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Abstract. Surface soil moisture is vital for Earth's environmental and energy cycles. However, it is still rare to have remote 

sensing soil moisture data with a long-term temporal extent, a global seamless spatial coverage, and a near-real-time update 

frequency. Here, we provided a global seamless soil moisture dataset from July 1981 to December 2022, matching CCI with 10 

SMAP through a novel soil moisture data bias correction method (fitting beta CDF matching, BCDF), and filling the gaps of 

corrected soil moisture through XGBoost Algorithms along with various soil moisture covariates. The new soil moisture 

dataset was abbreviated as GSSM and it has been validated with in situ observations, original CCI and SMAP data, and 

simulated gap areas. Results demonstrated that 1) the GSSM has similar accuracy with the SMAP and they are both more 

accurate than the original CCI data as compared with in situ observations at 399 global sites (averaged R=0.72, averaged 15 

ubRMSE<0.05); 2) the GSSM has the global spatial coverage, while filling the gaps of original CCI data through various soil 

moisture covariates (in artificial gaps verification, averaged R>0.86, averaged ubRMSE<0.04); 3) the GSSM has the same 

temporal variation characteristics with the original CCI dataset, while it can be combined with SMAP to obtain a long-term 

and near-real-time soil moisture dataset. Thus, GSSM  provides long-term and seamless soil moisture data, paving the way for 

environmental disaster and water cycle process research. 20 

1 Introduction 

Surface soil moisture, also known as surface soil water content, plays a vital role in environmental water cycle processes and 

energy transfer processes in Earth’s surface systems (Green et al., 2019; Gianotti et al., 2019; Vereecken et al., 2008; Babaeian 

et al., 2019). It is also regarded as an important climate indicator by the Global Climate Observing System (GCOS) (Al-Yaari 

et al., 2017). Beyond this, soil moisture data are needed in monitoring agricultural droughts(Pan et al., 2023), floods 25 

worldwide(Chen et al., 2023), water resourece management (Robinson et al., 2008), and climate change (Anderson et al., 

2007).  

With the deepening of global climate change research, a global seamless, long-term, and near-real-time soil moisture data has 

become more and more important. From a temporal perspective, long-term soil moisture data are needed to analyze seasonal 

and long-term changes in soil moisture accurately. This kind of data can be used not only to analyze the impact of climate 30 
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change on soil moisture (Shellito et al., 2016), but also to evaluate the frequency and duration of drought and wet cycles 

(Sheffield and Wood, 2008), and to study the relationship between soil moisture and vegetation growth, the relationship 

between agricultural production and ecosystem health (Bertoldi et al., 2016). From a spatial perspective, seamless soil moisture 

data with global coverage are needed to compare and monitor soil moisture conditions in different regions, such as studying 

soil moisture climate changes in tropical rainforest regions (Ma et al., 2023). In terms of accuracy, high-quality soil moisture 35 

data is needed to ensure accuracy and reliability, thereby supporting various soil moisture applications in agricultural 

management, water resources management, and climate research. For example, SMAP has limited product error to less than 

0.04 m3/m3 in many validation and evaluation studies conducted at global and regional scales (Chan et al., 2016; Colliander et 

al., 2017; Yao et al., 2021), which can better understand processes that link the terrestrial water, energy, and carbon cycles 

(Bai et al., 2019; Entekhabi et al., 2010). Therefore, taking into account the requirements of time, space, and accuracy, higher 40 

requirements are put forward for the acquisition and processing of soil moisture data. So, how to obtain soil moisture data that 

integrates wide spatial coverage, long time range, and high accuracy? 

Currently, there are three methods to obtain high-accuracy soil moisture data with global seamless spatial characteristics and 

long-term, near-real-time time characteristics: traditional ground-based measurements at monitoring stations, reanalysis 

products, and remote sensing techniques. The method of obtaining soil moisture through ground stations has the characteristics 45 

of high precision, temporal continuity, and excellent data quality. However, it is limited to point-scale measurements, which 

is affected by site density distribution and makes real-time monitoring expensive (Rahimzadeh-Bajgiran et al., 2013). The 

second is reanalyzing soil moisture products simulated through a meteorological model. Soil moisture reanalysis data can 

break through the limitations of satellite-borne signal-derived data, achieve full coverage of soil moisture, and have clear 

physical meanings. (Liu et al., 2023). It possesses characteristics of broad spatiotemporal coverage and relatively high precision. 50 

Reanalysis products have become essential for providing continuous soil moisture data over large areas. The quality of these 

products varies despite their comprehensive consideration of factors and coverage of various meteorological data. These 

products predict temporal changes well, but the bias and root mean square error (RMSE) can be significant (Bi et al., 2016). 

Since the 1980s, microwave remote sensing data for spatially and temporally continuous operations over large areas has 

become an attractive option for drought monitoring, especially when ground measurements are impossible (Sadri et al., 2020). 55 

Nowadays, microwave remote sensing has become the leading method for soil moisture estimation due to its ability to penetrate 

clouds and vegetation while obtaining data in near-real-time (Karthikeyan et al., 2017). Compared with the first two methods, 

remote sensing technology has become the most promising way to obtain soil moisture data in long-term series, near-real-time, 

and high spatial coverage.  

 60 
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Table 1: Basic information on currently available global remotely sensed soil moisture datasets. 

