
A Sentinel-2 Machine Learning Dataset for Tree Species
Classification in Germany
Maximilian Freudenberg1, Sebastian Schnell2, and Paul Magdon3

1Chair of Forest Inventory and Remote Sensing & Neural Data Science Group, University of Göttingen, Germany
2Thünen Institute of Forest Ecosystems, Eberswalde, Germany
3Faculty of Resource Management, University of Applied Sciences and Arts (HAWK), Göttingen, Germany

Abstract. We present a machine learning dataset for tree species classification in Sentinel-2 satellite image time series of bot-

tom of atmosphere reflectance. The dataset is based on the German national forest inventory of 2012, as well as analysis ready

satellite imagery computed using the FORCE processing pipeline. From the national forest inventory data, we extracted the tree

positions, filtered 387 775 trees in the upper canopy layer and automatically extracted the corresponding bottom of atmosphere

reflectance time series from Sentinel-2 L2A images. These time series are labeled with the corresponding tree species, which5

allows pixel-wise classification tasks. Furthermore, we provide auxiliary information such as the approximate tree position, the

year of possible disturbance events or the diameter at breast height. Temporally, the dataset spans the years from July 2015 to

end of October 2022 with ca. 75.3 million data points for trees of 51 species and
::
48

::::::
species

::::
and

:
3
:
species groups, as well as

13.8 million observations for non-tree background. Spatially, it covers entire Germany. The dataset is available under following

DOI (Freudenberg et al., 2024): https://doi.org/10.3220/DATA20240402122351-010
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1 Introduction

In this work, we present a new training dataset for pixel-wise classification of tree species using Sentinel-2 time series of

bottom-of-atmosphere (BOA) reflectances across Germany.

Climate change increases the risk of severe weather events such as heavy rainfall or droughts in Central Europe (Toreti et al.,

2023). The recent past has seen large scale
::::::::
large-scale

:
forest diebacks due to drought, disease or insect manifestations or a15

combination of these factors
::::::::::
disturbances (Senf et al., 2020; Senf and Seidl, 2021b). Forest managers face the challenge of

adapting their management practices through diversification and other strategies to mitigate these threats. Here, remote sensing

will play an increasingly important role as it can support well-informed decisions by providing extensive land cover and forest

information at higher temporal frequencies then traditional
::::
than

:::::::::::
ground-based

:
forest monitoring approaches. In this context,

information on tree species is a an essential information, key to
:::::::
essential

:::
for many forest management decisions.20

Tree species classification in satellite imagery is crucial
::::::::
important, not only for scientific, but also for practical applications

in forestry and nature conservation. This task has been in focus since the early days of space-borne remote sensing with the

first Landsat sensors (Walsh, 1980) and it continues today with extensive use
::
the

:::::::::
application

:
of machine-learning methods

::
to

::::
large

:::::
areas (Bolyn et al., 2022; Blickensdörfer et al., 2024).

Sentinel-2 (S2) satellite images are the ideal basis for such analyses, as they are standardized, freely available and collected25

with high temporal revisit frequency. Machine learning, particularly deep learning, is commonly employed to tackle classifi-

cation tasks in image data, albeit requiring substantial amounts of training data. In the context of tree species classification,

generating training data is demanding and one has to resort to visual interpretation and on-screen labeling of high resolution

aerial images, ideally combined with validation in the field – or one has to source labels from forest inventory data.

Ahlswede et al. (2023) have addressed the problem of training data compilation and created a multi-modal training dataset,30

containing aerial, as well as Sentinel-1 and 2 images of over 50 000 sites in the state of Lower Saxony, Germany. The dataset

contains image-wise labels for 20 European tree species, generated from stand level forest inventory data. Utilizing different

deep learning models, the authors achieved an F1 score of 54.6%, using Sentinel-2 data alone.
:::
The

:::
F1:::::

score
::
is

:::
the

::::::::
harmonic

::::
mean

:::
of

:::::
user’s

::::
and

:::::::::
producer’s

::::::::
accuracy,

::
or

::::::::
precision

::::
and

:::::
recall,

:::::::::::
respectively.

:
They conclude that “the integration of multi-

seasonal data might disentangle further species-related information regarding phenology phases” (Ahlswede et al., 2023, p.35

691) – this is what we aim for with the dataset presented here.

Hemmerling et al. (2021) used exactly this kind of multi-seasonal Sentinel-2 data to classify 17 different tree species in the

state of Brandenburg, Germany. They applied a random forest classifier to time series of the years 2018 and 2019 and reached

F1 scores between 67% and 99% for the nine most frequent species, thereby demonstrating that at least a subset of species can

be separated using S2 time series comparable to the ones provided here. As in the first study, the authors obtained their labels40

from forest inventories conducted by state authorities.

These two studies are noteworthy exceptions regarding the amount of training data used, because the used datasets were

relatively large. Fassnacht et al. (2016) reviewed studies on tree species classification from remotely sensed data and conclude

that “investigations focusing on [..] a single often comparably small test site by far dominated the reviewed studies”. This

2



hinders the generalizability of results and the applicability of generated models to other areas: a dataset covering a large area45

and long time spans is needed.

To overcome the problem of limited training data we tap the largest dataset of field observations of tree species in Germany:

the national forest inventory (NFI). The German NFI is conducted at full scale every 10 years, with a subsample after 5 years,

and covers more than 25 000 sites, over 60 000 sampling points and more than 500 000 trees across all ownerships and site

conditions (Polley et al., 2018). For each tree, several variables such as species, relative position and diameter at breast height50

(DBH,
::::

1.3
::
m) are recorded. The resulting dataset is the most comprehensive available for German forests and the derived

statistics provide valuable insights into the forest condition, composition and development on regional and national level.

However, the design of the NFI was not tailored for creating remote sensing reference datasets but to provide an efficient

sampling and plot design for estimating key forest variables. From a remote sensing perspective, one of the major caveats is,

that the exact sampling positions need to be kept confidential, e.g., to prevent biased estimates when management practices are55

changed in the plot vicinity.

The goal of the work presented is twofold: first, to make satellite data at NFI plot positions available for third parties

without revealing the exact geolocations and second, to analyze the separability and temporal patterns of tree crown reflectances

for tree species in Germany. We link NFI records to BOA reflectance
:::::
bottom

:::
of

::::::::::
atmosphere

:::::::::
reflectance

::::::
(BOA)

:
time series

from matching Sentinel-2 images, enabling tree species classification and other applications for a broad range of potential60

users. Said time series were extracted from analysis ready data generated by the Framework for Operational Radiometric

Correction for Environmental monitoring (FORCE) (Frantz, 2019), hosted on the CODE-DE1 platform. The resulting dataset

provides BOA reflectances from July 2015 to October 2022 and in sum contains the time series of 387 775 individual trees

and 70,242 non-tree locations. In total there are
:::::::::
Multiplying

::::
the

::::::
counts

::
of

::::
tree

:::
and

:::::::
non-tree

::::::::
locations

:::::
with

::::
their

:::::::::
individual

::::::
number

::
of

::::::::
observed

::::
time

::::
steps

::::::
yields

:
a
::::
total

::
of

:
ca. 75.3 million data points for trees and 13.8 million observations for non-tree65

background, covering the entirety of Germany and 51
::
48 tree species and

:
3
:
species groups. The dataset is available online

under https://doi.org/10.3220/DATA20240402122351-0 (Freudenberg et al., 2024) with CC BY 4.0 license.

2 Materials and methods

2.1 Study area and national forest inventory

The dataset covers the entire area of Germany, including islands. More specifically, it contains 24 925 of the 25 382 cluster plots70

recorded in the 2012 national forest inventory.
:::
The

:::::::
missing

::::::
cluster

:::::
plots

:::::
either

::::::::
contained

::::
only

:::::
trees

:::::
below

:::
the

:::::::
canopy

:::::
layer,

::
the

:::::
field

::::::::
inventory

:::
was

:::::::::
conducted

::
in
::

a
:::::::::::
non-standard

::::
way

::::
(e.g.

::::
with

:::::::
custom

:::::::::::::
post-processing

::
of

:::
the

::::::::::
coordinates)

:::
or

:::
the

::::::
cluster

:::
plot

::::::::::
coordinates

::::
were

::::::
simply

:::::::
missing

:::::
from

:::
the

:::::::
database

:::
we

::::::::
obtained.

:
Temperate broadleaf and mixed forests prevail in most

regions of the country. Coniferous forests, mainly consisting of Picea abies (
:::::
Picea

:::::
abies

:::::::
(Norway

:
spruce), dominate at higher

elevations and forests with Pinus sylvestris (
:::::
Pinus

::::::::
sylvestris

:::::
(Scots

:
pine) occur on the sandy soil

::::
soils of the north-eastern part75

1https://code-de.org
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of the country. In 2012, about 32% of Germany was covered by forest (Polley et al., 2018), but due to heavy droughts and

following insect infestations in the years 2018–2022 the area of stocked forest has likely decreaseda
:::::::
decline

::
in

:::::::
growing

:::::
stock

::::
could

:::
be

::::::::
observed

::
in

::::::
certain

::::
areas

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Reinosch et al., 2024; Thonfeld et al., 2022; Holzwarth et al., 2023).

