantic where the Amazon
River discharge occurs. These areas of large STDs between the methods are driven
predominantly by the TS method (Figure A2p-r), which tends to result in shorter
blooms, due to later initiations and earlier terminations (Figure A2 d, e, in these
above-mentioned locations.
”

Reviewer 2

This work documents the process of creation of a dataset of phenological indexes of
phytoplankton blooms on the global ocean, using the 26-years timeseries of the
satellite-derived chlorophyll gathered by the OCCCI. The dataset could be potentially useful
to feed other analysis. However, in its current state I see two main weaknesses, it is not
validated (1), and it does not provide error estimates (2).

General comments

1. The manuscript shows, technically speaking, a great data analysis. The authors have
done a rigorous job collecting data, filling gaps and applying globally-appropriate bloom
detection methods. Their results look very neat, and it would be very interesting to see a
deeper analysis. However, I do not see so clear the potential of these data being useful in
the future to other scientists and therefore being published as an ESSD dataset.

We thank the reviewer for this critical feedback with regards to the usefulness of the global
multi-year product of phytoplankton phenology presented here. There are a number of
reasons why these data are useful for scientists and other practitioners, which we reiterate
here. Phytoplankton form the base of the marine food web, they are highly sensitive to
changes in physico-chemical conditions, such that long-term phenology datasets can help
understand how phytoplankton are responding to environmental changes (sea temperature,
ice cover, light availability, nutrients etc.). These changes in phenology may have cascading
impacts on the entire ecosystems (fish populations, mammals and birds), thus monitoring



phenological changes can provide early warnings of ecosystem shifts or decline in
ecosystem health. Phenology data can be used to inform fisheries scientists and
management by predicting the timing and extent of primary production, which supports fish
stocks. Understanding phytoplankton phenology can help improve earth system models with
respect to carbon sequestration and nutrient cycling, this is crucial for predicting future
changes in marine environments and for making informed policy decisions. It is also
important to recognise that the generation and continuation of this product is extremely
computationally expensive. Not everyone (or country) has the access to compute resources
required to generate this product to support their studies and/or to use in ecosystem
management, particularly those from the global south where access to HPC resources can
be limited.

We hope that the modifications and below additional text incorporated into the introduction of
the manuscript will help to clarify the value of such a data set to multiple users. Refer to
italics text for additions:

Lines 93-96:

“Having access to a global data product that characterises the seasonal cycle of
phytoplankton over the last 25 years and into the future can thus provide a valuable tool to
users that require an understanding of key aspects of the growing season and how these
may be changing over time.”

Lines 125-127:

“These long-term changes in the seasonal cycle are crucial for understanding how marine
ecosystems respond to environmental stressors like warming temperatures, ocean
acidification, and changes in nutrient availability.”

Lines 150-154 , refer to italic text:

In addition, a phenology data product such as this can provide a useful aid for the planning
of oceanographic research campaigns that wish to align with or determine their occupation
relative to key aspects of the growing season. Finally, this derived observational data
product could also be valuable to support those users without the programming know-how or
access to computationally expensive resources that are required to generate it

Lines 158-159:

The data product facilitates the global characterisation of the climatological seasonal cycle
and can be used to identify the sensitivity of the seasonal cycle to change (through the
analysis of trends and anomalies).

The OCCCI Chl-a is itself a satellite-derived product, based on the disaggregation of the
world ocean in a certain number of optically-homogeneous water classes. However, global
algorithms, even blending different waterclasses, do not compare necessarily well to
observations in certain regions, where regional algorithms are proposed (e.g. Johnson et al.
2013 in the Southern Ocean [https://doi.org/10.1002/jgrc.20270]; Volpe et al. 2019 in the



Mediterranean Sea [https://doi.org/10.5194/os-15-127-2019]). To the best of my knowledge
OCCCI do not consider regional-specific algorithms.

And on top of that it is the uncertainty of the phenological analysis performed (which is also
not very well documented, see my next comment). With such level of derivation I do not see
how these metrics provided could be considered observed data. This issue could be
overcome if the authors present some comparison to in situ observations of Chl-a
timeseries, observed phenology or other common standards, but that is not done in the
current version. Have the different bloom detection methods been validated with
observational data on their own? Since obtaining global-scale validation data could be
challenging, maybe one option is to perform a more formal analysis on the
agreement/disagreement among methods considering in which temporal/spatial domain they
have been validated independently.