Product Spatial resolution Temporal resolution Temporal extent 

ESA CCI 0.25° One day 1978-2022 

AMSR-E 25 km Two-three day 2002-2011 

AMSR-2 25 km Two-three day 2012- Now 

SMOS 50 km Two-three day 2010- Now 

SMAP 36 km/ 9km  Two-three day 2015-Now 

FY-3C 25 km One day 2014-2020 

Nowadays, there are many global soil moisture data sets based on remote sensing (for example, shown in Table 1). Different 

soil moisture datasets have different characteristics and applicable scopes. The update frequency of most remote sensing soil 65 

moisture data can be updated in near-real-time. Nevertheless, the temporal extent of most remote sensing soil moisture datasets 

is limited, influencing their applicability for long-term soil moisture time series analysis (Escorihuela and Quintana-Seguí, 

2016; Ford and Quiring, 2019). For example, the soil moisture products in Table 1 can all achieve global coverage, but the 

time series of SMAP, SMOS, and FY-3C are relatively short and only available after 2010. Although some data are very long 

in time series, their accuracy performance is not ideal. For example, the accuracy of AMSR-E/AMSR-2 is more prone to errors 70 

and biases compared with SMAP SSM products in the interaction of atmosphere, vegetation, and soil (Yao et al., 2021). From 

the perspective of climate change research, CCI data makes up for the above shortcomings. It has the longest time series, global 

coverage, and daily temporal resolution. Despite the extensive temporal span of the CCI soil moisture dataset, limitations 

remain. First, the update frequency is irregular, which affects the near-real-time availability of data. Secondly, its large amount 

of missing data limits comprehensive coverage and affects the effectiveness of soil moisture monitoring. CCI datasets are 75 

severely missing globally, especially in mainland China. The average ratio of missing data to the total data volume is around 

40%, and in winter and spring, its proportion can reach up to 80% (Sun and Xu, 2021). Furthermore, the lack of data makes it 

challenging to maintain spatial continuity of CCI soil moisture data (Llamas et al., 2020). At the same time, compared with 

SMAP, after comparing various remote sensing soil moisture data with ground measured data, it was found that the accuracy 

of SMAP soil moisture products is better than that of CCI and is closest to the measured data, and SMAP data have the potential 80 

to be integrated into existing long-term ESA CCI products to form a more reliable and useful product (Ma et al., 2019; Kim et 

al., 2018; Kumar et al., 2018; Cui et al., 2018). To sum up, the shortcomings of CCI data are reflected in data update frequency, 

data spatial coverage, and data accuracy. Nowadays, there are currently few soil moisture remote sensing products that can 

simultaneously provide span long-time series, higher spatial coverage, and high data accuracy. 

Fortunately, the above characteristics can be achieved through the fusion of multiple datasets and gap filling (González-Zamora 85 

et al., 2019). SM products with higher spatial coverage can be obtained through filling methods, and long-term, near-real-time, 

high-accuracy products can be obtained through data fusion methods. The previous research has solved the problem of low 

spatial coverage. The current mainstream method is to use machine learning or deep learning methods to fill in soil moisture 
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data. Zhang et al. (2022) integrated data from three sensors, namely AMSR-E, AMSR2, and WindSat, and employed a long 

short-term memory convolutional neural network (LSTM-CNN) to interpolate soil moisture data, achieving favorable 90 

outcomes. Sun et al. (2023) used geographical information and meteorological or climate factors as filled SM covariates, 

selected the XGBoost model to fill in the CCI products of the Chinese region from 1982 to 2020, and obtained seamless long-

time series CCI products of the Chinese region. However, it is limited to filling in the mainland China area and does not 

achieve global coverage. At the same time, data fusion is used to solve the near-real-time and long-term problems of CCI data. 

Since there are systematic errors in different soil moisture products (such as errors caused by different sensors and different 95 

inversion algorithms), the two products cannot be directly fused, but an appropriate assimilation method needs to be used (Su 

et al., 2013; Lee et al., 2017; Konings et al., 2011). Using appropriate fusion methods can not only expand the time series of 

soil moisture products, but also improve product accuracy. At present, data fusion methods can be divided into linear methods 

and non-linear methods. Nonlinear methods are commonly used for data fusion, among which Cumulative Distribution 

Function Mapping (CDFM) and machine learning methods are the most widely used (Kornelsen and Coulibaly, 2015; Afshar 100 

and Yilmaz, 2017). For example, Sadri et al. (2020) used CDFM and Bayesian conditional process methods, combining SMAP 

with SMOS to obtain near-real-time global soil moisture with an accuracy similar to CCI products. Yao et al. (2023) used 

artificial neural networks to fuse the SMAP dataset and the long-term brightness temperature data of the FY-3B satellite to 

develop an SM dataset from 2010 to 2019, whose accuracy is close to that of SMAP. Yang et al. (2024) extended the SMAP 

dataset with the corresponding CCI SM time series by using a random forest model with an accuracy close to that of the SMAP 105 

product. However, in predicting long-term trends in geoscience variables, machine learning methods are severely challenged 

by factors such as limited historical data, the non-stationary nature of geoscience processes (cyclones and floods) (Karpatne et 

al., 2019). The CDF method can avoid the above problems well, so the CDF matching method still has research potential (Ji 

et al., 2020). However, the CDF matching method also has the problem of how to determine the boundary value. 