The German national forest inventory is conducted on a regular, square sampling grid as shown in Figure 1 with a grid size

of 4 km × 4 km or less, depending on the federal state. At each grid point there are four inventory plots, aligned in a 150 m ×80

150 m square. The south-western-most inventory plot
::::::::::::
south-western

:::::
corner

::
of

:::
the

::::::
square aligns with the 4 km × 4 km grid, as

shown in Figure 2.

Figure 1. The sampling positions of the German national forest inventory 2012. Borders: © GeoBasis-DE / BKG (2024)

4km
or less

150m

cluster
plot

subplot

Figure 2. The German national forest inventory sampling grid (black squares) and the inventory points
::::::
subplots (green). The south-western

most inventory point
::::::
subplot in each cluster plot is aligned with the overarching grid.
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The geolocation of each inventory point
:::::
subplot

:
is measured with a Global Navigation Satellite System (GNSS) device,

which may or may not be differentially corrected using correction information from terrestrial reference stations. At this

sample point
::::::
subplot, two angle count samplings are performed (Gregoire and Valentine, 2007), which means that trees whose85

diameter at breast height (DBH) covers more than a certain solid angle are recorded.

The first angle count sampling includes all trees within a distance from the sample location of 25 times their DBH . For
:::::
(basal

:::
area

::::::
factor

::
4).

::::
The

::::::::
positions

::
of

:
the selected trees , azimuth angle ,

:::
are

:::::::::
determined

:::
by

:::::::::
measuring

::::
their

:::::::
azimuth

:::::
angle

:::::
using

::
a

:::::::
compass

:::
and

::::
their

:
distance to the plot center ,

::
by

::
an

::::::::
ultrasonic

::::::
device

:::::::
(Haglöf

:::::
Vertex

::
or

:::::::
similar)

::
or

::
in

::::
edge

:::::
cases

:::
via

:::::::::
measuring

::::
tape.

:::::::::::
Furthermore,

:::
the

:
tree species, DBH and other variables are recorded- these measurements form the basis of our labels.90

:
.
::
At

:::::
these

::::::::
measured

::::
tree

::::::::
positions,

:::
the

:::::
BOA

::::::::::
reflectances

:::::
were

::::::::
extracted

:::
and

::::::
related

::
to
::::

the
::::::::::::
corresponding,

:::::::::::::::
ground-measured

:::::::::
information

::
-
::::
how

:::
this

:::
was

:::::
done

::
is

::::::::
described

::::
later.

:

A second angle count sampling captures the surrounding forest composition by recording the species of all trees within a

radius of
:::::
33.34

::
or

:
50 times their DBH - it samples trees up to larger distances compared to

:::::
(basal

::::
area

:::::
factor

:
2
::
or

:::
1),

:::::::::
depending

::
on

::::
how

:::::
many

::::
trees

:::::
were

::::::::
observed

::
in the first sampling. The second angle count sampling allows to tell, which sub-plots are95

pure stands, i.e. have only one tree species in them. This in turn allows to mark a subset of tree species labels with high

confidence because they grow in stands that are most likely composed of only one species; the information whether a stand is

pure is included in the dataset.
:::
The

::::::::::
information

:::::
about

:::::
stand

:::::
purity

::
is

:::::::
included

:::
in

:::
the

::::::
dataset,

::
so

::::
that

:::
the

:::
end

::::
user

::::
can

::::
filter

:::
for

::::
trees

::
in

::::
pure

::::::
stands.

2.2 NFI reference data selection100

:::
The

::::::::::
reflectances

::::::::
recorded

::
in

:
a
:::::::::
Sentinel-2

::::
pixel

::::::::
represent

:::
the

:::::::
mixture

::
of

::
all

::::
land

:::::
cover

::
–

::
or

::
in

:::
our

::::
case

:::
tree

:::::::
species

:
–
::::::
within

:::
the

::::
pixel.

:::::::::
However,

::
in

:::::
closed

:::::::
canopy

::::::
forests

:::
the

::::
BOA

:::::::::
reflectance

::
is
:::::::::
dominated

:::
by

:::
the

:::::::::
uppermost

::::::
canopy

:::::
layer

:::
and

:::
we

:::
can

::::::
safely

::::::
assume

:::
that

:::::
trees

::::::::::::
overshadowed

::
by

:::::
larger

:::::::::
individuals

:::::::::
contribute

::::
only

::::
little

::
to

:::
the

::::::
overall

:::::::::
reflectance

::::::
within

:
a
:::::
pixel.

:
To compile

the provided training dataset we used
::::::::
therefore

::::::
filtered the NFI data in the following way: First, we

::
for

:::::
trees

:::
that

:::
are

::::::::
probably

:::::
visible

:::::
from

::::::
above.

:::
We

::::
first removed all trees that grow in the understory; this information is recorded during the inventory.105

For the remaining trees we modeled a circular stand area using species specific parameters as provided
:::::::
growing

:::::
space

:::::
using

::
the

::::::
NFI’s

::::::
official

::::::
method

::::::::
described

:
in (Riedel et al., 2017, pp. 39, 40).

:::
The

:::::
model

::::::::::
establishes

:
a
:::::::::::::
species-specific

:::::
linear

:::::::
relation

:::::::
between

::::
basal

::::
area

::::
and

:::
the

:::::::
growing

:::::
space

::
of

::
a
::::
tree.

::::
The

:::::::
growing

:::::
space

:::::::::::::
“approximately

::::::::::
corresponds

::
to
:::

the
::::::

crown
:::::::::
projection

::::
area”

:::::::::::::::::::::::::::::::::::::::
(Riedel et al., 2017, pp. 39, author’s translation)

:
,
::
so

:::
we

:::
use

:::::
these

:::::
terms

:::::::::::::
interchangeably

:::
in

:::
the

::::::::
following.

::::
The

::::::
model

::
is

::::::
defined

::
in

:::::::
equation

:::
A1

::::
and

:::
the

:::::::::
parameters

:::
are

:::::::
supplied

::
in
:::::
Table

:::
A1

::
in

:::
the

:::::::::
appendix. As we know the position of each tree, as110

well as its estimated stand
:::::::
predicted

::::::
crown area, we can remove

:::::::
removed

:
trees that are probably not visible from above by a

heuristic
::::::::
algorithm.

We count trees as visible when they are
:::::
Trees

::::
were

::::::::::
considered

:::::
visible

::
if
::::
they

:::::
were either the biggest (area-wise

:
in
:::::

terms
:::

of

::::
basal

::::
area) within a radius of 3 m or there are

:::::
radius

::
or

::
if
:::::
there

::::
were

:
no other trees within that radius. Furthermore, we count

them as visible , if their stand area overlaps
::::::::
distance.

::::::::::
Additionally,

:::::
trees

::::
were

::::::::
classified

::
as

::::::
visible

:
if
::::
their

::::::
crown

:::
area

::::::::::
overlapped115
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the union of all other stand
:::::
crown

:
areas by not more than 50%, as depicted in Figure 3. Trees labeled

:::::::
classified

:
as visible by

this heuristic form
::::::
formed the basis for the training dataset.

Figure 3. Sketch of a tree group: Green trees are assumed to be visible. The blue tree overlaps with more than 50% of its area with other

trees and is therefore discarded.

To allow training classification methods for the discrimination between tree and non-tree pixels
:
, we added non-forest obser-

vations to the dataset. For this, we sampled the tree cover density layer provided by the Copernicus Land Monitoring Service

for the year 2018 in the vicinity of the
:::::
within

:
a
::::
300

::
m

::
×

::::
300

::
m

:::::
patch

::::::
around

:::
the

:
NFI plots2. The tree cover density layer is120

sampled at locations that are at least 20 meters away from the next pixel with tree density greater than 10%.

2.3 Satellite data selection

We used images from the Sentinel-2 satellites, pre-processed to analysis-ready level
:
,
:::::
which

::::::::
includes

::::::::::
atmospheric

:::::::::
correction

:::
and

:::::
cloud

::::::::
masking, by the FORCE processing pipeline (Frantz, 2019). FORCE provides a way to compute harmonized time

series that are spatially and spectrally well aligned, which is discussed in more detail later. The resulting data comprises all S2125

bands with 10 or 20 m resolution,
::::
with

:::
the

:::
20

::
m

:::::
bands

:::::::::::::
pan-sharpened

::::::::::
(resampled)

::
to

::
10

:::
m

::::::::
resolution. Additionally, FORCE

provides quality assurance information (QAI) that aids in filtering out undesirable image conditions such as clouds, snow, or

high water vapor content. The data is hosted on the CODE-DE3 and EO-Lab4 platforms. End users have the option to either

download the pre-processed data or can re-process it using the same settings utilized in generating the FORCE data cube on

CODE-DE. The necessary parameter files are provided alongside the dataset.130

2.4 Time series extraction and data processing

From the FORCE data cube we clipped
::
As

:::
the

::::
NFI

::::::::
performs

::::
angle

:::::
count

:::::::::
sampling,

:
it
::
is

:::
not

:::::::
possible

::
to

::::::
exactly

:::::::::
determine

::::
how

::::
much

:::
of

:
a
:::::
given

::::
area

::::
(e.g.

