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Abstract. We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of

bottom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis

ready satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted

the tree positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of

atmosphere reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree5

species, which allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate

tree position, the year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years

from July 2015 to end of October 2022 with ca. 75.3 million data points for trees of 48 species and 3 species groups, as well as

13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following

DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-010
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1 Introduction

Climate change increases the risk of severe weather events such as heavy rainfall or droughts in Central Europe (Toreti et al.,

2023). The recent past has seen large-scale forest diebacks due to drought, disease or insect manifestations or a combination of

these disturbances (Senf et al., 2020; Senf and Seidl, 2021b). Forest managers face the challenge of adapting their management

practices through diversification and other strategies to mitigate these threats. Here, remote sensing will play an increasingly15

important role as it can support well-informed decisions by providing extensive land cover and forest information at higher

temporal frequencies than ground-based forest monitoring approaches. In this context, information on tree species is essential

for many forest management decisions.

Tree species classification in satellite imagery is important, not only for scientific, but also for practical applications in

forestry and nature conservation. This task has been in focus since the early days of space-borne remote sensing with the first20

Landsat sensors (Walsh, 1980) and it continues today with the application of machine-learning methods to large areas (Bolyn

et al., 2022; Blickensdörfer et al., 2024).

Sentinel-2 (S2) satellite images are the ideal basis for such analyses, as they are standardized, freely available and collected

with high temporal revisit frequency. Machine learning, particularly deep learning, is commonly employed to tackle classifi-

cation tasks in image data, albeit requiring substantial amounts of training data. In the context of tree species classification,25

generating training data is demanding and one has to resort to visual interpretation and on-screen labeling of high resolution

aerial images, ideally combined with validation in the field – or one has to source labels from forest inventory data.

Ahlswede et al. (2023) have addressed the problem of training data compilation and created a multi-modal training dataset,

containing aerial, as well as Sentinel-1 and 2 images of over 50 000 sites in the state of Lower Saxony, Germany. The dataset

contains image-wise labels for 20 European tree species, generated from stand level forest inventory data. Utilizing different30

deep learning models, the authors achieved an F1 score of 54.6%, using Sentinel-2 data alone. The F1 score is the harmonic

mean of user’s and producer’s accuracy, or precision and recall, respectively. They conclude that “the integration of multi-

seasonal data might disentangle further species-related information regarding phenology phases” (Ahlswede et al., 2023, p.

691) – this is what we aim for with the dataset presented here.

Hemmerling et al. (2021) used exactly this kind of multi-seasonal Sentinel-2 data to classify 17 different tree species in the35

state of Brandenburg, Germany. They applied a random forest classifier to time series of the years 2018 and 2019 and reached

F1 scores between 67% and 99% for the nine most frequent species, thereby demonstrating that at least a subset of species can

be separated using S2 time series comparable to the ones provided here. As in the first study, the authors obtained their labels

from forest inventories conducted by state authorities.

These two studies are noteworthy exceptions regarding the amount of training data used, because the used datasets were40

relatively large. Fassnacht et al. (2016) reviewed studies on tree species classification from remotely sensed data and conclude

that “investigations focusing on [..] a single often comparably small test site by far dominated the reviewed studies”. This

hinders the generalizability of results and the applicability of generated models to other areas: a dataset covering a large area

and long time spans is needed.
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To overcome the problem of limited training data we tap the largest dataset of field observations of tree species in Germany:45

the national forest inventory (NFI). The German NFI is conducted at full scale every 10 years, with a subsample after 5 years,

and covers more than 25 000 sites, over 60 000 sampling points and more than 500 000 trees across all ownerships and site

conditions (Polley et al., 2018). For each tree, several variables such as species, relative position and diameter at breast height

(DBH, 1.3 m) are recorded. The resulting dataset is the most comprehensive available for German forests and the derived

statistics provide valuable insights into the forest condition, composition and development on regional and national level.50

However, the design of the NFI was not tailored for creating remote sensing reference datasets but to provide an efficient

sampling and plot design for estimating key forest variables. From a remote sensing perspective, one of the major caveats is,

that the exact sampling positions need to be kept confidential, e.g., to prevent biased estimates when management practices are

changed in the plot vicinity.

The goal of the work presented is twofold: first, to make satellite data at NFI plot positions available for third parties without55

revealing the exact geolocations and second, to analyze the separability and temporal patterns of tree crown reflectances for

tree species in Germany. We link NFI records to bottom of atmosphere reflectance (BOA) time series from matching Sentinel-2

images, enabling tree species classification and other applications for a broad range of potential users. Said time series were

extracted from analysis ready data generated by the Framework for Operational Radiometric Correction for Environmental

monitoring (FORCE) (Frantz, 2019), hosted on the CODE-DE1 platform. The resulting dataset provides BOA reflectances60

from July 2015 to October 2022 and in sum contains the time series of 387 775 individual trees and 70,242 non-tree locations.