In order to solve the above problems, we use a novel matching method (BCDF) to determine boundary values, apply gap filling 110 

methods (XGBoost) using various geoscientific covariates to the global scale, and propose a long-term, seamless, high-

accuracy soil moisture dataset called GSSM. It has high accuracy, long time series, high spatial coverage, and near-real-time 

capabilities that can be combined with SMAP. The dataset follows a unified latitude and longitude grid, with a spatial resolution 

of 0.25° × 0.25° and a monthly temporal resolution. Detailed matching and filling methods, as well as dataset verification 

methods, will be systematically elaborated in Section 2. Section 3 will focus on the verification results of the GSSM dataset. 115 

In Section 4, we will discuss matching algorithms, strategies for determining boundary values, and the application details of 

freeze-thaw masks. 

https://doi.org/10.5194/essd-2024-200
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



5 

 

2 Methods and materials 

2.1 Datasets 

2.1.1 ESA CCI 120 

The Soil Moisture CCI Combined dataset is one of three datasets formulated within the framework of the European Space 

Agency's (ESA) Soil Moisture Essential Climate Variable (ECV) Climate Change Initiative (CCI) project. Its products are 

created by directly merging scatterometers (active remote sensing) and radiometers (passive remote sensing) derived from 

multiple satellites (Dorigo et al., 2017; Preimesberger et al., 2021; Gruber et al., 2019). The CCI V08.1 data was updated on 

October 11, 2023, with a temporal resolution of one day and a spatial resolution of 0.25°. The time span is from November 1, 125 

1978, to December 31, 2022, with a total of 16,132 images. In Wang et al. (2023) research, compared with the soil moisture 

of a single satellite data, the combined CCI data has higher precision, so the combined CCI product was selected for our 

research. 

2.1.2 SMAP 

Since January 31, 2015, the Soil Moisture Active Passive (SMAP) satellite equipped with an L-band radiometer and an L-band 130 

radar has been observing the Earth in a sun-synchronous orbit. The satellite passes over the Equator at 06:00 (descending) and 

18:00 (ascending) during its orbit (Entekhabi et al., 2010). In our study, we selected the SPL3SMP_E v005 ascending orbit 

data. This product has a spatial resolution of 9km and a temporal resolution of two-three day. It is an enhanced level 3 soil 

moisture product that provides soil moisture active and passive radiometers retrieved. A synthesis of daily estimates of global 

surface conditions. 135 

2.1.3 Other data 

According to the filling algorithm of Sun et al. (2023), several geographical information and meteorological or climate factors 

as filled SM covariates have been applied to fill the product, including ERA5-Land, GIMMS/MOD13C2, HWSD v2.0, 

GTOPO30 DEM. The reason why ERA5-Land was chosen to fill in the soil moisture data is that, among the products evaluated, 

ERA5-Land always performed better, showed a preferable ability to capture spatial and temporal changes in SM, and had a 140 

higher correlation with ISMN (Zhang et al., 2023). All data sources are shown in Table 1. We pass each data through Monthly 

Fusion and then resample each data to 0.25°. 

Table 2 Geospatial and meteorological information for gap filling. 

Variables Data Time 

Range 

Temporal 

resolution 

Spatial 

resolution 

Data availability (URL) 

NDVI GIMMS 1981.07-

2015.12 

15day 0.083° https://ecocast.arc.nasa.gov/data/pub/gimms/ 
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MOD13C2 2000.02-

Now 

Monthly 0.05° https://ladsweb.modaps.eosdis.nasa.gov/missio

ns-and-measurements/products/MOD13C2 

Background Soil 

Moisture 

Volumetric 

soil water 

layer 1 

1950.01-

Now 

Monthly 0.1° https://www.ecmwf.int/en/era5-land 

Albedo Forecast 

albedo 

1950.01

-now 

Monthly 0.1° 

Surface 

Temperature 

Soil 

temperature 

level 1 

1950.01-

Now 

Monthly 0.1° 

Air Temperature 
2m 

temperature 

1950.01-

Now 

Monthly 0.1° 

Precipitation 

Total 

precipitatio

n 

1950.01-

Now 

Monthly 0.1° 

Potential 

Evapotranspiratio

n 

Total 

evaporation 

1950.01-

Now 

Monthly 0.1° 

Soil Texture HWSD v2.0 - - 0.083° 

https://www.fao.org/soils-portal/data-hub/soil-

maps-and-databases/harmonized-world-soil-

database-v20/en/ 

DEM GTOPO30 - - 0.083° 

https://www.usgs.gov/centers/eros/science/usg

s-eros-archive-digital-elevation-global-30-arc-

second-elevation-gtopo30 

2.1.4 Validation data 

In situ measurements from the International Soil Moisture Network (ISMN) (Dorigo et al., 2011; Dorigo et al., 2013). We 145 

choose ISMN field measurement data as the actual measured value to verify the product accuracy after matching and filling. 

