
 
We thank the reviewers for their insightful comments and time taken to review our 
manuscript. I apologise for the considerable time that has passed since this first round of 
revisions, I have recently returned back to work from maternity leave. Please see the 
responses below in blue. 
 
“Observed global ocean phytoplankton phenology indices.” 
 
Reviewer 1 
 
This manuscript provides satellite-derived chlorophyll-a data from the Ocean Colour Climate 
Change Initiative at 4, 9, and 25 km spatial resolutions. The dataset is valuable and can be 
used in a wide range of research topics and real applications. A few concerns are listed 
below and the 1 one is the major one. 
 
1. The accuracy of the data in reflecting the phytoplankton phenology has not been 
stated with field observation. This is needed to increase the confidence of the 
satellite-based data. I suggest the author choose a few typic locations with some field 
survey data and compare the direct observation with your data.  
 
We thank the reviewer for the comment regarding the accuracy and validation of the 
underlying data used to generate the phenological indices presented here. This is indeed 
crucial for ensuring the reliability of the phenological indices. However, we feel it is out of the 
scope of this study to conduct an independent validation of the OC-CCI data product. This 
has been done extensively by the European Space Agency (ESA), Ocean Color Climate 
Change Initiative Team and provided by version 6 documentation 
(https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw) and also refer to details in 
publication: https://www.mdpi.com/1424-8220/19/19/4285 
For example, see below figure comparing OC-CCI data when matched against the CCI 
database of in situ data, extracted from OC-CCI v6 documentation (see section 5 from 
https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw.) 

 

The OC-CCI data are validated, error-characterised Essential Climate Variable products that 
are widely used and accepted within the scientific community for a range of applications 

https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw
https://www.mdpi.com/1424-8220/19/19/4285


(refer to list of published papers: https://climate.esa.int/en/projects/ocean-colour/) that 
include studies on phytoplankton phenology, primary productivity, and biogeochemical 
cycles. The dataset's reliability is thus already well-recognized, and numerous studies have 
utilised OC-CCI data without conducting independent validation, relying instead on the 
established credibility of the ESA's validation efforts. We note that there are already several 
independent regional validation efforts of this product for phytoplankton phenology, we select 
two examples for the tropical ocean https://www.nature.com/articles/s41598-018-37370-4 
and from the subantarctic Southern Ocean: https://doi.org/10.1093/icesjms/fsv105. 
Nevertheless, we do also recognise that these remote sensing satellite products are not 
perfect and while regionally variable amplitude biases exist, the OC-CCI product was 
generated with the specific intent to be used for global application to generate long-term 
system change studies, such as phytoplankton dynamics under climate variability and 
change. In many such instances, even if there is a regional bias in satellite estimates relative 
to in situ chlorophyll concentrations, the value of satellite application remains critical for 
evaluating multi-decadal changes in the characteristics of the seasonal cycle (e.g. in 
phenology, variability and magnitude) that reflect a biological response to changes in 
physico chemical conditions. (refer to https://www.mdpi.com/1424-8220/19/19/4285). 
 
That said, we have modified the text of the manuscript to recognise the existence of well 
documented limitations of satellite remote sensing data products (e.g. regional biases) but 
also to reflect on efforts made by OC-CCI to generate a data product of value for generating 
climatologies and assessing variability and change. Refer to additional text for example in 
the introduction, see italics below, from line 112-127:   

“We note however that despite their obvious spatial and temporal advantages, 
remotely detected water-leaving radiances emanate from only the first optical depth, 
and give little quantitative information about the vertical structure of the water column, 
which can be particularly important in low nutrient regions where a subsurface chl-a 
maxima is prevalent. In addition, we recognise that the OC-CCI chl-a data product may 
exhibit regional biases (that can vary in both magnitude and direction) and  arise from 
several factors inherent to both satellite remote sensing technology and the 
complexities of ocean ecosystems. One example is that algorithms are often regionally 
trained on datasets from specific parts of the world, which can result in discrepancies 
when applied globally. Despite these regional biases, satellite ocean colour chl-a data 
products remain highly valuable, especially when the goal is to identify patterns in the 
seasonal cycle of phytoplankton and how these patterns evolve over time. While local 
accuracy may be impacted by biases, the broader trends—such as the timing of spring 
blooms, the intensity of summer productivity, or the length of growing season—are still 
well captured. This is because biases tend to be relatively consistent over time in any 
given region, allowing researchers to focus on changes in these patterns rather than 
on the absolute values. These long-term changes in the seasonal cycle are crucial for 
understanding how marine ecosystems respond to environmental stressors like 
warming temperatures, ocean acidification, and changes in nutrient availability.” 