Multiplying the counts of tree and non-tree locations with their individual number of observed time steps yields a total of ca.

75.3 million data points for trees and 13.8 million observations for non-tree background, covering the entirety of Germany and

48 tree species and 3 species groups. The dataset is available online under https://doi.org/10.3220/DATA20240402122351-0

(Freudenberg et al., 2024) with CC BY 4.0 license.65

2 Materials and methods

2.1 Study area and national forest inventory

The dataset covers the entire area of Germany, including islands. More specifically, it contains 24 925 of the 25 382 cluster plots

recorded in the 2012 national forest inventory. The missing cluster plots either contained only trees below the canopy layer,

the field inventory was conducted in a non-standard way (e.g. with custom post-processing of the coordinates) or the cluster70

plot coordinates were simply missing from the database we obtained. Temperate broadleaf and mixed forests prevail in most

regions of the country. Coniferous forests, mainly consisting of Picea abies (Norway spruce), dominate at higher elevations

and forests with Pinus sylvestris (Scots pine) occur on the sandy soils of the north-eastern part of the country. In 2012, about

32% of Germany was covered by forest (Polley et al., 2018), but due to heavy droughts and following insect infestations in the

1https://code-de.org
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years 2018–2022 a decline in growing stock could be observed in certain areas (Reinosch et al., 2024; Thonfeld et al., 2022;75

Holzwarth et al., 2023).

The German national forest inventory is conducted on a regular, square sampling grid as shown in Figure 1 with a grid size

of 4 km × 4 km or less, depending on the federal state. At each grid point there are four inventory plots, aligned in a 150 m ×
150 m square. The south-western corner of the square aligns with the 4 km × 4 km grid, as shown in Figure 2.

Figure 1. The sampling positions of the German national forest inventory 2012. Borders: © GeoBasis-DE / BKG (2024)

4km
or less

150m

cluster
plot

subplot

Figure 2. The German national forest inventory sampling grid (black squares) and the subplots (green). The south-western subplot in each

cluster plot is aligned with the overarching grid.

The geolocation of each subplot is measured with a Global Navigation Satellite System (GNSS) device, which may or may80

not be differentially corrected using correction information from terrestrial reference stations. At this subplot, two angle count
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samplings are performed (Gregoire and Valentine, 2007), which means that trees whose diameter at breast height (DBH) covers

more than a certain solid angle are recorded.

The first angle count sampling includes all trees within a distance from the sample location of 25 times their DBH (basal

area factor 4). The positions of the selected trees are determined by measuring their azimuth angle using a compass and their85

distance to the plot center by an ultrasonic device (Haglöf Vertex or similar) or in edge cases via measuring tape. Furthermore,

the tree species, DBH and other variables are recorded. At these measured tree positions, the BOA reflectances were extracted

and related to the corresponding, ground-measured information - how this was done is described later.

A second angle count sampling captures the surrounding forest composition by recording the species of all trees within a

radius of 33.34 or 50 times their DBH (basal area factor 2 or 1), depending on how many trees were observed in the first90

sampling. The second angle count sampling allows to tell, which sub-plots are pure stands, i.e. have only one tree species in

them. The information about stand purity is included in the dataset, so that the end user can filter for trees in pure stands.

2.2 NFI reference data selection

The reflectances recorded in a Sentinel-2 pixel represent the mixture of all land cover – or in our case tree species – within

the pixel. However, in closed canopy forests the BOA reflectance is dominated by the uppermost canopy layer and we can95

safely assume that trees overshadowed by larger individuals contribute only little to the overall reflectance within a pixel.

To compile the provided training dataset we therefore filtered the NFI data for trees that are probably visible from above.

We first removed all trees that grow in the understory; this information is recorded during the inventory. For the remaining

trees we modeled a circular growing space using the NFI’s official method described in (Riedel et al., 2017, pp. 39, 40). The

model establishes a species-specific linear relation between basal area and the growing space of a tree. The growing space100

“approximately corresponds to the crown projection area” (Riedel et al., 2017, pp. 39, author’s translation), so we use these

terms interchangeably in the following. The model is defined in equation A1 and the parameters are supplied in Table A1 in

the appendix. As we know the position of each tree, as well as its predicted crown area, we removed trees that are probably not

visible from above by a heuristic algorithm.

Trees were considered visible if they were either the biggest (in terms of basal area) within a 3 m radius or if there were105

no other trees within that distance. Additionally, trees were classified as visible if their crown area overlapped the union of all

other crown areas by not more than 50%, as depicted in Figure 3. Trees classified as visible by this heuristic formed the basis

for the training dataset.
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Figure 3. Sketch of a tree group: Green trees are assumed to be visible. The blue tree overlaps with more than 50% of its area with other

trees and is therefore discarded.

To allow training classification methods for the discrimination between tree and non-tree pixels, we added non-forest obser-

vations to the dataset. For this, we sampled the tree cover density layer provided by the Copernicus Land Monitoring Service110

for the year 2018 within a 300 m × 300 m patch around the NFI plots2. The tree cover density layer is sampled at locations

that are at least 20 meters away from the next pixel with tree density greater than 10%.