We appreciate the reviewer’s comments regarding the use of the OC-CCI data in our
phenological analysis. We fully acknowledge that the OC-CCI Chl-a is a satellite-derived
product and that its derivation is calculated by blending algorithms based on optical water
type and that regional biases may still occur. However, in the absence of a single unifying
algorithm applicable to all optical satellite sensors and across all marine environments, the
optical water type methodological framework used by the OC-CCI currently provides the only
viable solution for dealing with long-term, multi-sensor datasets at a global scale. While we
understand that global algorithms may not always align perfectly with regional observations,
the OC-CCI have put considerable effort into defining the per-pixel and regional uncertainties
associated with each of their products, as well as highlighting currently under-represented
regions (e.g. regions with lower cumulative water class membership in
https://www.sciencedirect.com/science/article/pii/S0034425717301396#f0025 ). We would
also note that regional validation assessments do not always agree, with outcomes that are
strongly dependant on the strictness of the match up criteria being implemented (in both time
and space) and the methodology being used to determine the in situ concentrations used in
the comparison (e.g. HPLC versus acetone extracted fluorometric chlorophyll). As an
example, we refer the reviewer to https://www.mdpi.com/2072-4292/11/15/1793.
Nevertheless, even if susceptible to regional bias, this does not make the application of a
satellite remote sensing data product inappropriate for characterising the phenology of the
climatological seasonal cycle or the characteristics of variability (e.g. Thomalla et al., 2011,
Tang et al,. 2021, Hauko et al. 2021) or to detect trends in any of these seasonal metrics
(e.g. Silva et al. 2021, Anjaneyan et al. 2023, Delgado et al. 2023, Thomalla et al., 2023).

We have added the following text into the introduction which highlights some of these
limitations, see italics below, from line 112-127:

“We note however that despite their obvious spatial and temporal advantages,
remotely detected water-leaving radiances emanate from only the first optical depth,
and give little quantitative information about the vertical structure of the water
column, which can be particularly important in low nutrient regions where a
subsurface chl-a maxima is prevalent. In addition, we recognise that the OC-CCI
chl-a data product may exhibit regional biases (that can vary in both magnitude and
direction) and arise from several factors inherent to both satellite remote sensing
technology and the complexities of ocean ecosystems. One example is that
algorithms are often regionally trained on datasets from specific parts of the world,

https://www.sciencedirect.com/science/article/pii/S0034425717301396#f0025
https://www.mdpi.com/2072-4292/11/15/1793


which can result in discrepancies when applied globally. Despite these regional
biases, satellite ocean colour chl-a data products remain highly valuable, especially
when the goal is to identify patterns in the seasonal cycle of phytoplankton and how
these patterns evolve over time. While local accuracy may be impacted by biases,
the broader trends—such as the timing of spring blooms, the intensity of summer
productivity, or the length of growing season—are still well captured. This is because
biases tend to be relatively consistent over time in any given region, allowing
researchers to focus on changes in these patterns rather than on the absolute
values. These long-term changes in the seasonal cycle are crucial for understanding
how marine ecosystems respond to environmental stressors like warming
temperatures, ocean acidification, and changes in nutrient availability.”

With regards to concerns around the validation of OC-CCI satellite observations with
independant in situ measurements, we refer the reviewer to the first response to Reviewer 1
above, which highlights the credibility of ESA's validation efforts and the numerous studies
that have utilised OC-CCI data without conducting independent validation, including for
applications that determine bloom phenology. It is similarly beyond the scope of this data
product submission to globally validate the different bloom detection methods. Suffice to say
that these different methods are well documented and have been applied over many years
to different data streams (e.g. chlorophyll from satellites, gliders, floats, moorings) and in
many different ocean regions (Ji et al. 2010, Racault et al. 2012, 2014, Brody et al. 2013,
Thomalla et al. 2015, 2023, Gittings et al. 2019, 2021, Ferreira et al. 2021, Silva et al. 2021).
We do however recognise that different methods are more or less sensitive to different
characteristics of the time series (e.g. to rapid adjustments in rates of change or inflection
points etc.) such that they have a tendency to select different dates for initiation/ termination
etc. It is for this reason that we apply three different (well documented) approaches for
detecting bloom phenology. This allows the user the ability to assess the similarities or
differences between different detection methods for their region of interest. Applying all three
methods allows the user to discern which method is most appropriate to their region OR to
use all three methods to provide a range of variability for each bloom metric. We have
provided more discussion on where and when the different methods disagree on a global
scale and by how much. We have revised Figure 3 and included an additional Figure A2
added to Appendices, and also request that you please refer to our response to comment 5
from Reviewer 1 above.

Regarding the comment on whether these phenological metrics should even be considered
observed data. It is our understanding that satellite data are generally considered a remote
sensing observation. However, we recognise the reviewers' concerns that having undergone
so much processing these measurements could easily be considered a derived product. In
an attempt to address this concern the first time we use OC-CCI satellite remote sensing we
now refer to it as an “observational data product”, while for the phenology metrics that we
derive from this observational product we now refer to them as “derived observational data
products”.