 
And to the methodology, refer to additional text in italics, on lines 170-176:  
 

“This version marks a substantial change to previous versions (e.g., v5.0, see 
Sathyendranath et al., 2021) in that it incorporates Sentinel 3B OLCI data, the 
MERIS-4th reprocessing dataset, upgraded Quasi-Analytical algorithm (QAAv6) and 

https://www.nature.com/articles/s41598-018-37370-4
https://doi.org/10.1093/icesjms/fsv105


the exclusion of MODIS and VIIRS data after 2019 (refer to D4.2 - Product User 
Guide for v6.0 Dataset from https://climate.esa.int/en/projects/ocean-colour/key-
documents/ for further details on processing and validation). The OC-CCI 
observational product was generated with the specific aim of studying phytoplankton 
dynamics at seasonal to interannual scales. Indeed, it has been used widely by the 
scientific community for studying phytoplankton phenology (e.g. Ferreira et al., 2021; 
Gittings et al., 2019, 2021; Racault et al., 2017; Thomalla et al., 2015, 2023).  “ 

 
2. In the method, a few critical percentage values were used to determine the phytoplankton 
phenology parameters, e.g., 75% of the amplitude of the bloom maximum peak magnitude, 
5% of the chl-a range, 15% of the total cumulative chi-a concentration and of the median 
rate of change in chl-a concentration. Why do you choose different values as critical points 
and are there any standards or citations that suggest the use of these values? The reason 
should be pointed out in the manuscript. For example, three peaks would be detected in 
Figure 1 if a lower critical value is used 
 
The 5% of the chl-a range, 15% of the total cumulative chi-a concentration and of the 
median rate of change in chl-a concentration are in accordance with previous literature. The 
sensitivities of the different percentages chosen have been explored in these other studies 
already. E.g. see excerpt from Brody et al. 2013: “The 15% of the cumulative biomass 
threshold we used produced BSDs more closely aligned with the first increases in 
chlorophyll biomass, while a 30% threshold would produce BSDs associated with the largest 
increases in biomass” and “We determined that a threshold of 15% of the total biomass 
(cross) best predicted the bloom initiation date for our study area using two techniques. First, 
we visually inspected multiple chlorophyll time series over the entire study area with BSDs 
determined using six thresholds (5–30%). From these time series, we found that thresholds 
of 10–15% best predicted the bloom initiation date in subtropical regions, while threshold of 
15–20% best predicted the bloom initiation date in subpolar regions. We then plotted, for the 
six thresholds, the number of occurrences in which chlorophyll levels at each threshold's 
BSD exceeded chlorophyll levels prior to the BSD but were not larger than the yearly 
chlorophyll median plus one standard deviation. We found that the 15% threshold had the 
largest number of points with increasing chlorophyll levels at the BSD, which confirmed the 
results of the visual inspection and led to the choice of the 15% threshold.” 
 
We have cited the relevant publications where these thresholds are first mentioned in our 
study: 
 
Lines 277-280:  

“To note, the above percentage thresholds are in accordance with those used by 
previous phenological detection studies (e.g. Ji et al. 2010, Brody et al., (2013); 
Hopkins et al., (2015); Thomalla et al., (2011, 2015) and Henson et al., (2018)).” 

 
The 75% of the amplitude of the bloom maximum peak magnitude, which was used to 
identify the presence of multiple bloom peaks, was chosen with the objective of identifying 
well defined peaks that were similar in magnitude (and within a given range of time) from the 
main peak. A threshold higher than that ends up not meeting the purpose for counting 
multiple peaks, whilst a threshold lower than this is catching subseasonal variability. The 

https://climate.esa.int/en/projects/ocean-colour/key-documents/
https://climate.esa.int/en/projects/ocean-colour/key-documents/
https://climate.esa.int/en/projects/ocean-colour/key-documents/


percentage threshold was chosen over a magnitude based threshold as it remains robust in 
regions with higher or lower chlorophyll values. 
 