:
a
:::::::::
Sentinel-2

:::::
pixel)

::
is

::::::
covered

:::
by

:::::
which

::::
tree

::::::
species

::
or

::::
land

:::::
cover

::::
type.

::::::::
Previous

::::::
studies

::::
have

::::::
related

::
all

:::::
pixels

:::
in

:
a
::::::
certain

::::::
radius

::::::
around

:::
the

::::::::
sampling

::::
point

:::
to

:::
the

:::::
found

::::::
species

:::::::::::
composition

::
or

:::
the

::::::::
dominant

:::::::
species,

::::
e.g.

:::::
based

::
on

:::
the

:::::
basal

::::
area

:::::::::::::::::::::::
(Blickensdörfer et al., 2024).

:::::
Here,

:::
we

::::
take

::
a
:::::::
different

::::::::
approach

:::
by

:::::::
directly

::::::::
extracting

:::
the

::::::::::
reflectance

::::
time135

2https://land.copernicus.eu/en/products/high-resolution-layer-tree-cover-density
3https://code-de.org
4https://eo-lab.org
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:::::
series

:
at
:::::
each

:::
tree

:::::::
position.

::::::
While

:::
this

:::::
poses

:::::::::
challenges,

::::::
mainly

::::
due

::
to

::::::::::::
co-registration

:::::
errors

::
of

:::
the

:::::::
satellite

:::
and

::::::
GNSS

:::
data

::::
and

:::::::::
duplication

::
of

::::::
pixels,

::
it

:::
also

:::::
opens

::::
new

::::::::::
possibilities

:::
for

::::::::::
combining,

::::::
filtering

::::
and

::::::::
analyzing

:::
the

::::
data.

:

:::
We

:::::
started

:::
by

:::::::
clipping 300 m × 300 m image patches containing the 24 925 filtered NFI cluster plots and their surroundings

::::
from

:::
the

:::::::
FORCE

::::
data

::::
cube, as depicted in Figure 4. We extracted the bottom of atmosphere reflection

::::::::
reflectance

:
(BOA) as

well as the quality assurance information (QAI). Before extraction, we filtered the plots to ensure they contained at least one140

pixel with data, not affected by clouds or cloud shadows.

FORCE
datacube

cluster
plot

extraction

24925
300m×300m

tiles

pixelwise
extraction

458017
time series

tim
e

tim
e

of pixels

Figure 4. The time series extraction workflow: First, 300 m × 300 m tiles are clipped from the FORCE datacube for Germany for all records

between 2012 and 2022. Second, the pixel-wise time series are extracted from the tile time series.

In a last
:::::
second

:
step, we extracted the BOA and QAI pixel time series from the extracted patches at the respective reference

data positions
::::
each

:::
tree

:::::::
position. In cases where a single tree covered more than one 10 m × 10 m Sentinel pixel, we calculated

the area-weighted average of all pixels intersected by the tree’s crown projection area, as depicted in Figure 5. Each extracted

satellite observation was then linked to its acquisition date, the corresponding NFI data and more information. Senf and Seidl145

(2021a) provide a Landsat-based map of forest disturbances for Germany between 1986 and 2020 at a resolution of 30 m. To be

able to identify possible disturbance events, we included the disturbance year from this map in the dataset. However, this still

leaves a gap between 2020 and 2022, for which no disturbance information is available. We bridged this gap
::::
This

:::
was

:::::::
bridged

by attaching the information whether the trees were still present during the 2022 NFI. To enable approximate spatial analyses,

we furthermore included the center coordinate of the 1 km Inspire-grid
:::::::
INSPIRE

::::
grid tile the cluster plots are located in.

:::
The150

::::::::
INSPIRE

::::
grids

:::::::::::::::::::
(INSPIRE MIG, 2023)

:::
are

:
a
:::
set

::
of

::::::::::::
Pan-European

:::::::::::
geographical

:::
grid

:::::::
systems

::
in
:::
the

::::::::::::::
ETRS89-LAEA

:::::::::
coordinate

:::::::
reference

::::::
system

:::::
with

::::
their

:::::
origin

::
at

:::
52◦

::
N
:::
10

:

◦
::
E.

::::
The

:::::
grids

::::
have

:
a
:::::::::::
power-of-ten

:::::::
spacing

::
in

::::::
meters;

:::
we

::::
used

:::
the

:
1
::::
km

::::
grid.

The final dataset comprises the following data
:::::::
columns

::::::::
presented

::
in

:::::
Table

::
1
:
and an excerpt is given in Table C1 in the

appendix: .
:::
All

:::::::
samples

:::::
were

::::::::
randomly

::::
split

::::
into

:::::::
training

::::
and

::::::::
validation

::::
sets

:::::
based

:::
on

::::
their

::::::
cluster

::::
plot

:::
IDs

:::::
with

:
a
::::
ratio

:::
of

::::
70%

:
-
::::
30%.

:::::
This

::::
rules

:::
out

:::
any

::::::
spatial

::::::
overlap

::::::::
between

:::
the

::::::
training

::::
and

:::
test

:::
sets

::::
and

::::::
reduces

::::::::::
correlations

::::::::
between

:::
the

:::
two.

::::
For155

:::::::::
benchmark

::::::
studies,

:::
we

::::::::::
recommend

:::::
using

:::
this

::::
split

::
to
::::::
ensure

::::::::::::
comparability

:::::
across

:::::::::::
publications.

:
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a b c

Figure 5. (a) The whole cluster plot cutout of 300 m×300 m. S2-Image: European Space Agency (2021) (b) The lower left subplot with the

corresponding orthophoto for reference. Douglas firs in the lower part,
::::::
Norway spruce in the upper part of the image. Image: © BKG (2021)

(c) The S2 pixels corresponding to the subplot with circles depicting the modeled tree crown areas. The crossed out tree is omitted because

it overlaps too much with surrounding trees.

Identifiers for individual trees: a global ID, the NFI cluster plot ID (tnr) and the corner ID (enr ) within the plot. Non-forest

recordshave negative IDs. The tree species encoded according to the official NFI schema, provided within the dataset in a

separate table "x_ba"

All samples were randomly split into training and validation sets based on their cluster plot IDs with a ratio of 70% - 30%.160

This rules out any spatial overlap between the training and test sets and reduces correlations between the two. For benchmark

studies, we recommend using this split to ensure comparability across publications.

2.5 Assessment of the geolocation accuracy of the NFI plots

The tree positions in the NFI are measured in polar coordinates relative to the plot center, using a compass for the angle and

an ultrasonic device for the distance measurement. We assume that the errors for angle and distance are small compared to the165

GNSS error of the plot center position measurement. GNSS measurements can be differentially corrected by using ground-

based reference stations to increase positional accuracy. Depending on the federal state and field team, coordinates of the plot

centers are measured with corrected GNSS devices or not. Of the sub-plots with trees in the dataset, 76.5% were corrected,

22.5% were not, and the remainder has unknown status.

To estimate the accuracy of the plot center coordinates, we compared the field-measured tree positions with tree positions170

derived from true-ortho aerial images, obtained from the Federal Agency for Cartography and Geodesy. These images are

ortho-rectified using a surface model and aligned with high accuracy to ground control points. The ATKIS orthophoto standard

guarantees a geolocation error with standard deviation of 0.4 m or less (Arbeitsgemeinschaft der Vermessungsverwaltungen

der Länder der Bundesrepublik Deutschland (AdV), 2020). Two expert image interpreters then manually shifted a sample of

200 NFI plot positions, and thereby the trees, to match the true tree positions by comparing local tree patterns as depicted in175

5https://force-eo.readthedocs.io/en/latest/howto/qai.html#quality-bits-in-force

8

https://force-eo.readthedocs.io/en/latest/howto/qai.html#quality-bits-in-force


Figure 6. This allows to quantitatively evaluate the deviation of measured from true positions and to compare the accuracy of

corrected and uncorrected measurements.

Figure 6. Original, measured GNSS coordinates (red) were shifted
::::
(here

:
by 4.8 m

:
) to the visually best matching position (green) in aerial

orthophotos to quantify GNSS errors. Circles depict modeled stand
::::
crown

:
areas.

2.6
::::::

Species
::::::::::
separability

::::::::
analysis

::
To

:::::
detect

:::::::::::::
inconsistencies

::::::
within

:::
the

:::::::
dataset,

:::
we

::::::::
computed

:::
the

:::::::
infrared

::::::::::
reflectance

:::::::::
histograms

:::
of

:::
five

:::::::
species

:::
for

:::::
mixed

::::
and

::::
pure

::::::
stands.