2.3 Satellite data selection

We used images from the Sentinel-2 satellites, pre-processed to analysis-ready level, which includes atmospheric correction

and cloud masking, by the FORCE processing pipeline (Frantz, 2019). FORCE provides a way to compute harmonized time115

series that are spatially and spectrally well aligned, which is discussed in more detail later. The resulting data comprises all S2

bands with 10 or 20 m resolution, with the 20 m bands pan-sharpened (resampled) to 10 m resolution. Additionally, FORCE

provides quality assurance information (QAI) that aids in filtering out undesirable image conditions such as clouds, snow, or

high water vapor content. The data is hosted on the CODE-DE3 and EO-Lab4 platforms. End users have the option to either

download the pre-processed data or can re-process it using the same settings utilized in generating the FORCE data cube on120

CODE-DE. The necessary parameter files are provided alongside the dataset.

2.4 Time series extraction and data processing

As the NFI performs angle count sampling, it is not possible to exactly determine how much of a given area (e.g. a Sentinel-2

pixel) is covered by which tree species or land cover type. Previous studies have related all pixels in a certain radius around the

sampling point to the found species composition or the dominant species, e.g. based on the basal area (Blickensdörfer et al.,125

2024). Here, we take a different approach by directly extracting the reflectance time series at each tree position. While this

poses challenges, mainly due to co-registration errors of the satellite and GNSS data and duplication of pixels, it also opens

new possibilities for combining, filtering and analyzing the data.

We started by clipping 300 m × 300 m image patches containing the 24 925 filtered NFI cluster plots and their surroundings

from the FORCE data cube, as depicted in Figure 4. We extracted the bottom of atmosphere reflectance (BOA) as well as the130

2https://land.copernicus.eu/en/products/high-resolution-layer-tree-cover-density
3https://code-de.org
4https://eo-lab.org
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quality assurance information (QAI). Before extraction, we filtered the plots to ensure they contained at least one pixel with

data, not affected by clouds or cloud shadows.

FORCE
datacube

cluster
plot

extraction

24925
300m×300m

tiles

pixelwise
extraction

458017
time series

tim
e

tim
e

of pixels

Figure 4. The time series extraction workflow: First, 300 m × 300 m tiles are clipped from the FORCE datacube for Germany for all records

between 2012 and 2022. Second, the pixel-wise time series are extracted from the tile time series.

In a second step, we extracted the BOA and QAI pixel time series from the extracted patches at each tree position. In

cases where a single tree covered more than one 10 m × 10 m Sentinel pixel, we calculated the area-weighted average of all

pixels intersected by the tree’s crown area, as depicted in Figure 5. Each extracted satellite observation was then linked to its135

acquisition date, the corresponding NFI data and more information. Senf and Seidl (2021a) provide a Landsat-based map of

forest disturbances for Germany between 1986 and 2020 at a resolution of 30 m. To be able to identify possible disturbance

events, we included the disturbance year from this map in the dataset. However, this still leaves a gap between 2020 and 2022,

for which no disturbance information is available. This was bridged by attaching the information whether the trees were still

present during the 2022 NFI. To enable approximate spatial analyses, we furthermore included the center coordinate of the 1140

km INSPIRE grid tile the cluster plots are located in. The INSPIRE grids (INSPIRE MIG, 2023) are a set of Pan-European

geographical grid systems in the ETRS89-LAEA coordinate reference system with their origin at 52◦ N 10 ◦ E. The grids have

a power-of-ten spacing in meters; we used the 1 km grid.

The final dataset comprises the columns presented in Table 1 and an excerpt is given in Table C1 in the appendix. All samples

were randomly split into training and validation sets based on their cluster plot IDs with a ratio of 70% - 30%. This rules out145

any spatial overlap between the training and test sets and reduces correlations between the two. For benchmark studies, we

recommend using this split to ensure comparability across publications.

2.5 Assessment of the geolocation accuracy of the NFI plots

The tree positions in the NFI are measured in polar coordinates relative to the plot center, using a compass for the angle and

an ultrasonic device for the distance measurement. We assume that the errors for angle and distance are small compared to the150

GNSS error of the plot center position measurement. GNSS measurements can be differentially corrected by using ground-

5https://force-eo.readthedocs.io/en/latest/howto/qai.html#quality-bits-in-force
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a b c

Figure 5. (a) The whole cluster plot cutout of 300 m×300 m. S2-Image: European Space Agency (2021) (b) The lower left subplot with the

corresponding orthophoto for reference. Douglas firs in the lower part, Norway spruce in the upper part of the image. Image: © BKG (2021)

(c) The S2 pixels corresponding to the subplot with circles depicting the modeled tree crown areas. The crossed out tree is omitted because

it overlaps too much with surrounding trees.

based reference stations to increase positional accuracy. Depending on the federal state and field team, coordinates of the plot

centers are measured with corrected GNSS devices or not. Of the sub-plots with trees in the dataset, 76.5% were corrected,

22.5% were not, and the remainder has unknown status.