We have added the above explanation into the manuscript, lines 250-255: 

“The 75% threshold was chosen to identify peaks with similar magnitude to the bloom 
maximum peak so as to allow for the occurrence of a multiple peak growing season. 
Choosing a threshold higher than this would likely exclude recognisable bloom peaks 
(which could lead to an underestimate of the bloom duration), while choosing a lower 
threshold may include sub-seasonal variability and lead to an overestimation of the 
bloom duration” 

 
 
3. Lines 210 to 214, it is not very clear to me, please re-edit to make your idea more clear. 
 
We have edited the relevant lines to be clearer as follows:  

“The cyclical nature of the year day calendar presents a significant challenge when 
calculating means of phenological indices. For example, we need to avoid a situation 
where the mean bloom initiation between a year with a bloom in December (day of 
year = 340) and a year with a bloom in January (day of year = 10) is incorrectly 
calculated as an average bloom initiation date in July (day of year = 175). To address 
this, as similarly applied in Thomalla et al. 2023, we used the Python SciPy function 
circmean, which calculates circular means for samples within a specified range, 
correctly identifying the mean as day of year 357.” 

 
4. Line 260, please describe the explanation provided in Brody et al., (2013) shortly here, so 
that the readers could understand the reason easier and more directly. 
 
We have edited the text from line 260 to include the explanation from Brody et al., 2013:  

“For example, as explained in Brody et al, (2013), the TS method which is based on 
the range of bloom amplitude (refer to methods) will capture the bloom start dates at 
the largest increase in chlorophyll concentrations. It is thus more suitable for studies 
wanting to investigate the match or mismatch between phytoplankton and upper 
trophic levels as the match-mismatch hypothesis is based on the timing of the high 
phytoplankton biomass period [Cushing, 1959].” 

 
5. Figure 3 and the relevant text compare the three detection methods using CoV values, it 
is not clear if the three methods all differ from each other or only one of them resulted in 
descripency when CoV is large. A conclusive sentence is needed in the text. For example, 
the comparison between three values in line 312 is very clear that the integrated bloom chl-a 
climatology (2017-2022) is similar using 9 and 4 km maps, but is different from that 
determined using a 25 km map. 
 
We thank the reviewer for raising this important point. We have decided to change Figure 3 
to the standard deviation of the climatological means of the three methods, which allows an 
easier interpretation of the magnitude of the differences between the methods.  

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrc.20167#jgrc20167-bib-0003


 
 
Figure 3: Comparisons between phenological detection methods. Shown are standard 
deviations (STD) calculated between the biomass-based threshold method, the cumulative 
biomass-based threshold method, and the relative of change method, for selected seasonal 
phytoplankton bloom metrics, including (a) bloom initiation, (b) bloom termination, (c) bloom 
duration, (d) bloom integrated chl-a and (e) bloom mean chl-a. .  
 
We have also included an additional figure in the Appendices which provides the 
climatological means of each method and the differences between them (e.g. TS - RC, TS-
CS and CS-RC). This allows the user to have a better understanding of the magnitude of the 
differences between the methods globally.  



 

Figure A2. Comparisons between phenological detection methods. The climatological means 
[1998 - 2022] for  (a-c) bloom initiation, (g-i) bloom termination, and (m-o) bloom duration. 
The differences between the climatological means for the biomass-based threshold method 
(TS), the cumulative biomass-based threshold method (CS) and the rate of change method 
(RC) are provided for bloom initiation (d-f), bloom termination (j-l) and bloom duration (p-r). 

 
The text of section “3.2 Comparisons of phenology detection methods” has thus been 
substantially revised to reflect the changes to the figures. We have also included a bit more 
discussion around the disagreements of the methods. For example, refer to added text in 
section 3.2  



“In general, there is stronger agreement between methods in the higher subpolar 
latitudes compared to subtropical latitudes, as evidenced by slightly elevated STDs in 
the subtropical gyres (Figure 3a,b). The subtropical oligotrophic regions are 
characterised by phytoplankton seasonal cycles that typically have lower bloom 
amplitudes, are more gradual and have longer duration (Figure 2). The TS method 
tends to produce earlier bloom initiations and earlier terminations in these subtropical 
regions (Figure A2 d-e, j-k). In these regions the chl-a min-max range is relatively 
small, thus a 5% threshold may be exceeded earlier in both termination and initiation. 
While, on the other hand the RC method, based on the rate of change, is likely to 
produce later bloom timings dates in more gradual blooms” 
 