::
If

:::
the

::::::::
histogram

::::::
shows

:::::::
artifacts

:::
like

::::::
double

::::::
peaks

::
or

::::::
differs

:::::::
strongly

:::::::
between

::::
pure

::::
and

:::::
mixed

::::::
stands,

::::
this

:::::
could180

:::
hint

::
to

::::::::::
deficiencies

::
in
:::
the

:::::::::
respective

::::
part

::
of

:::
the

:::::::
dataset.

:::
The

::::::::::
histograms

::::
were

:::::::::
computed

:::
for

::::
band

:::
B8

::::::::
(842nm),

::::::::
averaged

::::
over

::
all

::::::
records

:::
in

::::
June

::::
2021

:::
for

::
a

::::::
sample

::
of

::::
five

::::::
species

::::::
whose

:::::::::
occurrence

::
is

::::::::
correlated

::
–
::::::
Betula

:::::::
pendula

::::
often

::::::
grows

:::::
along

::::
with

:::::
Pinus

:::::::
sylvestris

:::
and

:::::
Fagus

:::::::
sylvatica

::::
often

:::::::
appears

:::::::
together

:::
with

::::::::
Quercus

:::
spp.

::::
June

:::::
2021

:::
has

::::
been

::::::
chosen

:::::::
because

::::
both

:::::::
Sentinel

:::::::
satellites

::::
were

::::::::::
operational

::::
and,

:::::
unlike

:::
the

:::::::::
preceding

::::
years

::::
and

:::::
2022,

::::
2021

::::
was

:::
not

::::::::::
particularly

:::
dry.

:

3 Dataset description and statistics185

3.1 Numerical species distribution

Due to the highly varying dominance of tree species in Germany, the numerical distribution of the different species (Figure 7) is

heavily imbalanced. The most abundant species is Pinus sylvestris (Pine
::::
Pinus

::::::::
sylvestris

:::::
(Scots

::::
pine), followed by Picea abies

(Spruce), Fagus sylvatica (Beech
::::
Picea

:::::
abies

:::::::
(Norway

:::::::
spruce),

::::::
Fagus

:::::::
sylvatica

::::::::
(European

::::::
beech) and the different Quercus

:::::::
Quercus (Oak) species. Note that all statistics only represent the dataset used here and not the NFI itself, albeit both are closely190

related. For a list of all
::
A

::::::::
complete

:::
list

::
of included tree species and their counts we refer to

:::
can

:::
be

:::::
found

::
in appendix Table C3.

9
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Non-tree
Others
Populus tremula
Robinia pseudoacacia
Quercus rubra
Populus nigra
Larix kaempferi
Carpinus betulus
Acer pseudoplatanus
Alnus glutinosa
Fraxinus excelsior
Larix decidua
Abies alba
Pseudotsuga menziesii
Betula pendula

Quercus petraea
Quercus robur

Fagus sylvatica
Pinus sylvestris

Picea abies

Figure 7. The numerical species distribution in the training dataset for all trees extracted from
:::::::
(colored)

:::
and

::
in the

::::::
original NFI

:::
2012

::::
data

::::
(gray).

3.2 Temporal signatures of selected species

Coniferous and deciduous
:::::::
broadleaf

:
trees can be clearly separated visually by inspecting the time series of their infrared (IR)

reflectance, as depicted in Figure 8. In the presented time series, the observations for a given species and point in time have

been averaged across all undisturbed individuals in pure stands. Whether a stand is pure or not was determined using the195

second angle count sampling of the NFI. Obviously, deciduous
:::::::
broadleaf

:
trees exhibit a much stronger seasonal pattern than

coniferous trees. However, this
:::
This

:
separation is less evident in the green banda)

:
,
:::::
likely

:
due to its higher susceptibility to

atmospheric effects and b) due to its lower absolute reflectance, which deteriorates the signal to noise ratio. While the temporal

infrared profiles of Fagus sylvatica and Quercus robur
:::::
Fagus

:::::::
sylvatica

:::
and

:::::::
Quercus

:::::
robur are generally distinguishable across

most years, there are instances where differentiation becomes challenging (e.g. 2016 and 2020). Quercus robur
:::::::
Quercus

:::::
robur200

tends to have a slightly lower IR reflectance on average, particularly in summer. Picea abies and Pinus sylvestris
:::::
Picea

:::::
abies

:::
and

:::::
Pinus

::::::::
sylvestris also differ only slightly in the infrared, with Picea abies

:::::
Picea

::::
abies having lower average values on trend.

Overall, differentiating species by their temporal profiles alone seems challenging without considering their spectrum at the

same time.
:::::
Figure

:::
B1

::
in

:::
the

::::::::
appendix

::::::
depicts

:::
the

:::::
same

:::
data

::
as
::::::
Figure

::
8

:::
but

::::::::::
additionally

:::::::
includes

::::
error

:::::
bands

::::
that

::::
were

:::::::
omitted

:::
here

:::
for

::::::
clarity.

:
205
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Figure 8. Time series of BOA reflectance for indicated species, averaged over all undisturbed individual trees in pure stands at a given time.

The data has been filtered to exclude all types of cloud cover and their shadows, snow, and pixels with high aerosol optical depth.

Looking at a random selection of four individual trees’ time series, depicted in Figure 9, it becomes clear that at
::
the

:::::
level

::
of

a single treelevel ,
:
the differences between species

:::
still seem to be still present, but with high variance from year to year.
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Figure 9. Time series of random single trees of different species.

Figure 10 shows the total observation count over time
:
,
:::
i.e.

::::
how

:::::
often

::::
each

::::
tree

:::
was

:::::::
imaged

::::::
within

:
a
:::::::

month,
:::::::
summed

:::
up

:::::
across

:::
all

::::
trees. After the commissioning of Sentinel-2B in June 2017 the number of observations increases. As one would

11



expect, there are more observations in the summer months when clouds are less likely and especially from 2018 onward the210

counts regularly reach over 1 million.
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Figure 10. Total monthly observations of all selected pixels
:::
trees

:
in the training dataset

:::
(tree

::::
count

::::::::
multiplied

:::
by

::::::::
individual

:::::::::
observation

::::
count

:::
per

:::::
month). The vertical red line corresponds to the Sentinel-2B commissioning date.

3.3 Spectral signatures

Besides the temporal variation of the reflectance, the spectral variation is an important feature for the tree species classification

– however, the species are not necessarily separable by their spectrum alone, as can be seen in Figure 11. It depicts the Sentinel-

2 spectra of the five most frequent species, as well as the background class. Fagus sylvatica and Quercus petraea
:::::
Fagus

::::::::
sylvatica215

:::
and

:::::::
Quercus

:::::::
petraea for example have almost matching spectra, especially in the shorter wavelengths. The resulting spectra

match the ones presented in Immitzer et al. (2016).
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Figure 11. Average spectrum of the five most frequent species in the dataset, plus the background class. Records of
:::
from

:
pure stands have

been averaged between May and August (inclusive) of the years 2017–2022.
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3.4 Spatial distribution

It can be expected that the temporal signatures vary with local conditions, e.g. along an latitudinal or elevation gradient.

Therefore, it is important to analyze the spatial coverage of the training data. Figure 12 shows that Picea abies
::::
Picea

:::::
abies

::
(a)220

is mainly present in the south-west of Germany and in the lower mountain ranges. Pinus sylvestris
::::
Pinus

::::::::
sylvestris

::
(b)

:
on the

other hand, is predominant on the sandy soils of the north-eastern part of the country. The different Quercus species
:::::::
Quercus

::::::
species

:::
(c) occur mostly in the west of Germany, but are also present throughout the rest of the country. Fagus sylvatica

:::::
Fagus

:::::::
sylvatica

::
(d), lastly, co-occurs with Quercus sp

:::::::
Quercus

:::
spp., but in contrast to them, manages to settle in the higher and

therefore colder hillscapes of the central parts of Germany. Note however, that these spatial distributions are derived from the225

dataset, which does not mirror the NFI one to one due to filtering and the availability of satellite images.
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Figure 12. Spatial tree distribution for different species. Note the different scales. Borders: © GeoBasis-DE / BKG (2024)
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3.5 NFI geolocation accuracy estimation

The analysis of the spatial accuracy of the NFI plot coordinate GNSS measurements reveals that ninety-five percent of the

measured deviations of
::::
95%

::
of

:
corrected GNSS positions were smaller

:::::::
deviated

:::
by

:::
less

:
than 11.2 m, and 81% were smaller

::
by

:::
less

:
than 5 m; Figure 13 depicts the corresponding histogram along with the empirical cumulative density function. Against230

expectations, the comparison of corrected and uncorrected GNSS measurements shows no significant difference.