To estimate the accuracy of the plot center coordinates, we compared the field-measured tree positions with tree positions155

derived from true-ortho aerial images, obtained from the Federal Agency for Cartography and Geodesy. These images are

ortho-rectified using a surface model and aligned with high accuracy to ground control points. The ATKIS orthophoto standard

guarantees a geolocation error with standard deviation of 0.4 m or less (Arbeitsgemeinschaft der Vermessungsverwaltungen

der Länder der Bundesrepublik Deutschland (AdV), 2020). Two expert image interpreters then manually shifted a sample of

200 NFI plot positions, and thereby the trees, to match the true tree positions by comparing local tree patterns as depicted in160

Figure 6. This allows to quantitatively evaluate the deviation of measured from true positions and to compare the accuracy of

corrected and uncorrected measurements.

Figure 6. Original, measured GNSS coordinates (red) were shifted (here by 4.8 m) to the visually best matching position (green) in aerial

orthophotos to quantify GNSS errors. Circles depict modeled crown areas.
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Table 1. Dataset contents and column description.

Column name Data type Description

tree_id Integer A globally unique tree id. Negative values represent non-tree records.

tnr Integer Cluster plot id

enr Integer Corner id (1-4). Negative values represent non-tree records.

time Integer The acquisition date, encoded as Unix time, representing the number of seconds elapsed
since 1970-01-01, 00:00 UTC. Every date was randomly shifted by up to three days.

species Integer The tree species, encoded according to the official NFI schema, provided within the
dataset in a separate table “x_ba”.

boa byte array The BOA reflectance values: 10 signed 16-bit integers, one for each band, encoded
as 20 byte blob. To hamper the identification of exact plot positions, each value was
multiplied with a uniform random number between 0.95 and 1.05.

qai Integer Quality assurance information bit-flags, encoded as 16-bit integers, allowing for filter-
ing based on image quality. The FORCE documentation provides details on the meaning
of each bit5.

is_train Bool Whether the record belongs to the training or validation set.

is_pure Bool Whether the record comes from a pure stand according to the NFI definition.

dbh_mm Integer Diameter at breast height (1.3 m) in millimeters.

height_dm Integer Tree height in decimeters.

crown_area_m2 Float Modeled tree crown area in m2.

x_wgs84 Float Longitude of the corresponding 1 km Inspire grid tile center.

y_wgs84 Float Latitude of the corresponding 1 km Inspire grid tile center.

is_corrected Bool Whether the NFI position measurement was differentially corrected.

disturbance_year Integer The disturbance year according to the map provided by Senf and Seidl (2021a).

present_2022 Bool Whether the tree was observed again in the 2022 forest inventory.

doy Integer The day of year of the acquisition, corresponding to the shifted date.

2.6 Species separability analysis

To detect inconsistencies within the dataset, we computed the infrared reflectance histograms of five species for mixed and

pure stands. If the histogram shows artifacts like double peaks or differs strongly between pure and mixed stands, this could165

hint to deficiencies in the respective part of the dataset. The histograms were computed for band B8 (842 nm), averaged over

all records in June 2021 for a sample of five species whose occurrence is correlated – Betula pendula often grows along with

Pinus sylvestris and Fagus sylvatica often appears together with Quercus spp. June 2021 has been chosen because both Sentinel

satellites were operational and, unlike the preceding years and 2022, 2021 was not particularly dry.
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3 Dataset description and statistics170

3.1 Numerical species distribution

Due to the highly varying dominance of tree species in Germany, the numerical distribution of the different species (Figure 7)

is heavily imbalanced. The most abundant species is Pinus sylvestris (Scots pine), followed by Picea abies (Norway spruce),

Fagus sylvatica (European beech) and the different Quercus (Oak) species. A complete list of included tree species and their

counts can be found in appendix Table C3.175

Count in thousands
0 30 60 90 120 150

Non-tree
Others
Populus tremula
Robinia pseudoacacia
Quercus rubra
Populus nigra
Larix kaempferi
Carpinus betulus
Acer pseudoplatanus
Alnus glutinosa
Fraxinus excelsior
Larix decidua
Abies alba
Pseudotsuga menziesii
Betula pendula

Quercus petraea
Quercus robur

Fagus sylvatica
Pinus sylvestris

Picea abies

Figure 7. The numerical species distribution in the training dataset (colored) and in the original NFI 2012 data (gray).