“Unsurprisingly, in the oligotrophic regions, differences between the methods in 
bloom duration do not translate to large differences in the integrated and mean bloom 
chlorophyll because of the low magnitude of the chlorophyll (Figure 1a-c, Figure 3 c-
e). There are, however, corresponding regions of larger disagreements in duration 
and mean and integrated bloom chlorophyll, for example in  energetic regions of the 
Antarctic Circumpolar Current, particularly near sub-Antarctic Islands, and localised 
coastal regions with significant river runoff, such as in the Atlantic where the Amazon 
River discharge occurs. These areas of large STDs between the methods are driven 
predominantly by the TS method (Figure A2p-r), which tends to result in shorter 
blooms, due to later initiations and earlier terminations (Figure A2 d, e, in these 
above-mentioned locations.  
” 

 
Reviewer 2 
 
This work documents the process of creation of a dataset of phenological indexes of 
phytoplankton blooms on the global ocean, using the 26-years timeseries of the satellite-
derived chlorophyll gathered by the OCCCI. The dataset could be potentially useful to feed 
other analysis. However, in its current state I see two main weaknesses, it is not validated 
(1), and it does not provide error estimates (2). 

General comments 

1. The manuscript shows, technically speaking, a great data analysis. The authors have 
done a rigorous job collecting data, filling gaps and applying globally-appropriate bloom 
detection methods. Their results look very neat, and it would be very interesting to see a 
deeper analysis. However, I do not see so clear the potential of these data being useful in 
the future to other scientists and therefore being published as an ESSD dataset. 

We thank the reviewer for this critical feedback with regards to the usefulness of the global 
multi-year product of phytoplankton phenology presented here. There are a number of 
reasons why these data are useful for scientists and other practitioners, which we reiterate 
here. Phytoplankton form the base of the marine food web, they are highly sensitive to 
changes in physico-chemical conditions, such that long-term phenology datasets can help 
understand how phytoplankton are responding to environmental changes (sea temperature, 
ice cover, light availability, nutrients etc.). These changes in phenology may have cascading 
impacts on the entire ecosystems (fish populations, mammals and birds), thus monitoring 



phenological changes can provide early warnings of ecosystem shifts or decline in 
ecosystem health. Phenology data can be used to inform fisheries scientists and 
management by predicting the timing and extent of primary production, which supports fish 
stocks. Understanding phytoplankton phenology can help improve earth system models with 
respect to carbon sequestration and nutrient cycling, this is crucial for predicting future 
changes in marine environments and for making informed policy decisions. It is also 
important to recognise that the generation and continuation of this product is extremely 
computationally expensive. Not everyone (or country) has the access to compute resources 
required to generate this product to support their studies and/or to use in ecosystem 
management, particularly those from the global south where access to HPC resources can 
be limited. 

We hope that the modifications and below additional text incorporated into the introduction of 
the manuscript will help to clarify the value of such a data set to multiple users. Refer to 
italics text for additions: 

Lines 93-96: 

“Having access to a global data product that characterises the seasonal cycle of 
phytoplankton over the last 25 years and into the future can thus provide a valuable tool to 
users that require an understanding of key aspects of the growing season and  how these 
may be changing over time.” 

Lines 125-127: 

“These long-term changes in the seasonal cycle are crucial for understanding how marine 
ecosystems respond to environmental stressors like warming temperatures, ocean 
acidification, and changes in nutrient availability.” 

Lines 150-154 , refer to italic text: 

In addition, a phenology data product such as this can provide a useful aid for the planning of 
oceanographic research campaigns that wish to align with or determine their occupation 
relative to key aspects of the growing season. Finally, this derived observational data product 
could also be valuable to support those users without the programming know-how or access 
to computationally expensive resources that are required to generate it 

Lines 158-159: 

The data product facilitates the global characterisation of the climatological seasonal cycle 
and can be used to identify the sensitivity of the seasonal cycle to change (through the analysis 
of trends and anomalies).  
 