Δr [m]

0 5 10 15

P
D

F
(Δ

r)

0.0

0.1

0.2

0.3

0.4

0 5 10 15

C
D

F
(Δ

r)

0.00

0.50

0.81

0.95

corrected uncorrected

Figure 13. Histogram of distances by which plot locations were shifted from the original GNSS positions. Differentially corrected measure-

ments are depicted in blue.

3.6
::::::::::

Separability
:::::::
analysis

:::::
Figure

:::
14

:::::
shows

:::
the

::::::::::
histograms

::
of

:::
S2

::::
band

:::
B8

::::::::
(842nm)

::::::::
averaged

::::
over

::
all

:::::::
records

::
in

::::
June

:::::
2021

:::
for

:::
the

::::::
species

:::::
pairs

::::::
Betula

::::::
pendula

:
–
::::::
Pinus

::::::::
sylvestris

:::
and

::::::
Fagus

::::::::
sylvatica

:
–

:::::::
Quercus

:::::
robur

:
–
:::::::
Quercus

:::::::
petraea

:
,
::::
each

:::::::::
computed

::::
over

::::::
mixed

:::
and

:::::
pure

:::::
stands,

:::::::::::
respectively.

::::
The

:::::::::
reflectance

::::::::::
distributions

:::
for

:::::
Pinus

::
and

::::::
Betula

:::::
clearly

:::::
differ

:::::::
between

::::::
mixed

:::
and

::::
pure

::::::
stands.

::
In

::::::
mixed235

:::::
stands,

:::
the

:::::::::::
distributions

:::
are

::::::::
relatively

::::
wide

::::
and

::::::
overlap,

:::::::
whereas

::
in
:::::
pure

::::::
stands,

::::
there

:::
are

::::::::
separable

:::::
peaks

::::::
(albeit

::::
some

:::::::
overlap

:::::::
remains)

::::
and

:::
the

:::::::
distance

:::::::
between

::::::::
maxima

::
is

::::::
larger.

:::::::::
Comparing

::::::
Fagus

::::::::
sylvatica

::
to

:::
the

::::
two

:::::::
Quercus

::::::
species,

::::
one

:::
can

::::
see

:::
that

:::
the

::::::::::
distributions

:::::::
overlap

:::::
much

:::::
more,

::
as

:::
all

::::
three

::::::
species

:::
are

::::::::::::
broad-leaved.

::
In

:::::
mixed

::::::
stands,

:::::
there

::
is

:::::
hardly

::::
any

:::::::::
observable

::::::::
difference

:::::::
between

:::
the

:::::::::::
distributions.

:::
For

::::
pure

::::::
stands,

:::
the

::::::::::
distributions

::::
still

::::::
overlap

:::::::::::
significantly,

:::
but

:::
the

:::::::
distance

:::::::
between

:::::
peaks

:
is
:::::::
slightly

:::::
larger

::::
than

::
in

:::::
mixed

::::::
stands.

:
240

4 Discussion

4.1 Geolocation accuracy

Sentinel-2: To obtain the presented dataset, we linked spatial information from two different data sources: georeferenced

satellite images and on-ground GNSS measurements. A misalignment of these sources might lead to labeling errors in the

dataset
::::::::
extracting

:::::
wrong

:::::
pixel

::::::
values

::::
from

:::
the

::::::
image

::::
data. FORCE co-registers all Sentinel-2 images with averaged Landsat245
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Figure 14.
::::::::
Histogram

::
of

:::
near

:::::::
infrared

:::
(842

::::
nm)

::::
BOA

::::::::::
reflectances,

::::::
averaged

::::
over

::
all

::::
trees

::
in
::::
June

:::::
2021,

::
for

:::
(a)

::::
Pinus

:::::::
sylvestris

:::
and

:::::
Betula

::::::
pendula

:::
and

::
(b)

:::::
Fagus

:::::::
sylvatica,

:::::::
Quercus

::::
robur

:::
and

::::::
Quercus

::::::
petraea

:
.
:::
The

::::
upper

::::
parts

:::::::
represent

::::
pure

:::::
stands

:::
and

::
the

:::::
lower

::::
parts

::::
mixed

::::::
stands.

time series. The Landsat images are in turn co-registered with the Sentinel-2 global reference image which results in a geometric

accuracy of 10.2 m at the 90% confidence level for Landsat 8 (Haque et al., 2022)
::
(8

::
m

::
at

::::
80%

::::::::::
confidence). Consequently,

this is the best estimate for the spatial accuracy of the used S2 images. The reason for this cyclic co-registration of Sentinel

to Landsat to Sentinel is, that so far only the S2 level 1 archive has been processed to a common standard6. The level 2 data,

which compensates atmospheric effects and is needed for coherent time series, is not yet available at a standardized processing250

baseline in any public archive.

NFI geolocation accuracy: The comparison of corrected and uncorrected GNSS measurements showed no significant differ-

ence in spatial accuracy, at least not the way we measured it. As differential correction unquestionably increases the GNSS

accuracy, we suppose that increasing the count of sampled plots as well as the number of image interpreters would change our

result. Either way, as the satellite image resolution is 10 m and 81% of the GNSS measurements had an error of less than 5255

m, we are confident that the GNSS positions can be combined with the satellite data. It
::::::::::
Furthermore,

:::::
trees

:::::::
growing

::::
skew

::::
and

::::::
outliers

:::::
when

::::::::
matching

:::
the

:::::
crown

:::::::
patterns

:::::
might

::::
have

:::::::::
negatively

:::::::::
influenced

:::
the

::::::
results.

::::::
Lastly,

:
it
:
will be interesting to analyze

the accuracy of trained classifiers as a function of correction status.

:::::::::
Combined

::::::::::
geolocation

:::::::::
accuracy:

:::
The

:::::::::
combined

::::::::::
geolocation

::::::::
accuracy

::
is

:::::::
difficult

:::
to

:::::::
compute

:::
for

:::::::
several

:::::::
reasons:

::
1)
::::

the

::::::
satellite

::::::
images

:::
are

::::::::
corrected

:::
by

:::::::
FORCE,

:::
as

::::::::
discussed

::::::
above,

::
2)

:::
the

::::::
satellite

::::::
image

:::::::
accuracy

::
is
::::::::
latitude-

:::
and

:::::::::::::
time-dependent7260

:::
and

::
3)

:::
the

::::::
GNSS

::::::
errors

:::
we

::::::::
measured

:::
do

:::
not

::::::
follow

::
a

::::::::
Gaussian

::::::::::
distribution.

::::::::::
Neglecting

::::
these

::::::
points

::::
and

:::::
using

:::
the

::::::
values

::::::
derived

:::
for

:::
the

::::
80%

:::::::::
confidence

:::::
level,

::::::
namely

::
8
::
m

:::
for

:::
the

:::::::
satellite

::::::
images

:::
and

::
5

::
m

:::
for

:::
the

:::::
GNSS

:::::::::
positions,

::
we

::::::
obtain

::
an

:::::
error

:::::::
estimate

::
of

:::
9.4

:::
m.

::::
This

::
is
::::::
nearly

:::::::::
equivalent

::
to

:::
the

:::::
pixel

::::
size,

::::::
which

:::::
means

::::
that

:::
the

::::::::
extracted

:::::
pixel

:::::
values

::::
are

:::
still

:::::
likely

:::
to

:::::::
represent

::
a
:::::::::
reasonable

::::::::::::
approximation

::
of

:::
the

:::::::
targeted

:::::
trees,

:::::
whose

::::::::
diameter

::
is

::
of

::::::::::
comparable

::::
size.

6https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/copernicus-sentinel-2-collection-1-availability-status
7
::
S2

:::
Data

:::::
Quality

::::::
Reports: https://sentiwiki.copernicus.eu/web/document-library
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4.2 Adverse imaging conditions265

During the extraction process, we filtered out most pixels with cloud cover or cloud shadows. FORCE employs the FMASK

algorithm (Zhu and Woodcock, 2012) for cloud detection, which has an accuracy of 84% for cloud / clear detection and 72%

detection accuracy for cloud shadows (Aybar et al., 2022). Consequently, falsely labeled image regions lead to commission

or omission errors in the final dataset, i.e. usable pixels might have been removed by being labeled as cloudy or cloud pixels

could be in the dataset. However, there are other imaging conditions that might affect the quality of a pixel like high aerosol270

content, snow or poor illumination conditions. FORCE encodes this information in the quality assurance information and end

users can use this to further narrow the dataset down to only the highest quality pixels.

4.3
:::::::::

Extraction
::
of

:::::::::
non-forest

::::::
points

:::
The

:::::::::
non-forest

:::::
points

:::::
were

::::::::
randomly

::::::::
sampled

:::::
within

:::
the

::::::::
extracted

::::
300

::
m

::
×

::::
300

::
m

:::::
tiles.