3.2 Temporal signatures of selected species

Coniferous and broadleaf trees can be clearly separated visually by inspecting the time series of their infrared (IR) reflectance,

as depicted in Figure 8. In the presented time series, the observations for a given species and point in time have been averaged

across all undisturbed individuals in pure stands. Whether a stand is pure or not was determined using the second angle count

sampling of the NFI. Obviously, broadleaf trees exhibit a much stronger seasonal pattern than coniferous trees. This separation180

is less evident in the green band, likely due to its higher susceptibility to atmospheric effects and its lower absolute reflectance,

which deteriorates the signal to noise ratio. While the temporal infrared profiles of Fagus sylvatica and Quercus robur are

generally distinguishable across most years, there are instances where differentiation becomes challenging (e.g. 2016 and

2020). Quercus robur tends to have a slightly lower IR reflectance on average, particularly in summer. Picea abies and Pinus
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sylvestris also differ only slightly in the infrared, with Picea abies having lower average values on trend. Overall, differentiating185

species by their temporal profiles alone seems challenging without considering their spectrum at the same time. Figure B1 in

the appendix depicts the same data as Figure 8 but additionally includes error bands that were omitted here for clarity.

2

4

6

B3 560nm green

2016 2018 2020 2022

10

20

30

40

50
B8 842nm VNIR

B
O

A
 R

ef
le

ct
an

ce
 [%

]

Picea abies

Pinus sylvestris

Fagus sylvatica

Quercus robur

Figure 8. Time series of BOA reflectance for indicated species, averaged over all undisturbed individual trees in pure stands at a given time.

The data has been filtered to exclude all types of cloud cover and their shadows, snow, and pixels with high aerosol optical depth.

Looking at a random selection of four individual trees’ time series, depicted in Figure 9, it becomes clear that at the level of

a single tree, the differences between species still seem to be present, but with high variance from year to year.

2016 2018 2020 2022

B
O

A
 R

ef
le

ct
an

ce
 [%

]

10

20

30

40

50

B8 842nm VNIR

Picea abies

Pinus sylvestris

Fagus sylvatica

Quercus robur

Figure 9. Time series of random single trees of different species.
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Figure 10 shows the total observation count over time, i.e. how often each tree was imaged within a month, summed up190

across all trees. After the commissioning of Sentinel-2B in June 2017 the number of observations increases. As one would

expect, there are more observations in the summer months when clouds are less likely and especially from 2018 onward the

counts regularly reach over 1 million.
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Figure 10. Total monthly observations of all trees in the dataset (tree count multiplied by individual observation count per month). The

vertical red line corresponds to the Sentinel-2B commissioning date.

3.3 Spectral signatures

Besides the temporal variation of the reflectance, the spectral variation is an important feature for the tree species classification195

– however, the species are not necessarily separable by their spectrum alone, as can be seen in Figure 11. It depicts the Sentinel-

2 spectra of the five most frequent species, as well as the background class. Fagus sylvatica and Quercus petraea for example

have almost matching spectra, especially in the shorter wavelengths. The resulting spectra match the ones presented in Immitzer

et al. (2016).
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Figure 11. Average spectrum of the five most frequent species in the dataset, plus the background class. Records from pure stands have been

averaged between May and August (inclusive) of the years 2017–2022.
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3.4 Spatial distribution200

It can be expected that the temporal signatures vary with local conditions, e.g. along an latitudinal or elevation gradient.

Therefore, it is important to analyze the spatial coverage of the training data. Figure 12 shows that Picea abies (a) is mainly

present in the south-west of Germany and in the lower mountain ranges. Pinus sylvestris (b) on the other hand, is predominant

on the sandy soils of the north-eastern part of the country. The different Quercus species (c) occur mostly in the west of

Germany, but are also present throughout the rest of the country. Fagus sylvatica (d), lastly, co-occurs with Quercus spp., but in205

contrast to them, manages to settle in the higher and therefore colder hillscapes of the central parts of Germany. Note however,

that these spatial distributions are derived from the dataset, which does not mirror the NFI one to one due to filtering and the

availability of satellite images.
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Figure 12. Spatial tree distribution for different species. Note the different scales. Borders: © GeoBasis-DE / BKG (2024)
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3.5 NFI geolocation accuracy estimation

The analysis of the spatial accuracy of the NFI plot coordinate GNSS measurements reveals that 95% of corrected GNSS210

positions deviated by less than 11.2 m, and 81% by less than 5 m; Figure 13 depicts the corresponding histogram along

with the empirical cumulative density function. Against expectations, the comparison of corrected and uncorrected GNSS

measurements shows no significant difference.
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Figure 13. Histogram of distances by which plot locations were shifted from the original GNSS positions. Differentially corrected measure-

ments are depicted in blue.

3.6 Separability analysis

Figure 14 shows the histograms of S2 band B8 (842nm) averaged over all records in June 2021 for the species pairs Betula215

pendula – Pinus sylvestris and Fagus sylvatica – Quercus robur – Quercus petraea, each computed over mixed and pure

stands, respectively. The reflectance distributions for Pinus and Betula clearly differ between mixed and pure stands. In mixed

stands, the distributions are relatively wide and overlap, whereas in pure stands, there are separable peaks (albeit some overlap

remains) and the distance between maxima is larger. Comparing Fagus sylvatica to the two Quercus species, one can see

that the distributions overlap much more, as all three species are broad-leaved. In mixed stands, there is hardly any observable220

difference between the distributions. For pure stands, the distributions still overlap significantly, but the distance between peaks

is slightly larger than in mixed stands.