The OCCCI Chl-a is itself a satellite-derived product, based on the disaggregation of the 
world ocean in a certain number of optically-homogeneous water classes. However, global 
algorithms, even blending different waterclasses, do not compare necessarily well to 
observations in certain regions, where regional algorithms are proposed (e.g. Johnson et al. 
2013 in the Southern Ocean [https://doi.org/10.1002/jgrc.20270]; Volpe et al. 2019 in the 



Mediterranean Sea [https://doi.org/10.5194/os-15-127-2019]). To the best of my knowledge 
OCCCI do not consider regional-specific algorithms. 

And on top of that it is the uncertainty of the phenological analysis performed (which is also 
not very well documented, see my next comment). With such level of derivation I do not see 
how these metrics provided could be considered observed data. This issue could be 
overcome if the authors present some comparison to in situ observations of Chl-a 
timeseries, observed phenology or other common standards, but that is not done in the 
current version. Have the different bloom detection methods been validated with 
observational data on their own? Since obtaining global-scale validation data could be 
challenging, maybe one option is to perform a more formal analysis on the 
agreement/disagreement among methods considering in which temporal/spatial domain they 
have been validated independently. 

We appreciate the reviewer’s comments regarding the use of the OC-CCI data in our 
phenological analysis. We fully acknowledge that the OC-CCI Chl-a is a satellite-derived 
product and that its derivation is calculated by blending algorithms based on optical water 
type and that regional biases may still occur. However, in the absence of a single unifying 
algorithm applicable to all optical satellite sensors and across all marine environments, the 
optical water type methodological framework used by the OC-CCI currently provides the only 
viable solution for dealing with long-term, multi-sensor datasets at a global scale. While we 
understand that global algorithms may not always align perfectly with regional observations, 
the OC-CCI have put considerable effort into defining the per-pixel and regional uncertainties 
associated with each of their products, as well as highlighting currently under-represented 
regions (e.g. regions with lower cumulative water class membership in 
https://www.sciencedirect.com/science/article/pii/S0034425717301396#f0025 ). We would 
also note that regional validation assessments do not always agree, with outcomes that are 
strongly dependant on the strictness of the match up criteria being implemented (in both time 
and space) and the methodology being used to determine the in situ concentrations used in 
the comparison (e.g. HPLC versus acetone extracted fluorometric chlorophyll). As an 
example, we refer the reviewer to https://www.mdpi.com/2072-4292/11/15/1793. 
Nevertheless, even if susceptible to regional bias, this does not make the application of a 
satellite remote sensing data product inappropriate for characterising the phenology of the 
climatological seasonal cycle or the characteristics of variability (e.g. Thomalla et al., 2011, 
Tang et al,. 2021, Hauko et al. 2021) or to detect trends in any of these seasonal metrics 
(e.g. Silva et al. 2021, Anjaneyan et al. 2023, Delgado et al. 2023, Thomalla et al., 2023).  

We have added the following text into the introduction which highlights some of these 
limitations, see italics below, from line 112-127:   

“We note however that despite their obvious spatial and temporal advantages, 
remotely detected water-leaving radiances emanate from only the first optical depth, 
and give little quantitative information about the vertical structure of the water column, 
which can be particularly important in low nutrient regions where a subsurface chl-a 
maxima is prevalent. In addition, we recognise that the OC-CCI chl-a data product may 
exhibit regional biases (that can vary in both magnitude and direction) and  arise from 
several factors inherent to both satellite remote sensing technology and the 
complexities of ocean ecosystems. One example is that algorithms are often regionally 
trained on datasets from specific parts of the world, which can result in discrepancies 

https://www.sciencedirect.com/science/article/pii/S0034425717301396#f0025
https://www.mdpi.com/2072-4292/11/15/1793


when applied globally. Despite these regional biases, satellite ocean colour chl-a data 
products remain highly valuable, especially when the goal is to identify patterns in the 
seasonal cycle of phytoplankton and how these patterns evolve over time. While local 
accuracy may be impacted by biases, the broader trends—such as the timing of spring 
blooms, the intensity of summer productivity, or the length of growing season—are still 
well captured. This is because biases tend to be relatively consistent over time in any 
given region, allowing researchers to focus on changes in these patterns rather than 
on the absolute values. These long-term changes in the seasonal cycle are crucial for 
understanding how marine ecosystems respond to environmental stressors like 
warming temperatures, ocean acidification, and changes in nutrient availability.” 