::
In

:::::::::::
consequence,

:::
we

::::
only

::::::::
sampled

::::::::
non-forest

::::::
points

:::::
from

::::
areas

::::
like

::::
city

::::::
centers

:::
or

::::::::
industrial

:::::
zones

::::::
where

::::
they

:::
are

:::::::
situated

:::::
close

:::
to

:::::
forest

::
–

:::::
which

::
is
::::::

rather275

:::::::
unlikely.

::::::::
Therefore

:::
the

::::::::
extracted

:::::::::
non-forest

:::::
points

:::
are

::::::
biased

::::::
towards

:::::
rural

::::::
villages

::::
and

::::::::::
agricultural

:::::
areas.

4.4 Taxonomic identification

The field teams of the NFI data are trained and undergo testing before being allowed to take samples. However, it cannot be

ruled out that under adverse conditions certain species are confused. We cannot quantify this error, but assume that the vast

majority of tree species identifications are correct, in particular for the common species.280

4.5 Mixed
::::
and

::::::::
duplicate

:
pixels

At present, we cannot
:::::
exactly

:
quantify the effect of pixels that contain different tree species on our dataset, as it is in most

cases impossible to derive the species shares of a pixel based on the NFI data. The NFI does not fully sample a given plot, so in

most cases, labels are only available for parts of a given pixel. Another source for mixed pixels are the 20 m resolution bands

of Sentinel-2 that are resampled
::::::::::::
pan-sharpened

:
to 10 m by FORCE, thereby distributing identical information across several285

pixels.

4.6 Species separability analysis

To detect inconsistencies within the
:::
Due

::
to

:::
the

::::::
method

:::
we

::::
used

::
to

::::::
extract

::::
pixel

::::::
values,

:::::
trees

:::
that

:::
are

::::::
located

::::::
within

:::
the

::::
same

:::
S2

::::
pixel

::::::
receive

::::::::
identical

:::::
values

::::
and

::::::::::
information

::
is

:::::::::
duplicated.

:::
We

::::::::
checked

:::
the

:::::::::::::
non-randomized

::::::
dataset

:::
for

::::::::
duplicate

::::::
bottom

:::
of

:::::::::
atmosphere

::::::::::
reflectances

::::::
among

:::
the

::::
tree

::::::
records.

::::::::
Non-tree

:::::
points

:::::
were

:::::::
sampled

::::
from

::
a
:::::
larger

::::
area,

::
so

::::::::::
duplication

:::::
plays

::
no

::::
role290

::
in

::::
their

::::
case.

:::
To

::::::
identify

:::::::::
duplicates,

:::
we

:::::::
grouped

:::
the

::::::
dataset

::
by

::::::
cluster

:::
id,

:::::
corner

:::
id,

::::
time

:::
and

:::::::::
reflectance

::::::::
spectrum.

::
If

::::
there

:::::
were

:
N
::::::::

identical
::::::::::
reflectances

:::
per

::::::
group,

:::
we

:::::::
counted

:::
N-1

:::
as

:::::::::
duplicates.

::
In

:::::
total,

:::
the dataset , we computed the infrared reflectance

histograms of five species for mixed and pure stands. If the histogram shows artifacts like double peaks or differs strongly

between pure and mixed stands, this could hint to deficiencies in the respective part of the dataset
:::::
subset

::
for

:::::
trees

:::::::
contains

:::
ca.
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::::
4.87

::::::
million

::::::::
duplicate

:::::
entries

:::
out

:::
of

::
ca.

:::
66

::::::
million,

::::::
which

::::::::
translates

::
to

::::::
7.38%.

::::
Out

::
of

::::
these

::::
4.87

::
M

::::::::::
duplicates,

::::
3.86

::
M

:::::::
(5.84%)295

::
are

:::::::::
duplicates

::::
with

:::::::
identical

:::::::
species

::::
label

::::
and

::::
1.01

::
M

:::::::
(1.53%)

::::
have

:::::::
differing

:::::::
species

:::::
labels.

:::::
Ergo,

::
at

:::::
least

:::::
0.77%

:::::
(1.01

::
M

:
/
:::
66

::
M

:
/
::
2)

::
of

:::
the

:::::
labels

:::
are

::::::
wrong. Figure 14 shows the histograms of S2 band B8 (842nm) averaged over all records in June 2021

for species whose occurrence is correlated – Betula pendula often grows along with Pinus sylvestris and Fagus sylvatica and

Quercus spp. often appear together. June 2021 has been chosen because both Sentinel satellites were operational and, unlike

the preceding years and 2022, 2021 was not particularly dry.300

Histogram of near infrared (842 nm) BOA reflectances, averaged over all trees in June 2021, for (a) Pinus sylvestris and

Betula pendula and (b) Fagus sylvatica, Quercus robur and Quercus petraea. The upper parts depict pure stands and the lower

parts mixed stands.
::::::
Should

:::
the

:::
user

:::::
wish

::
to

::::::
reduce

:::
the

:::::::::
correlation

:::::::
between

:::::::
samples

::
or

:::::::
remove

::::::::
duplicate

::::
pixel

::::
time

::::::
series,

:::
we

:::::::::
recommend

:::
the

:::::::::
following

:::::::::
procedure:

::::
first,

:::::
group

:::
the

::::::
dataset

::
by

:::::::
subplot;

:::::::
second,

:::::::
compute

:::
the

:::::::::
correlation

::
of

:::
the

::::
full

::::
time

:::::
series

:::::::
between

:::
the

:::::::
different

::::
trees

::
in

:::
the

::::
plot;

::::
and

::::::
finally,

::::::
remove

:::
all

::::
trees

:::
that

::::::::
correlate

::::::
beyond

::
a
::::::
certain

::::::::
threshold,

::::::
except

:::
for

::::
one.305

The reflectance distributions for Pinus and Betula clearly differ between mixed and pure stands. In mixed stands the

distributions are relatively

4.6
::::::

Species
::::::::::
separability

::::::::
analysis

:::::
Figure

:::
14

::
(a)

:::::::
showed

:::
that

:::
the

::::::::::::
IR-reflectance

::::::::::
distributions

::
of

:::::
Pinus

:::
and

::::::
Betula

:::
are wide and overlap , whereas there are separable

peaks for pure stands(albeit some overlap remains) and the distance between maxima is larger
::
in

:::::
mixed

:::::::
stands,

:::::::
whereas

::::
they310

::
are

:::::
more

::::::::
separated

::
in
:::::

pure
:::::
stands. We interpret this as a hint thatthe dataset contains false labels

:::::::
potential

:::::::::
indication

::::
that,

::
at

::::
least

::
for

::::
this

::::::
species

::::
pair,

:::
the

::::::
dataset

::::
may

::::::
contain

:::::::::
mislabeled

::::
data

:
due to insufficient spatial accuracy or that the extracted pixel

values come
::::::::
originate from mixed pixels containing other species or even different land cover classes.

Comparing Fagus sylvatica to two Quercus species, one can see that the distributions overlap much more, as all three

species are deciduous. In mixed stands there is hardly any observable difference between the distributions. For pure stands315

the distributions still overlap significantly, but the distance between peaks is slightly larger than for mixed stands
:
In

::::::::
contrast,

:::::::::
comparing

:::::
Fagus

:::
and

:::::::
Quercus

::::
spp.

::
in

:::::
mixed

:::
and

::::
pure

::::::
stands

:::::::
revealed

::
no

:::::::::
significant

::::::::::
differences,

:::
with

:::
the

:::::::::
reflectance

:::::::::::
distributions

:::::::::
overlapping

:::::::::::
substantially. However, the overlap of these distributions

::
this

:
does not necessarily indicate labeling errors; it could

also be that these are the
:::::
reflect naturally occurring values. This highlights the necessity of

::::::::
including factors beyond spectral

data, e.g. temporal profiles as shown in Figure 9, for
:::::::
accurate species classification.320

5 Conclusion and outlook

In this work
:
, we presented the so far most comprehensive dataset of annotated Sentinel-2 time series data for tree species

detection in Germany. With over 380 thousand trees of 48 species observed for over seven years, this dataset can significantly

advance research into automatic tree species classification for Germany, and central Europe. At the same time the described

approach can serve as a pilot study for making national forest inventory data from other countries accessible for the remote325

sensing community e.g. for training machine learning models without releasing the exact geolocations publicly. Lessons learned
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from its application can be used to enhance future inventories and datasets. For example, it could show that for underrepresented

species more labels are required, which in turn could be sampled in targeted inventories.

As discussed in the previous section, the dataset still has several shortcomings that could be improved. To achieve better

agreement between labels and images, the spatial accuracy of the data sources has to be increased. To do so, we suggest that330

in future all NFI position measurements are taken using differential GNSS devices, although we saw no significant differences

in accuracy. Furthermore, we expect that aligning the Sentinel-2 images directly with the S2 global reference image instead of

averaged Landsat time series would improve their spatial accuracy and make it easier to derive interpretable error metrics. We

consider releasing an updated dataset version as soon as Sentinel-2 L2A collection one is fully accessible.