4 Discussion

4.1 Geolocation accuracy

Sentinel-2: To obtain the presented dataset, we linked spatial information from two different data sources: georeferenced225

satellite images and on-ground GNSS measurements. A misalignment of these sources might lead to extracting wrong pixel

values from the image data. FORCE co-registers all Sentinel-2 images with averaged Landsat time series. The Landsat images
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Figure 14. Histogram of near infrared (842 nm) BOA reflectances, averaged over all trees in June 2021, for (a) Pinus sylvestris and Betula

pendula and (b) Fagus sylvatica, Quercus robur and Quercus petraea. The upper parts represent pure stands and the lower parts mixed stands.

are in turn co-registered with the Sentinel-2 global reference image which results in a geometric accuracy of 10.2 m at the 90%

confidence level for Landsat 8 (Haque et al., 2022) (8 m at 80% confidence). Consequently, this is the best estimate for the

spatial accuracy of the used S2 images. The reason for this cyclic co-registration of Sentinel to Landsat to Sentinel is, that so230

far only the S2 level 1 archive has been processed to a common standard6. The level 2 data, which compensates atmospheric

effects and is needed for coherent time series, is not yet available at a standardized processing baseline in any public archive.

NFI geolocation accuracy: The comparison of corrected and uncorrected GNSS measurements showed no significant differ-

ence in spatial accuracy, at least not the way we measured it. As differential correction unquestionably increases the GNSS

accuracy, we suppose that increasing the count of sampled plots as well as the number of image interpreters would change our235

result. Furthermore, trees growing skew and outliers when matching the crown patterns might have negatively influenced the

results. Lastly, it will be interesting to analyze the accuracy of trained classifiers as a function of correction status.

Combined geolocation accuracy: The combined geolocation accuracy is difficult to compute for several reasons: 1) the

satellite images are corrected by FORCE, as discussed above, 2) the satellite image accuracy is latitude- and time-dependent7

and 3) the GNSS errors we measured do not follow a Gaussian distribution. Neglecting these points and using the values240

derived for the 80% confidence level, namely 8 m for the satellite images and 5 m for the GNSS positions, we obtain an error

estimate of 9.4 m. This is nearly equivalent to the pixel size, which means that the extracted pixel values are still likely to

represent a reasonable approximation of the targeted trees, whose diameter is of comparable size.

4.2 Adverse imaging conditions

During the extraction process, we filtered out most pixels with cloud cover or cloud shadows. FORCE employs the FMASK245

algorithm (Zhu and Woodcock, 2012) for cloud detection, which has an accuracy of 84% for cloud / clear detection and 72%

detection accuracy for cloud shadows (Aybar et al., 2022). Consequently, falsely labeled image regions lead to commission

6https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/copernicus-sentinel-2-collection-1-availability-status
7S2 Data Quality Reports: https://sentiwiki.copernicus.eu/web/document-library
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or omission errors in the final dataset, i.e. usable pixels might have been removed by being labeled as cloudy or cloud pixels

could be in the dataset. However, there are other imaging conditions that might affect the quality of a pixel like high aerosol

content, snow or poor illumination conditions. FORCE encodes this information in the quality assurance information and end250

users can use this to further narrow the dataset down to only the highest quality pixels.

4.3 Extraction of non-forest points

The non-forest points were randomly sampled within the extracted 300 m × 300 m tiles. In consequence, we only sampled non-

forest points from areas like city centers or industrial zones where they are situated close to forest – which is rather unlikely.

Therefore the extracted non-forest points are biased towards rural villages and agricultural areas.255

4.4 Taxonomic identification

The field teams of the NFI data are trained and undergo testing before being allowed to take samples. However, it cannot be

ruled out that under adverse conditions certain species are confused. We cannot quantify this error, but assume that the vast

majority of tree species identifications are correct, in particular for the common species.

4.5 Mixed and duplicate pixels260

At present, we cannot exactly quantify the effect of pixels that contain different tree species on our dataset, as it is in most

cases impossible to derive the species shares of a pixel based on the NFI data. The NFI does not fully sample a given plot, so in

most cases, labels are only available for parts of a given pixel. Another source for mixed pixels are the 20 m resolution bands

of Sentinel-2 that are pan-sharpened to 10 m by FORCE, thereby distributing identical information across several pixels.