 

With regards to concerns around the validation of OC-CCI satellite observations with 
independant in situ measurements, we refer the reviewer to the first response to Reviewer 1 
above, which highlights the credibility of ESA's validation efforts and the numerous studies 
that have utilised OC-CCI data without conducting independent validation, including for 
applications that determine bloom phenology. It is similarly beyond the scope of this data 
product submission to globally validate the different bloom detection methods. Suffice to say 
that these different methods are well documented and have been applied over many years 
to different data streams (e.g. chlorophyll from satellites, gliders, floats, moorings) and in 
many different ocean regions (Ji et al. 2010, Racault et al. 2012, 2014, Brody et al. 2013, 
Thomalla et al. 2015, 2023, Gittings et al. 2019, 2021, Ferreira et al. 2021, Silva et al. 2021). 
We do however recognise that different methods are more or less sensitive to different 
characteristics of the time series (e.g. to rapid adjustments in rates of change or inflection 
points etc.) such that they have a tendency to select different dates for initiation/ termination 
etc. It is for this reason that we apply three different (well documented) approaches for 
detecting bloom phenology. This allows the user the ability to assess the similarities or 
differences between different detection methods for their region of interest. Applying all three 
methods allows the user to discern which method is most appropriate to their region OR to 
use all three methods to  provide a range of variability for each bloom metric. We have 
provided more discussion on where and when the different methods disagree on a global 
scale and by how much. We have revised Figure 3 and included an additional Figure A2 
added to Appendices, and also request that you please refer to our response to comment 5 
from Reviewer 1 above. 

Regarding the comment on whether these phenological metrics should even be considered 
observed data. It is our understanding that satellite data are generally considered a remote 
sensing observation. However, we recognise the reviewers' concerns that having undergone 
so much processing these measurements could easily be considered a derived product. In 
an attempt to address this concern the first time we use OC-CCI satellite remote sensing we 
now refer to it as an “observational data product”, while for the phenology metrics that we 
derive from this observational product we now refer to them as “derived observational data 
products”. 

2. The quality of the presentation is high. The dataset is accessible and straightforward to 
interpret. However, another big concern is that the dataset does not include any estimate of 
error associated to the metrics given. It is of utmost importance to provide such an error, 
considering that the trends on such metrics seem to be on the range of 5-10 days per 



decade. Dispersion metrics around the mean for each pixel (in the 9km and 25km versions) 
are also missing. I think these can be provided since phenology indexes are computed in the 
4km version and later regridded (L115). There is no discussion about the potential sources 
of errors and limitations of the bloom detection methods, only references to other works 
(L135). Maybe the authors could mention the potential caveats of the methods when they 
elaborate on the agreement/disagreement between methods (L267). 

We thank the reviewer for raising this important concern regarding the absence of error 
estimates in the phenological metrics derived from the OC-CCI chl-a dataset. While it is 
challenging to provide meaningful error estimates for the phenological timing metrics 
generated from the OC-CCI observational product, we do recognise the importance of 
including the uncertainty, which will support more reliable results and ultimately strengthens 
the data product towards more informed decision making regarding the management and 
preservation of ocean ecosystems (see Werther et al. 2023).  

There are multiple approaches available to address the uncertainty in a phenological data 
product. In our case, we purposefully chose to provide users with three different detection 
methods, each applied to three resolutions: the native 4 km and regridded 9 km and 25 km. 
This results in nine unique realisations for each phenological metric for any given region 
globally. This was done in response to recognising that the detection methods each have 
their strengths and weaknesses and that the regridding of chlorophyll-a data introduces 
additional variability. These factors cause some regional differences in the phenological 
outcomes, giving the users insight into variability stemming from methodological and 
resolution choices.  

Another approach could be to explore the uncertainties associated with the underlying 
chlorophyll data product. The OC-CCI observational product provides per pixel “uncertainty” 
metrics for chl-a (refer to product manual 
https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw and Jackson et al,. 2017). The 
uncertainty metrics, bias and RMSD, are calculated for each optical water type derived from 
match ups between in situ and satellite derived chl-a. These class statistics are then used to 
compute daily per-pixel uncertainty. However, it is important to note, that these uncertainty 
metrics are only as good as the in situ data available. For example, we note that there is not 
an even spread across all waterclass types, meaning that the weighted errors themselves 
likely have implicit biases (Sathyendranath et al. 2019). Nevertheless, to incorporate the 
uncertainty metrics from OC-CCI into the derived phenological observational product, we 
propose to calculate the standard deviation for the per pixel chlorophyll-a time-series that is 
used to calculate the phenology, following: 

STD = √	𝑅𝑀𝑆𝐷! 	− 	𝑏𝑖𝑎𝑠! 