The main focus of further efforts will be to increase the number of labels for weakly represented classes, e.g. by utilizing335

automatically classified high resolution orthophotos as reference. First attempts to automatically identify underrepresented tree

species in standard RGBI aerial images with 20 cm spatial resolution have failed, so the presented dataset is still limited regard-

ing less abundant species. Another option to increase the overall amount of data would be to incorporate forest inventory data

at the stand level from e.g. state forest enterprises, however, this data often only provides estimates of tree species proportions

within management units, but no geolocation
:
of

::::::::::
individuals.340

We hope that this dataset fosters the research into time series based
:::::::::
series-based

:
classification of tree species and believe it

offers many possibilities for analyses that go beyond the ones presented here.
::::
Users

::::
can

:::::
freely

:::::::::
recombine

:::
the

::::::::
provided

::::
data

:::
and

:::
for

:::::::
example

::::::::
calculate

:::::
basal

::
or

::::::
crown

::::
area

::::::::::
proportions

:::
per

::::::::
sampling

:::::::
location

:::
and

::::
use

:::
this

::::::::::
information

:::
as

:::::
labels

:::::::
instead.

Using classification methods in general, one could investigate which spectral bands and which points in time are crucial

for precise species classification. As the dataset not only contains the time series of individual trees’ BOA reflectances, but345

also their approximate location, spatio-temporal patterns in tree phenology could be assessed on individual species level. For

example, the onset of leaf emergence could be analyzed first in the dataset alone, and later by using species maps generated by a

derived classification method. Lastly, the dataset could be used to correlate reflectances and approximate health conditions with

meteorological events like droughts on a per-species level. This would open up further research into climate-change resistant

species and enables the identification of endangered forest stands. In the future we plan to release updated versions of the350

dataset, particularly after the final publication of the 2022 NFI.

6 Data availability

All data is available online under https://doi.org/10.3220/DATA20240402122351-0 (Freudenberg et al., 2024) with CC BY 4.0

license.
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Appendix A:
::::::
Crown

::::
area

:::::::::
estimation

::::::::
Following

:::::::
equation

::
is

::::
used

::
to

:::::
model

:::
the

::::::
crown

::::
area,

:::::
using

::
the

::::::::::
parameters

:
α
:::
and

::
β
::::
from

:::::
table

::
A1

::::::::::::::::::::::::::
(Riedel et al., 2017, pp. 39, 40)

:
.

AC = α+βAB
::::::::::::

(A1)365

::::
AC :

::::
Tree

:::::
crown

::::
area,

::::
AB :

:::::
Basal

::::
area

:

Appendix B:
:::::::::
Additional

:::::::
Figures
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Figure B1.
::::
Time

:::::
series

::
of

::::::
infrared

::::::::
reflectance

:::
and

:::
the

::::::
standard

:::::::
deviation

:::
for

:::::::
indicated

::::::
species,

:::::::
averaged

:::
over

::
all

:::::::::
undisturbed

::::::::
individual

::::
trees

:
in
::::
pure

:::::
stands

::
at

:
a
::::
given

::::
time.

::::
The

::::
bands

::::
have

:
a
:::::
width

::
of

:
2
:::::::
standard

::::::::
deviations.

:::
The

:::
data

:::
has

::::
been

::::::
filtered

::
to

::::::
exclude

::
all

::::
types

::
of

::::
cloud

:::::
cover

:::
and

:::
their

:::::::
shadows,

:::::
snow,

:::
and

:::::
pixels

:::
with

::::
high

::::::
aerosol

:::::
optical

:::::
depth.
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Appendix C: Database excerpt and species counts
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Table 1.
::::::
Dataset

::::::
contents

:::
and

::::::
column

:::::::::
description.

::::::
Column

::::
name

: ::::
Data

:::
type

:

::::::::
Description

:

:::::
tree_id

: :::::
Integer

:

:
A
:::::::
globally

:::::
unique

:::
tree

::
id.

:::::::
Negative

:::::
values

:::::::
represent

:::::::
non-tree

::::::
records.

::
tnr

: :::::
Integer

:

:::::
Cluster

:::
plot

::
id
:

::
enr

: :::::
Integer

:

:::::
Corner

::
id

::::
(1-4). The

::::::
Negative

:::::
values

:::::::
represent

:::::::
non-tree

::::::
records.

:

:::
time

: :::::
Integer

:

:::
The acquisition date, encoded as Unix time, representing the number of seconds elapsed
since January 1, 1970,

:::::::::
1970-01-01,

:
00:00 UTC. Every date was randomly shifted by up

to three days. The

:::::
species

: :::::
Integer

:

:::
The

:::
tree

::::::
species,

:::::::
encoded

::::::::
according

::
to

:::
the

:::::
official

::::
NFI

::::::
schema,

:::::::
provided

::::::
within

:::
the

:::::
dataset

::
in

:
a
::::::
separate

::::
table

::::::
“x_ba”.

:

:::
boa

:::
byte

::::
array

:

:::
The BOA reflectance values: 10 signed 16-bit integers, one for each band, encoded as
20 byte blobdata. To hamper the identification of exact plot positions, each value was
multiplied with a uniform random number between 0.95 and 1.05.

::
qai

: :::::
Integer

:
Quality assurance information bit-flags, encoded as 16-bit integers, allowing for filter-
ing based on image quality. The FORCE documentation provides details on the meaning
of each bit5.5

:
.

::::::
is_train

::::
Bool

::::::
Whether

:::
the

:::::
record

::::::
belongs

::
to

::
the

::::::
training

::
or
::::::::
validation

:::
set.

:::::
is_pure

: ::::
Bool

::::::
Whether

:::
the

:::::
record

:::::
comes

::::
from

:
a
::::
pure

::::
stand

::::::::
according

:
to
:::
the

:::
NFI

::::::::
definition.

:::::::
dbh_mm

:::::
Integer

:
Diameter at breast height

::
(1.3

:::
m)

::
in

:::::::::
millimeters.

::::::::
height_dm

:::::
Integer

:

:::
Tree

:::::
height

::
in

:::::::::
decimeters.

::::::::::::
crown_area_m2

::::
Float

::::::
Modeled

::::
tree

::::
crown

::::
area in millimeters, tree heightin decimeters, modeled according to

Riedel et al. (2017) and crownarea in m2allowing for further tree filtering or analyses

by diameter class.The WGS84 center coordinate of the .

:::::::
x_wgs84

::::
Float

:::::::
Longitude

:::
of

::
the

:::::::::::
corresponding

:
1 km Inspire grid tile the tract can be found in.The

disturbance year according to the map provided by Senf and Seidl (2021a).
:::::
center.

:::::::
y_wgs84

::::
Float

::::::
Latitude

::
of

:::
the

::::::::::
corresponding

::
1

::
km

::::::
Inspire

:::
grid

:::
tile

:::::
center.

:::::::::
is_corrected

::::
Bool Whether the NFI position measurement was differentially corrected.Whether the record

belongs to the train or validation set (see below). Whether the record comes from a pure

stand

::::::::::::
disturbance_year

: :::::
Integer

:

:::
The

:::::::::
disturbance

::::
year according to the class definitions of the NFI.

:::
map

:::::::
provided

:::
by

:::::::::::::::::
Senf and Seidl (2021a).

::::::::::
present_2022

::::
Bool Whether the tree was observed again in the 2022 forest inventory.

:::
doy

:::::
Integer

:
The day of year of the acquisition, corresponding to the shifted date.
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Table A1.
::::::::
Parameters

::
of

:::
the

:::::
crown

:::
area

:::::::
equation

:::::::::::::::::::
(Riedel et al., 2017, p. 40)

:
.
:::
We

:::::::
corrected

:::
the

:
α
:::::
value

::
for

::::::
poplar;

:::
the

::::::
original

::::
value

::
is

:::
23,

::::
which

::
is
:
a
:::::
typing

:::::
error.

Tree Species Group α [m2] β

Max.