Due to the method we used to extract pixel values, trees that are located within the same S2 pixel receive identical values and265

information is duplicated. We checked the non-randomized dataset for duplicate bottom of atmosphere reflectances among the

tree records. Non-tree points were sampled from a larger area, so duplication plays no role in their case. To identify duplicates,

we grouped the dataset by cluster id, corner id, time and reflectance spectrum. If there were N identical reflectances per group,

we counted N-1 as duplicates. In total, the dataset subset for trees contains ca. 4.87 million duplicate entries out of ca. 66

million, which translates to 7.38%. Out of these 4.87 M duplicates, 3.86 M (5.84%) are duplicates with identical species label270

and 1.01 M (1.53%) have differing species labels. Ergo, at least 0.77% (1.01 M / 66 M / 2) of the labels are wrong.

Should the user wish to reduce the correlation between samples or remove duplicate pixel time series, we recommend the

following procedure: first, group the dataset by subplot; second, compute the correlation of the full time series between the

different trees in the plot; and finally, remove all trees that correlate beyond a certain threshold, except for one.

4.6 Species separability analysis275

Figure 14 (a) showed that the IR-reflectance distributions of Pinus and Betula are wide and overlap in mixed stands, whereas

they are more separated in pure stands. We interpret this as a potential indication that, at least for this species pair, the dataset
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may contain mislabeled data due to insufficient spatial accuracy or that the extracted pixel values originate from mixed pixels

containing other species or land cover classes.

In contrast, comparing Fagus and Quercus spp. in mixed and pure stands revealed no significant differences, with the re-280

flectance distributions overlapping substantially. However, this does not necessarily indicate labeling errors; it could also reflect

naturally occurring values. This highlights the necessity of including factors beyond spectral data, e.g. temporal profiles as

shown in Figure 9, for accurate species classification.

5 Conclusion and outlook

In this work, we presented the so far most comprehensive dataset of annotated Sentinel-2 time series data for tree species285

detection in Germany. With over 380 thousand trees of 48 species observed for over seven years, this dataset can significantly

advance research into automatic tree species classification for Germany, and central Europe. At the same time the described

approach can serve as a pilot study for making national forest inventory data from other countries accessible for the remote

sensing community e.g. for training machine learning models without releasing the exact geolocations publicly. Lessons learned

from its application can be used to enhance future inventories and datasets. For example, it could show that for underrepresented290

species more labels are required, which in turn could be sampled in targeted inventories.

As discussed in the previous section, the dataset still has several shortcomings that could be improved. To achieve better

agreement between labels and images, the spatial accuracy of the data sources has to be increased. To do so, we suggest that

in future all NFI position measurements are taken using differential GNSS devices, although we saw no significant differences

in accuracy. Furthermore, we expect that aligning the Sentinel-2 images directly with the S2 global reference image instead of295

averaged Landsat time series would improve their spatial accuracy and make it easier to derive interpretable error metrics. We

consider releasing an updated dataset version as soon as Sentinel-2 L2A collection one is fully accessible.

The main focus of further efforts will be to increase the number of labels for weakly represented classes, e.g. by utilizing

automatically classified high resolution orthophotos as reference. First attempts to automatically identify underrepresented tree

species in standard RGBI aerial images with 20 cm spatial resolution have failed, so the presented dataset is still limited regard-300

ing less abundant species. Another option to increase the overall amount of data would be to incorporate forest inventory data

at the stand level from e.g. state forest enterprises, however, this data often only provides estimates of tree species proportions

within management units, but no geolocation of individuals.

We hope that this dataset fosters the research into time series-based classification of tree species and believe it offers many

possibilities for analyses that go beyond the ones presented here. Users can freely recombine the provided data and for example305

calculate basal or crown area proportions per sampling location and use this information as labels instead. Using classification

methods in general, one could investigate which spectral bands and which points in time are crucial for precise species clas-

sification. As the dataset not only contains the time series of individual trees’ BOA reflectances, but also their approximate

location, spatio-temporal patterns in tree phenology could be assessed on individual species level. For example, the onset of

leaf emergence could be analyzed first in the dataset alone, and later by using species maps generated by a derived classifica-310
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tion method. Lastly, the dataset could be used to correlate reflectances and approximate health conditions with meteorological

events like droughts on a per-species level. This would open up further research into climate-change resistant species and en-

ables the identification of endangered forest stands. In the future we plan to release updated versions of the dataset, particularly

after the final publication of the 2022 NFI.

6 Data availability315

All data is available online under https://doi.org/10.3220/DATA20240402122351-0 (Freudenberg et al., 2024) with CC BY 4.0

license.
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Appendix A: Crown area estimation325

Following equation is used to model the crown area, using the parameters α and β from table A1 (Riedel et al., 2017, pp. 39,

40).

AC = α+βAB (A1)

AC : Tree crown area, AB : Basal area

Appendix B: Additional Figures330

Appendix C: Database excerpt and species counts
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Table A1. Parameters of the crown area equation (Riedel et al., 2017, p. 40). We corrected the α value for poplar; the original value is 23,

which is a typing error.

Tree Species Group α [m2] β

Max.