2. The quality of the presentation is high. The dataset is accessible and straightforward to
interpret. However, another big concern is that the dataset does not include any estimate of
error associated to the metrics given. It is of utmost importance to provide such an error,



considering that the trends on such metrics seem to be on the range of 5-10 days per
decade. Dispersion metrics around the mean for each pixel (in the 9km and 25km versions)
are also missing. I think these can be provided since phenology indexes are computed in the
4km version and later regridded (L115). There is no discussion about the potential sources
of errors and limitations of the bloom detection methods, only references to other works
(L135). Maybe the authors could mention the potential caveats of the methods when they
elaborate on the agreement/disagreement between methods (L267).

We thank the reviewer for raising this important concern regarding the absence of error
estimates in the phenological metrics derived from the OC-CCI chl-a dataset. While it is
challenging to provide meaningful error estimates for the phenological timing metrics
generated from the OC-CCI observational product, we do recognise the importance of
including the uncertainty, which will support more reliable results and ultimately strengthens
the data product towards more informed decision making regarding the management and
preservation of ocean ecosystems (see Werther et al. 2023).

There are multiple approaches available to address the uncertainty in a phenological data
product. In our case, we had purposefully chosen to provide the users with three different
detection methods, each applied to three resolutions: the native 4 km and regridded 9 km
and 25 km. This results in nine unique realisations for each phenological metric for any given
region globally. This was done in response to recognising that the different detection
methods have different strengths and weaknesses and that the regridding of chlorophyll-a
data introduces additional variability. These factors can cause some variability in the
phenological outcomes, giving the users insight into differences stemming from
methodological and/or resolution choices. To provide estimates of methodological
uncertainty, we could have opted to instead vary the thresholds applied and used a single
detection method, which has been done by several other studies already (Siegal et al. 2002,
Brody et al, 2013). Siegal et al. 2002 note that "Little quantitative differences in the resulting
computations were found using thresholds ranging from 1 to 30%”. Instead, we have chosen
to provide three different detection methodologies with fixed thresholds (using values
recommended by the literature for global applications) and focus rather on the inter-method
differences, which will likely drive larger and possibly more meaningful discrepancies in the
phenology metrics, than would be introduced by simply adjusting the threshold values.

Another approach could be to explore the uncertainties associated with the underlying
chlorophyll data product. The OC-CCI observational product provides per pixel “uncertainty”
metrics for chl-a (Jackson et al,. 2017), however, it is important to note, that these
uncertainty metrics are only as good as the in situ data available and likely have implicit
biases themselves (Sathyendranath et al. 2019). We feel that a focus on the uncertainties
driven by the phenology detection methods is more appropriate than propagating the
uncertainties of the chlorophyll-a data product into the phenology detection itself. A true
estimate of uncertainty requires a database of in-situ measured phytoplankton phenology to
assess the validity of the timing match-ups. Unfortunately an in-situ global data set of
comparable spatial and temporal variability to the phenology data product provided here
does not yet exist.

We propose instead to incorporate the inter-methodology uncertainty metrics for each
published phenology dataset (e.g. in the 25 km, 9 km and 4 km products). For each bloom
metric (initiation, termination, duration, bloom amplitude) we present three results, one for



each methodology. With this we are able to generate an absolute range for each metric
(across the different methods). This additional information will allow the user to access
information on the agreement or disparity between different detection methods. And by
providing the inter-method standard deviation the user will gain an additional sense of
spread between the different methods. We hope that by providing these additional
uncertainty metrics we will increase the value of this data product to support user
application.

Regarding the requested dispersion metrics for bloom phenology indices, it is our
understanding that this is not possible in the instance described by the reviewer because the
remotely sensed chlorophyll data is first regridded from the 4 km to the 9 km and 25 km
resolution and only then are the phenological metrics calculated for the regridded chlorophyll
data. See excerpt: "The phenological indices described below are calculated using three
horizontal resolutions in surface chl-a, the native 4 km resolution as provided by OC-CCI and
a regridded 9 km and 25 km horizontal resolution. “ Thus, we cannot do dispersion metrics
as the phenology data is calculated from the gridded chlorophyll, and we end up with only
one value (e.g. the date of bloom initiation) per pixel (4 km, 9 km or 25 km) per year.
However, as discussed above, the dispersion metrics for the different methods for a given
resolution, as shown by standard deviation of methods for the 25 km resolution as in
updated Figure 3 will now be provided in an updated dataset.

We have expanded the discussion in Section 3.2 regarding the inter-model differences
highlighting the strengths and weaknesses of different methods and included Figure A2,
which compares the individual methods to one another.
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