We selected a total of 24 detection networks on ISMN for accuracy verification. Since GSSM represents the surface soil 

moisture in the range of 0-5cm, the ISMN site data of 0-5cm was selected for verification. Due to the variability in quality 

among ISMN in situ, we have formulated selection rules for ISMN site data: (1) The length of soil moisture in situ data 

recorded exceeds one year, and the length of the time series of the soil moisture product at the pixel position is not less than 150 

one year; (2) Since there are missing pixels in the dataset, only the data where the site position time series and the dataset 
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corresponding pixel position time series exist at the same time are selected; (3) Only the quality flag is selected as G (GOOD) 

the in situ is verified; (4) Only validation data with dated site data is selected for comparison. According to the above rules, a 

total of 24 site networks and 399 site data meets the requirements. Fig. 1 illustrates the spatial distribution of the selected 

station data in our study. 155 

 

Figure 1: Global distribution of networks and sites in the ISMN dataset used in our study, along with a schematic representation of 

the location of typical land cover types and areas with significant dry and wet changes (Digital elevation model (DEM) represented 

by base map). 

2.2 Methodology 160 

The production of a global long-term series, and gap filling surface soil moisture dataset consists of four basic parts. (1) pre-

processing, including data selecting, resampling, and monthly average synthesis of various data; (2) deviation correction to 

match the ESA CCI data to the SMAP dataset through the fitted beta distribution CDF method, and generate the corresponding 

relationship through the overlap time of SMAP and CCI (2015.03.31-2022.12.31), and apply this correspondence to obtain the 

SMAP-corrected daily and monthly CCI/SMAP datasets from 1978.11.01-2022.12.31; (3) gap filling, use the XGBoost 165 

method to fill in some areas that can be filled in the CCI/SMAP dataset, and obtain GSSM dataset; (4) post-processing, freeze-

thaw masking is performed on the filled soil moisture data set to mask out areas with freeze water and null values. The overall 

methodological framework for producing a long-time, and gap-filling 0.25° GSSM product is shown in Fig. 2, with details 

described in the following context of this section. 
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 170 

Figure 2: The overall methodological framework of our study. 

2.2.1 Bias correction method for the production of global long-term surface soil moisture data 

Cumulative distribution function matching (CDFM) can be considered a way to reduce the systematic differences between 

source and reference datasets (Reichle and Koster, 2004; Crow and Van Den Berg, 2010; Draper et al., 2011). CDF matching 

was applied for each grid point individually. The CDF is a specific way to give the probability that X will take a value less 175 

than or equal to a certain threshold (Madelon et al., 2022). 

𝐶𝐷𝐹𝑆𝑀(X) = P(𝑆𝑀 ≤ 𝑋) ,          (1) 

There are multiple methods to match the CDFs of two datasets, such as linear piecewise interpolation and polynomial fitting. 

Besides, there is a linear method that directly corrects for bias between mean and variance. We assume that the CDF of soil 

moisture for each grid point matches a beta distribution for modelling soil moisture time series (Reichle and Koster, 2004). In 180 
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the study by Sadri et al. (2018), several parameter distributions (including normal distribution and Gumbel distribution) were 

used to fit the soil moisture time series, and it was found that the beta distribution showed the best goodness of fit. The general 

formula for the beta probability density function (pdf) is: 

𝑓(𝑥) =
(𝑥−𝑎)(𝑝−1)(𝑏−𝑥)(𝑞−1)

𝐵(𝑝,𝑞)(𝑏−𝑎)𝑝+𝑞−1 , 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑝, 𝑞 > 0,

𝐵(𝑝, 𝑞) = ∫ 𝑡𝑝−1(1 − 𝑡)𝑞−11

0
d𝑡.

,        (2) 

Where 𝑝, 𝑞 is the shape parameter of beta distribution; 𝑎, 𝑏 is the upper and lower bounds, which we will call the boundary 185 

later. When 𝑎 = 0, 𝑏 = 1, it is called the standard beta distribution. Where 𝐵(𝑝, 𝑞) is the beta constant calculated from the 

above formula. Therefore, we performed beta distribution fitting on the time series of soil moisture at each pixel position of 

CCI and SMAP, and used the moment of moments to fit the beta distribution (Reichle and Koster, 2004). In our research, the 

difference is that we adopt a novel method suitable for our study in selecting the boundary value: for each pixel's time series, 

after fitting it to a beta distribution, the minimum and maximum observations in the data set are compared to the minimum 190 

and maximum values of the percentile point function (ppf), respectively, and the data are sorted in ascending order, to achieve 

the purpose of determining boundaries. The actual algorithm is shown below Eq. (3). 

𝑇𝑆𝑆𝑀
𝑎 = [𝑀𝑖𝑛(𝑝𝑝𝑓𝑆𝑀

𝑎 (0), 𝑀𝑖𝑛(𝑆𝑀𝑎)), 𝑝𝑝𝑓𝑆𝑀
𝑎 (0), … , 𝑝𝑝𝑓𝑆𝑀

𝑎 (1), 𝑀𝑎𝑥(𝑝𝑝𝑓𝑆𝑀
𝑎 (1), 𝑀𝑎𝑥(𝑆𝑀𝑎))] ,   (3) 

Where 𝑆𝑀 stands for the soil moisture data from both the CCI and SMAP; 𝑇𝑆 represents the time series of SM at pixel position 

𝑎; 𝑝𝑝𝑓(0)denotes the SM corresponding to the minimum quantile of the dataset after fitting it to a beta distribution; 𝑝𝑝𝑓(1) 195 

denotes the soil moisture value corresponding to the maximum quantile of the dataset after fitting it to a beta distribution; 

𝑀𝑖𝑛(, ) means taking the minimum value of the two; 𝑀𝑎𝑥(, ) means taking the maximum value of the two. Obtain the 

corresponding CDF distribution after fitting, and perform CDF matching on CCI and SMAP. 