Stem Count Assigned Tree Species

Fir 2.85 200 3500 All firs except hemlock

Douglas Fir 5.00 200 2000 Douglas fir

Pine 1.00 300 10000 All pines

European Larch 5.00 285 2000 European larch

Japanese Larch 5.00 260 2000 Japanese larch (+ hybrids)

Beech 1.33 300 7500 Beech, hornbeam (whitebeam)

Oak 1.11 395 9000 Pedunculate oak, sessile oak, Turkey oak, swamp oak

Red Oak 2.50 350 4000 Red oak

Ash 2.50 330 4000 All other deciduous trees not mentioned

Alder 2.50 435 4000 Alder, black alder, white alder/grey alder, green alder

Birch 2.50 525 4000 Silver birch, downy birch (+ Carpathian birch)

Poplar 2.30 320 350 All poplars

Spruce 2.85 195 3500 All spruces as well as arborvitae, hemlock, sequoia, yew, Law-

son cypress, other conifers
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Figure B1. Time series of infrared reflectance and the standard deviation for indicated species, averaged over all undisturbed individual trees

in pure stands at a given time. The bands have a width of 2 standard deviations. The data has been filtered to exclude all types of cloud cover

and their shadows, snow, and pixels with high aerosol optical depth.
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Table C1. Database excerpt. The bottom of atmosphere (BOA) reflectance is encoded as 10 signed 16 bit integers, the quality assurance

information (QAI) is a single 16 bit integer. DOY abbreviates day of year.

tnr (cluster id) enr (corner id) tree_id species time BOA QAI is_train is_pure

455 1 69831 211 1440374400 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1448064000 10 16-bit integers 10256 1 0 . . .

455 1 69831 211 1455494400 10 16-bit integers 10240 1 0 . . .

455 1 69831 211 1460592000 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1463961600 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1467072000 10 16-bit integers 8192 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .

dbh_mm height_dm crown_area_m2 x_wgs84 y_wgs84 is_corrected disturbance_year present_ 2022 DOY

. . . 231 243 20.4 9.80714 47.64294 1 0 1 236

. . . 231 243 20.4 9.80714 47.64294 1 0 1 325

. . . 231 243 20.4 9.80714 47.64294 1 0 1 46

. . . 231 243 20.4 9.80714 47.64294 1 0 1 105

. . . 231 243 20.4 9.80714 47.64294 1 0 1 144

. . . 231 243 20.4 9.80714 47.64294 1 0 1 180

. . .
...

...
...

...
...

...
...

...
...
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Table C2. List of all included tree species with counts (part 1).

Species Code Species Common Name Count

-1 - - other land cover 70242
10 Picea abies Norway spruce 107798
12 Picea sitchensis sitka spruce 937
19 Picea spec. other spruces 232
20 Pinus sylvestris Scots pine 102730
21 Pinus mugo mountain pine 88
22 Pinus nigra European black pine 606
24 Pinus cembra Swiss pine 3
25 Pinus strobus eastern white pine 431
29 Pinus spec. other pines 65
30 Abies alba silver fir 9375
33 Abies grandis grand fir 384
39 Abies spec. other firs 291
40 Pseudotsuga menziesii Douglas fir 9598
50 Larix decidua European larch 7674
51 Larix kaempferi Japanese larch (+hybrids) 3308
90 other coniferous trees 139
94 Taxus baccata European yew 11

100 Fagus sylvatica beech 57341
110 Quercus robur English oak 19617
111 Quercus petraea sessile oak 18697
112 Quercus rubra Northern red oak 1861
120 Fraxinus excelsior common ash 7469
130 Carpinus betulus hornbeam 3411
140 Acer pseudoplatanus sycamore maple 5042
141 Acer platanoides Norway maple 598
142 Acer campestre field maple 387
150 Tilia spec. linden tree (indigenous species) 1294
160 Robinia pseudoacacia black locust 1553
170 Ulmus spec. elm, native species 406
181 Castanea sativa chestnut 416
190 misc. broadleaf trees with long life expectancy 246
191 Sorbus domestica service tree 2
193 Sorbus aria common whitebeam 51
200 Betula pendula silver birch 9729
201 Betula pubescens moor birch 858
211 Alnus glutinosa black alder 7098
212 Alnus incana grey alder 460
220 Populus tremula common aspen 1402
221 Populus nigra European black poplar (+ hybrids) 1945
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Table C3. List of all included tree species with counts (part 2).

Species Code Species Common Name Count

222 Populus x canescens grey poplar (+hybrids) 196
223 Populus alba silver poplar 109
224 Populus trichocarpa x maximoviczii balsam poplar 636
230 Sorbus aucuparia European rowan 270
240 Salix spec. willow 1203
250 Prunus padus bird cherry 77
251 Prunus avium wild cherry 1357
252 Prunus serotina black cherry 132
290 misc. broadleaf trees with short life expectancy 92
292 Malus sylvestris European crab apple 37
293 Pyrus communis European wild pear 42
295 Sorbus torminalis wild service tree 71
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