This gives an uncertainty band around the chlorophyll values provided by OC-CCI. For 
example, if at a specific time (e.g. the seasonal bloom peak) the chlorophyll concentration is 
1.5 mg/m³ and the STD is 0.1 mg/m³, the concentration might range from 1.4 to 1.6 mg/m³ . 
Adding and subtracting the STD to the chlorophyll time-series is done as follows (taking into 
account that the uncertainty metrics are log transformed): 

Chl+STD = 10**(log10(chlorophyll-a)  + STD_chlorophyll-a)  

https://docs.pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw


Chl-STD = 10**(log10(chlorophyll-a)  - STD_chlorophyll-a) 

An example of the resultant lower and upper chlorophyll-a ranges (dashed-grey) are 
compared against the original chlorophyll-a time-series (black) for two selected pixels from 
the Southern Ocean Time Series Observatory (SOTS, 140°E, 47°S) and Porcupine Abyssal 
Plain (PAP-SO, 49°N, 16.5°W) in the below figure.  

 

The phenology can then be computed on each of these time-series. For example, applying 
the three different phenology detection methods (TS= biomass threshold, CS = cumulative 
sum and RC = rate of change method) for initiation on the SOTS time-series on the 4 km 
dataset above, results in: 

● Chlorophyll:  TS = 2019-09-14, CS = 2019-10-16, RC = 2019-10-16 
● Chlorophyll -  STD:  TS, 2019-09-14, CS=2019-10-16, RC = 2019-10-16 
● Chlorophyll +  STD:  TS, 2019-09-14, CS=2019-10-24, RC = 2019-10-16 

While most of the methods produce the exact same initiation for each time-series (chl and 
chl±STD), the cumulative sum (CS) method, which aggregates chlorophyll values, is more 
sensitive to the upper-bound (+STD) chlorophyll-a values, resulting in a different initiation 
date for the chlorophyll+STD. As such, it is anticipated that the phenological timing 
uncertainties will be small. We note however that the reported uncertainties for bulk metrics 
(i.e. bloom amplitude, bloom mean and bloom integrated chl-a) could be large. 

The reprocessing of the 4 km, 9 km and 25 km phenology datasets for the three different 
methods, for three chlorophyll-a time-series (as in the figure above: chlorophyll-a and 
chlorophyll-a ± STD) is not a trivial task. It will require an enormous amount of compute 
resources, effort and time. As such, although we are unable to have this complete in time for 
this review we will endeavour, as feasibly possible (e.g. dependant on access to the required 



compute resources), to release an updated version of the dataset that includes these 
additional uncertainties on acceptance of the manuscript. Therefore, it is anticipated that for 
every region globally there will be 27 realisations of each phenology indices based on i) 
three methods of detection, ii) three grid resolutions and iii) uncertainties in the underlying 
chlorophyll-a product (chlorophyll-a, chlorophyll-a+STD, chlorophyll-a - STD). We hope that 
the commitment to propagate these uncertainties to complement the derived data product 
will satisfy the reviewer and if so, we kindly request the additional time needed to implement 
this request in an updated version of the dataset, which we anticipate will be achievable 
before the end of the calendar year. We are also open to alternate suggestions of how best 
to propagate error uncertainties for this particular data product.  

Regarding the requested dispersion metrics for bloom phenology indices, it is our 
understanding that this is not possible in this instance because the remotely sensed 
chlorophyll data is first regridded from the 4 km to the 9 km and 25 km resolution and then 
the phenological metrics are calculated from the regridded chlorophyll data. See excerpt: 
"The phenological indices described below are calculated using three horizontal resolutions 
in surface chl-a, the native 4 km resolution as provided by OC-CCI and a regridded 9 km and 
25 km horizontal resolution. “  Thus, we cannot do dispersion metrics as the phenology data 
is calculated from the gridded chlorophyll, and we end up with one value (e.g. the date of 
bloom initiation) per pixel (4 km, 9 km or 25 km) per year. However, the dispersion metrics 
for the different methods for a given resolution, as shown by standard deviation of methods 
for the 25 km resolution as in updated Figure 3, can easily be produced by the user.  
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