After testing, the overall correction accuracy of the fitting beta CDF matching (BCDF) method is slightly higher than that of 

LR, the direct CDF segment matching method, and the CDF fitting method (Discussion 4.1). 200 

Due to the existence of standard deviation in the calculation formula, the matching method is not available when there is only 

one value in the time series. Therefore, for these "special" pixels, we adopt the nearest neighbour interpolation method for 

correction, that is, select the nearest neighbour correspondence to correct the pixel. A correspondence was established based 

on the overlapping period of SMAP and CCI data (April 2015 to December 2022), which was then used to extrapolate the 

SMAP-corrected CCI/SMAP dataset for the period spanning November 1, 1978, to December 31, 2022. 205 

2.2.2 Gap Filling method for the production of global gap-filling surface soil moisture data 

As only the values of CCI are subjected to bias correction, the corrected CCI/SMAP product still exhibits gaps, thereby posing 

limitations in long-term soil drought research. Consequently, it is necessary to fill gaps in SSM product. We referred to Sun et 
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al. (2023) gap filling method based on machine learning (ML) and used the XGBoost model to fill gaps. The principal formula 

is such as Eq. (4) and Eq. (5). 210 

𝑆𝑀𝐶𝐶𝐼/𝑆𝑀𝐴𝑃
𝑎 = 𝑓𝑎(𝑇𝑖𝑚𝑒𝑎 , 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎 , 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑎 , 𝑆𝑜𝑖𝑙 𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑎, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑎) ,   (4) 

𝑆𝑀𝑃𝑟𝑒𝑑𝑖𝑐𝑡
𝑔

= 𝑓𝑎(𝑇𝑖𝑚𝑒𝑔 , 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑔 , 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑔 , 𝑆𝑜𝑖𝑙 𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑔 , 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠𝑔) ,   (5) 

𝑎 represents the available SM pixel position; 𝑔 represents the gap SM pixel position; 𝑆𝑀𝐶𝐶𝐼/𝑆𝑀𝐴𝑃
𝑎  refers to the CCI/SMAP soil 

moisture value at the “a” pixel position; 𝑓𝑎 means a filling model obtained through machine learning training; 𝑇𝑖𝑚𝑒𝑎, etc. 

represent the filling features at the "a" pixel position; 𝑇𝑖𝑚𝑒𝑔 , etc. represent the filling features at the "g" pixel position; 215 

𝑆𝑀𝑃𝑟𝑒𝑑𝑖𝑐𝑡
𝑔

 refers to the soil moisture value predicted by the model at the “g” pixel position. The principle of machine learning 

is to build a model through machine learning methods based on the available SM and various SM covariates, and then use the 

specified model for the available SM covariates to estimate the SM of the gap, so as to achieve the purpose of filling (Sun et 

al., 2023). 

Regarding the covariates for filling SSM, in previous studies(Sun and Cui, 2021; Sun and Xu, 2021; Sun et al., 2023), 220 

geographical information and climate factors were used. Hence, we chose to include Normalized Differential Vegetation Index 

(NDVI), Albedo (A), Land Surface Temperature (LST), Air Temperature (AT), Precipitation (P), Potential Evapotranspiration 

(PET), Soil Texture (ST), Elevation (DEM), background SM from ERA5-Land, and time information (year). The reason for 

choosing ERA5-Land to fill in the soil moisture data is that among the evaluated products, ERA5-Land consistently exhibits 

superior performance, demonstrating a strong capability to capture spatial and temporal variations in soil moisture. It also 225 

shows a higher correlation with ISMN (Zhang et al., 2023). 

2.2.3 Methods for the validation of surface soil moisture products 

In order to comprehensively evaluate the matching and filling effects, we choose four indicators to evaluate product quality, 

including correlation coefficient (R) as Eq. 6, average bias(Bias) as Eq. 7, root mean square error (RMSE) as Eq. 8 and 

ubRMSE as Eq. 8 (Sun and Cui, 2021; Kornelsen and Coulibaly, 2015). 230 

𝑅 =
∑(𝜃𝑜−𝐸[𝜃𝑜])(𝜃𝑟−𝐸[𝜃𝑟])

√∑(𝜃𝑜−𝐸[𝜃𝑜])2∑(𝜃𝑟−𝐸[𝜃𝑟])2
 ,          (6) 

𝐵𝑖𝑎𝑠 = E[∑(𝜃𝑜 − 𝜃𝑟)] ,           (7) 

𝑅𝑀𝑆𝐸 = √𝐸[(𝜃𝑜 − 𝜃𝑟)2] ,          (8) 

𝑢𝑏𝑅𝑀𝑆𝐸 = √𝐸[((𝜃𝑜 − 𝐸[𝜃𝑜]) − (𝜃𝑟 − 𝐸[𝜃𝑟]))
2

] ,        (9) 

Where 𝐸(, ) refers to take the mean of the data in brackets; 𝜃𝑜, 𝜃𝑟 represent the corrected or predicted soil moisture value and 235 

the reference soil moisture value. 
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The following three verification methods are used for the bias correction results: (1) verification by comparison with SMAP 

time series; (2) verification by comparison with SMAP data in space and time; (3) in situ verification. Use SMAP data in the 

time range of 2015.03.31-2022.12.31 to verify CCI/SMAP products. We roughly selected six areas with obvious dry and wet 

changes according to Fig. 1 (Liu et al., 2023). The purpose is to test the accuracy of the product in terms of time and space. At 240 

the same time, ISMN is used to verify the dataset to see whether the dataset meets the SSM accuracy requirements.  