Stem Count Assigned Tree Species

::
Fir

: :::
2.85

:::
200

::::
3500

::
All

:::
firs

:::::
except

:::::::
hemlock

::::::
Douglas

:::
Fir

:::
5.00

:::
200

::::
2000

::::::
Douglas

::
fir

:::
Pine

: :::
1.00

:::
300

::::
10000

:

::
All

:::::
pines

:::::::
European

:::::
Larch

:::
5.00

:::
285

::::
2000

:::::::
European

::::
larch

:::::::
Japanese

::::
Larch

: :::
5.00

:::
260

::::
2000

::::::
Japanese

::::
larch

:::
(+

::::::
hybrids)

:::::
Beech

:::
1.33

:::
300

::::
7500

:::::
Beech,

::::::::
hornbeam

:::::::::
(whitebeam)

:

:::
Oak

: :::
1.11

:::
395

::::
9000

:::::::::
Pedunculate

:::
oak,

:::::
sessile

::::
oak,

:::::
Turkey

::::
oak,

:::::
swamp

::::
oak

:::
Red

::::
Oak

:::
2.50

:::
350

::::
4000

:::
Red

:::
oak

:::
Ash

: :::
2.50

:::
330

::::
4000

::
All

::::
other

::::::::
deciduous

::::
trees

:::
not

::::::::
mentioned

::::
Alder

: :::
2.50

:::
435

::::
4000

::::
Alder,

:::::
black

::::
alder,

:::::
white

:::::::
alder/grey

:::::
alder,

::::
green

::::
alder

:

::::
Birch

: :::
2.50

:::
525

::::
4000

::::
Silver

:::::
birch,

:::::
downy

::::
birch

::
(+

:::::::::
Carpathian

::::
birch)

:

:::::
Poplar

:::
2.30

:::
320

:::
350

::
All

::::::
poplars

:::::
Spruce

: :::
2.85

:::
195

::::
3500

::
All

:::::::
spruces

::
as

::::
well

:::
as

:::::::::
arborvitae,

:::::::
hemlock,

:::::::
sequoia,

:::::
yew,

::::::
Lawson

::::::
cypress,

::::
other

::::::
conifers

:
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Table C1. Database excerpt. The bottom of atmosphere (BOA) reflectance is encoded as 10 signed 16 bit integers, the quality assurance

information (QAI) is a single 16 bit integer. DOY abbreviates day of year.

cluster ID (tnr

::
tnr

::::::
(cluster

::
id) corner ID (enr

::
enr

::::::
(corner

::
id) treeID

:::
_id species unix time BOA QAI

::
is_train

::
is_pure

455 1 69831 211 1440374400 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1448064000 10 16-bit integers 10256 1 0 . . .

455 1 69831 211 1455494400 10 16-bit integers 10240 1 0 . . .

455 1 69831 211 1460592000 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1463961600 10 16-bit integers 8192 1 0 . . .

455 1 69831 211 1467072000 10 16-bit integers 8192 1 0 . . .
...

...
...

...
...

...
...

...
...

. . .

DBH mm
::::::
dbh_mm

:
heightdm

::::
_dm area m2

:::::::::::
crown_area_m2

:
X

::::::
x_wgs84

:
Y

::::::
y_wgs84

: ::
is_corrected disturbance

:
_year present

:
_
:
2022 DOY

. . . 231 243 20.4 9.80714 47.64294 1 0 1 236

. . . 231 243 20.4 9.80714 47.64294 1 0 1 325

. . . 231 243 20.4 9.80714 47.64294 1 0 1 46

. . . 231 243 20.4 9.80714 47.64294 1 0 1 105

. . . 231 243 20.4 9.80714 47.64294 1 0 1 144

. . . 231 243 20.4 9.80714 47.64294 1 0 1 180

. . .
...

...
...

...
...

...
...

...
...
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Table C2. List of all included tree species with counts (part 1).

species code
:::::
Species

::::
Code

:
species

:::::
Species

:
common name

:::::::
Common

:::::
Name count

::::
Count

:

-1 - - other land cover 70242
10 Picea

::::
Picea abies

::::
abies Norway spruce 107798

12 Picea
::::
Picea sitchensis

:::::::
sitchensis sitka spruce 937

19 Picea
::::
Picea spec. other spruces 232

20 Pinus
::::
Pinus sylvestris

:::::::
sylvestris Scots pine 102730

21 Pinus
::::
Pinus mugo

::::
mugo mountain pine 88

22 Pinus
::::
Pinus nigra

::::
nigra European black pine 606

24 Pinus
::::
Pinus cembra

:::::
cembra Swiss pine 3

25 Pinus
::::
Pinus strobus

:::::
strobus eastern white pine 431

29 Pinus
::::
Pinus spec. other pines 65

30 Abies
::::
Abies alba

:::
alba silver fir 9375

33 Abies
::::
Abies grandis

:::::
grandis grand fir 384

39 Abies
::::
Abies spec. other firs 291

40 Pseudotsuga
:::::::::
Pseudotsuga menziesii

::::::
menziesii Douglas fir 9598

50 Larix
::::
Larix decidua

::::::
decidua European larch 7674

51 Larix
::::
Larix kaempferi

:::::::
kaempferi Japanese larch (+hybrids) 3308

90 other coniferous trees 139
94 Taxus

::::
Taxus baccata

::::::
baccata European yew 11

100 Fagus
:::::
Fagus sylvatica

::::::
sylvatica beech 57341

110 Quercus
::::::
Quercus robur

:::
robur English oak 19617

111 Quercus
::::::
Quercus petraea

:::::
petraea sessile oak 18697

112 Quercus
::::::
Quercus rubra

:::::
rubra Northern red oak 1861

120 Fraxinus
:::::::
Fraxinus excelsior

:::::::
excelsior common ash 7469

130 Carpinus
:::::::
Carpinus betulus

:::::
betulus hornbeam 3411

140 Acer
::::
Acer pseudoplatanus

:::::::::::
pseudoplatanus sycamore maple 5042

141 Acer
::::
Acer platanoides

::::::::
platanoides Norway maple 598

142 Acer
::::
Acer campestre

:::::::
campestre field maple 387

150 Tilia
:::

Tilia spec
::::
spec. linden tree (indigenous species) 1294

160 Robinia
::::::
Robinia pseudoacacia

::::::::::
pseudoacacia black locust 1553

170 Ulmus
:::::
Ulmus spec. elm, native species 406

181 Castanea
:::::::
Castanea sativa

::::
sativa chestnut 416

190 misc. deciduous
:::::::
broadleaf trees with long life expectancy 246

191 Sorbus
:::::
Sorbus domestica

:::::::
domestica service tree 2

193 Sorbus
:::::
Sorbus aria

:::
aria common whitebeam 51

200 Betula
:::::
Betula pendula

::::::
pendula silver birch 9729

201 Betula
:::::
Betula pubescens

:::::::
pubescens moor birch 858

211 Alnus
::::
Alnus glutinosa

:::::::
glutinosa black alder 7098

212 Alnus
::::
Alnus incana

:::::
incana grey alder 460

220 Populus
::::::
Populus tremula

::::::
tremula common aspen 1402

221 Populus
::::::
Populus nigra

::::
nigra European black poplar (+ hybrids) 1945
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Table C3. List of all included tree species with counts (part 2).

species code
:::::
Species

::::
Code

:
species

::::::
Species common name

:::::::
Common

:::::
Name count

::::
Count

:

222 Populus
::::::
Populus x canescens

:
x
::::::::
canescens grey poplar (+hybrids) 196

223 Populus
::::::
Populus alba

:::
alba silver poplar 109

224 Populus
::::::
Populus trichocarpa x maximoviczii

:::::::::
trichocarpa

:
x
::::::::::
maximoviczii balsam poplar 636

230 Sorbus
:::::
Sorbus aucuparia

:::::::
aucuparia European rowan 270

240 Salix
:::
Salix spec. willow 1203

250 Prunus
:::::
Prunus padus

::::
padus bird cherry 77

251 Prunus
:::::
Prunus avium

:::::
avium wild cherry 1357

252 Prunus
:::::
Prunus serotina

::::::
serotina black cherry 132

290 misc. deciduous
:::::::
broadleaf trees with short life expectancy 92

292 Malus
::::
Malus sylvestris

:::::::
sylvestris European crab apple 37

293 Pyrus
::::
Pyrus communis

:::::::
communis European wild pear 42

295 Sorbus
:::::
Sorbus torminalis

:::::::
torminalis wild service tree 71

25



References

Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI370

Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth System Science Data, 15,

681–695, https://doi.org/10.5194/essd-15-681-2023, publisher: Copernicus GmbH, 2023.

Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV): Produkt- und Qualitätsstandard für

Digitale Orthophotos, Tech. rep., 2020.

Aybar, C., Ysuhuaylas, L., Loja, J., Gonzales, K., Herrera, F., Bautista, L., Yali, R., Flores, A., Diaz, L., Cuenca, N., Espinoza, W., Prudencio,375

F., Llactayo, V., Montero, D., Sudmanns, M., Tiede, D., Mateo-García, G., and Gómez-Chova, L.: CloudSEN12, a global dataset for

semantic understanding of cloud and cloud shadow in Sentinel-2, Scientific Data, 9, 782, https://doi.org/10.1038/s41597-022-01878-2,

2022.

Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B., and Hostert, P.: National tree species mapping using Sentinel-1/2 time

series and German National Forest Inventory data, Remote Sensing of Environment, 304, 114 069, 2024.380

Bolyn, C., Lejeune, P., Michez, A., and Latte, N.: Mapping tree species proportions from satellite imagery using spectral–spatial deep

learning, Remote Sensing of Environment, 280, 113 205, https://doi.org/https://doi.org/10.1016/j.rse.2022.113205, 2022.

European Space Agency: Copernicus Sentinel-2 (processed by ESA), 2021, MSI Level-1C TOA Reflectance Product. Collection 1, Available

online: https://doi.org/10.5270/S2_-742ikth, 2021.
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