The following two verification methods are used for the filling results: (1) simulated missing area verification; (2) simulated 

in situ verification. Six areas with obvious dry and wet changes were excavated, and the filling model was used to predict them. 

The purpose was to test the prediction accuracy of the prediction model in time and space. At the same time, when evaluating 

the filling precision, we compared and verified the SM obtained by ISMN in situ observation with the filled dataset to verify 245 

the overall accuracy of the filling product. 

3 Validation 

3.1 The spatiotemporal distribution of the GSSM dataset 

By employing the BCDF correction method, we brought the CCI data closer to SMAP in terms of numerical values and 

obtained corresponding monthly GSSM products. Subsequently, leveraging various auxiliary datasets and employing the 250 

XGBoost machine learning method, we filled the gaps in the GSSM monthly products. The filling process spanned from July 

1981 to December 2022, resulting in a nearly 42-year seamless soil moisture dataset. Numerical restrictions are applied to the 

filling to prevent soil moisture values that exceed the actual physical meaning. The restricted moisture value is between 0.02 

and 1. Fig. 3 illustrates the comparison of BCDF-corrected GSSM soil moisture before and after filling over several months 

spanning 40 years (1981.12, 1990.11, 1998.10, 2006.9, 2014.8, 2022.7). Comparing the images before and after filling in Fig. 255 

3, we can see that the soil moisture product before filling has spatial discontinuities in the CCI, so the corrected data still has 

such characteristics. In spring and winter, there is a serious lack of data in high-latitude areas, such as Russia and some 

European countries. After filling in the BCDF-corrected GSSM soil moisture data from July 1981 to December 2022, the 

integrity of the spatial data has been greatly improved. Compared with the soil moisture data before filling, The filled spatial 

data distribution is more continuous and almost complete in space. 260 
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Figure 3: Spatial comparison of soil moisture dataset before and after gap filling. (a)The first line is the soil moisture image before 

partial date filling in autumn and winter, and the second line is the image after filling. (b)The first line is the soil moisture image 

before partial date filling in summer and autumn, and the second line is the image after filling. 

We selected five land cover categories based on the land cover product ESAWorldCover10m v200, and extracted the soil 265 

moisture time series at the pixel locations of the five land cover types (Bare/spare vegetation, Tree cover, Grassland, Cropland, 

Shrubland). The specific location information is shown in Table 3 and Fig. 1. Comparative analysis was conducted on the 

original CCI, BCDF-corrected and filled CCI, and SMAP soil moisture data time series, and the results in Fig. 4 were obtained. 

Overall, the CCI soil moisture sequence after BCDF gap filling is closer to the SMAP soil moisture time series, with great 

performance in terms of precision. The original CCI and SMAP soil moisture time series in Fig. 4(a) are discontinuous in time, 270 

which is not conducive to long-term series analysis of soil moisture data. Meanwhile, the CCI soil moisture series after BCDF 
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corrected and gap filling is not only numerically closer to SMAP but also has increased the time continuity to increase the 

length of time that soil moisture data can be used. 

Table 3 Basic information about typical features. 

Index Lon Lat Main land use 

01 105.83 42.74 Bare/spare vegetation 

02 -105.52 35.59 Tree cover 

03 -105.74 43.46 Grassland 

04 115.07 35.06 Cropland 

05 -39.69 -9.06 Shrubland 

 275 

Figure 4: Correction effect on typical land cover type time series. (a)-(e) shows the soil moisture time series corresponding to five 

land cover categories. 
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3.2 Evaluation of GSSM with SMAP products 

When evaluating the matching precision, we selected SMAP data and ISMN datasets to perform an accuracy analysis of the 

matched daily GSSM product to test the accuracy of the corrected CCI product. SMAP data is used to verify whether the 280 

corrected product has reduced the gap with SMAP data, thereby verifying whether it can be combined with SMAP data to 

achieve the purpose of near-real-time. We resampled the SMAP product to 0.25° resolution for comparison with the CCI and 

daily GSSM datasets. At the same time, all ascending orbit data of the SPL3SMP_E v005 product on the NASA website were 

selected, with a total of 2748 images, covering the period from March 31, 2015 to December 31, 2022, which is consistent 

with the GSSM dataset. 285 

 

Figure 5: Comparing the correlation (a) and (b), bias (d) and (e), RMSE (g) and (h), as well as ubRMSE (g) and (h) between the 

original CCI product and the CCI product corrected using CDFM, and SMAP. The period of comparison is from 2015/03/31 to 

2022/12/31. 
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In Fig. 5, a comparison of the R (correlation), bias, RMSE (Root Mean Square Error), and ubRMSE (unbiased Root Mean 290 

Square Error) are presented among the ESA CCI product, the CCI product corrected using BCDF, and the SMAP product. The 

GSSM dataset obtained from BCDF method in column 2 (Fig. 5b, Fig. 5c, Fig. 5h, Fig. 5k) reveals lower RMSE and Bias with 

SMAP globally, compared to the dataset obtained from the origin dataset in column 1 (Fig. 5a, Fig. 5d, Fig. 5g, Fig. 5j). From 

Fig. 5c, the overall correlation changes before and after correction is not obvious. This may be because CDF has the advantage 

of maintaining the variation characteristics of the original time series (Cui et al., 2018). Therefore, the original temporal 295 

variation characteristics of CCI are retained. Before the correction, the overall accuracy of CCI data was lower than that of 

SMAP, and the deviation was larger in high latitudes. After correction, the average bias from SMAP was significantly reduced, 

especially the bias in high latitudes was also corrected to a relatively small range. RMSE is significantly lower than before 

correction, with significant improvements in northern Africa, southern North America and the Middle East. The ubRMSE 

exhibits consistent performance before and after correction. Although the correlation coefficient does not change significantly 300 

in the overall image, compared with before correction, R has improved numerically, and Bias and RMSE have significantly 

decreased. A comprehensive evaluation of the matching effect was carried out based on R, RMSE, Bias, and ubRMSE 

indicators. The most obvious performance was in correlation, bias, and RMSE. The correlation increased by 0.0175, an increase 

of about 3%; the average Bias and RMSE decreased by 0.0027cm³/cm³ and 0.0375cm³/cm³, which are reduced by about 23% 

and 44%, indicating satisfactory matching performance. The above results show that the BCDF matching method we proposed 305 

can effectively reduce the systematic error between CCI and SMAP products while retaining the temporal variation 

characteristics of the original data. 

 

Figure 6: Spatiotemporal analysis results before and after matching in six selected areas.  
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We conducted a spatiotemporal analysis (from April 2015 to December 2022) on the six selected areas to verify the accuracy 310 

effect between the corrected CCI and SMAP. The results are shown in Fig. 6. It can be seen from the six verification results 

that the CCI data and SMAP data after BCDF matching have achieved relatively close performance. Across the six regions, 

the average correlation coefficient exceeds 0.88, with average Bias, RMSE, and ubRMSE of -0.0062 cm³/cm³, 0.0394 cm³/cm³, 

and 0.0381 cm³/cm³, respectively. The high correlation and low Bias, RMSE, and ubRMSE demonstrate the strong consistency, 

both numerically and spatially, between the BCDF-corrected CCI data and SMAP data. 315 

3.3 Evaluation of GSSM with in situ observations 

We selected the data with data quality "G" on the ISMN website, a total of 24 site networks (a total of 399 sites), and used the 

24 site network data as verification data. We compared the original CCI data and the BCDF-corrected CC with SMAP data, 

and the overall accuracy verification results are shown in Fig. 7. We noticed that there are some negative values in the 

correlation. This may be because due to different scales, SMAP and CCI reflect macro-scale soil moisture conditions compared 320 

with the point-scale, there are differences in soil moisture values, resulting in a negative correlation. However, since there is 

temporal stability, that is, local-scale ground soil moisture can still reflect the temporal dynamics of large-area soil moisture, 

we chose this method to verify the accuracy(Brocca et al., 2009). In general, SMAP data shows a closer alignment with ground 

station measurements than the original CCI data. Compared with the measured in situ, the SMAP data has a lower Bias, RMSE, 

and ubRMSE, which further proves the rationality of CCI matching to SMAP. On the whole, the CCI data after BCDF matching 325 

has improved in all four inspection indicators. Compared to the original CCI, the BCDF-corrected exhibits an increase of 

0.0007 in the correlation with the mean of the station data, and decreases in Bias, RMSE, and ubRMSE by 0.0307, 0.0107, 

and 0.0021, respectively. Based on the four evaluation indicators, compared with the in situ, the accuracy of the corrected 

GSSM dataset is close to that of the SMAP product and better than that of the CCI product that has not been corrected by 

BCDF. 330 

 

Figure 7: Metrics of R, Bias, RMSE, ubRMSE. Displayed from left to right are the correlation comparisons between CCI products, 

BCDF-corrected CCI products, and SMAP products with measured soil moisture in situ. 
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3.4 Evaluation of GSSM with simulated SM gaps 

We used a training set and test set to verify the fitting effect of XGBoost. The soil moisture data of six regions of interest (Fig. 335 

1) distributed within the study area were removed from the training set, resulting in six artificial gaps. Apply the gap-filling 

method to these gaps, that is, use XGBoost to predict the values in these areas and then compare the predicted value (Predicted 

Value) with the data in these areas in the GSSM data (Original Value) as Fig. 8. Across the six regions, XGBoost has excellent 

accuracy in filling the area, which is better than the accuracy requirement of SMAP (average ubRMSE<0.04). The average 

correlation exceeds 0.86, with mean biases, RMSE, and ubRMSE of -0.0005 cm³/cm³, 0.0394 cm³/cm³, and 0.0380 cm³/cm³, 340 

respectively. It can be seen from the data that the predicted results have lower Bias, RMSE and ubRMSE, and higher R, which 

shows that XGBoost performs well in predicting soil moisture data. 

 

Figure 8: XGBoost prediction effect at six artificial gaps. 

We filled the data corrected by the BCDF method, compared the filled results with the measured site data, and obtained the 345 

results in Fig.9. Judging from the verification results, the correlation has improved after filling, increasing by 0.0065. And the 

bias, RMSE, and ubRMSE have also improved. Statistics show that XGBoost padded data has superior precision. The overall 

accuracy is close to the SMAP data and better than the original CCI data.  
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Figure 9: Accuracy verification results obtained by comparing the filled results with the measured in situ. 350 

4 Discussion 

4.1 Comparison and validation of bias matching methods 

Before bias correction, we selected the more mainstream linear method linear rescaling (LR) (Draper et al., 2009) and the 

nonlinear method piecewise linear CDF (LCDF) (Liu et al., 2011; Reichle and Koster, 2004; Drusch et al., 2005), fitting 

polynomial CDF (MCDF) (Aires et al., 2021; Brocca et al., 2011; Madelon et al., 2022) method and our own proposed fitting 355 

beta distribution CDF (BCDF) method. Among them, the piecewise linear CDF matching method is the method currently used 

by the ESA CCI project (Moesinger et al., 2020). Accuracy verification of all data corrections from April 2015 to December 

2022.  

Compared to the randomly selected time series of five land types (Fig. 1), Table 4 shows the performance of various methods 

at each location. Based on the results in Table 4, there will be two situations. On the one hand, the nonlinear method CDF 360 

accuracy is better than the linear LR method. On the other hand, the linear method LR is better than most nonlinear CDF 

methods. The BCDF bias correction method demonstrated excellent accuracy performance in both cases, with multiple 

accuracy indicators outperforming other methods in each case. In the statistical results of correction indicators (Table 4), BCDF 

performs relatively well in each statistical indicator. We found that LCDF and MCDF methods sometimes reduce correlation, 

while LR and BCDF methods both improve correlation. It is worth noting that in terms of comprehensive accuracy evaluation, 365 

BCDF performs better in accuracy indicators in most cases, with higher R and lower Bias, RMSE, and ubRMSE. 

 

 

https://doi.org/10.5194/essd-2024-200
Preprint. Discussion started: 15 July 2024
c© Author(s) 2024. CC BY 4.0 License.



19 

 

Table 4 Various bias correction methods match the statistical results of simulations (Bold font indicates the best performing indicator 

among each matching method.). 370 

Land covers Method R Bias RMSE ubRMSE 

Bare/sparse 

vegetation 

CCI 0.7989 0.0796 0.0809 0.0147 

LR 0.7989 -0.0051 0.0143 0.0133 

LCDF 0.7790 -0.0132 0.0192 0.0140 

MCDF 0.8253 0.0000 0.0129 0.0129 

BCDF 0.8287 -0.0046 0.0134 0.0126 

Grassland CCI 0.8716 0.0425 0.0480 0.0222 

LR 0.8716 -0.0007 0.0218 0.0218 

LCDF 0.8066 -0.0099 0.0278 0.0260 

MCDF 0.8662 0.0000 0.0225 0.0225 

BCDF 0.8738 -0.0007 0.0216 0.0216 

Shrubland CCI 0.8842 0.0487 0.0573 0.0302 

LR 0.8842 0.0018 0.0232 0.0232 

LCDF 0.7611 0.0386 0.0696 0.0580 

MCDF 0.8865 0.0000 0.0233 0.0233 

BCDF 0.8875 0.0018 0.0229 0.0229 

Tree cover CCI 0.7104 0.0867 0.1016 0.0530 

LR 0.7104 -0.0041 0.0566 0.0565 

LCDF 0.7128 -0.0113 0.0553 0.0541 

MCDF 0.7157 0.0000 0.0550 0.0550 

BCDF 0.7252 -0.0044 0.0549 0.0547 

Cropland CCI 0.8866 0.0721 0.0761 0.0243 

LR 0.8866 0.0000 0.0143 0.0143 

LCDF 0.8777 0.0000 0.0150 0.0150 

MCDF 0.8734 0.0000 0.0151 0.0151 

BCDF 0.8871 0.0000 0.0143 0.0143 

4.2 Bias correction method boundary determination 

The time series of soil moisture is consistent with the beta distribution, and the beta distribution is determined by the shape 

parameters and location parameters. When we fit the beta distribution, its data range can be extended. Due to the flexibility of 

the beta distribution, it enables the establishment of more extensive data relationships in bias correction, thereby achieving 
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superior performance in the correction process. Therefore, when performing BCDF matching, it is necessary to determine the 375 

boundaries in the fitting parameters. How should we determine the boundaries? The method adopted by Sheffield et al. (2004) 

is to sort the data, take the sum of the top 10% and the bottom 10% for linear fitting, and extrapolate to estimate the lower limit 

and upper limit. Abourizk et al. (1994) suggestion is to choose the maximum value of the data as the boundary value. In our 

experiments, however, these two methods did not yield satisfactory results. Hence, we propose a novel method for boundary 

determination. The approach we adopted involves fitting the time series of each pixel to a beta distribution, comparing the 380 

minimum and maximum observed values in the dataset with the extremes of ppf data, reordering the data in ascending order, 

and thereby determining the boundary values. The actual algorithm is shown in Eq. 3. 

After literature research and combined with the actual practice of this experiment, we tested three methods, namely linear 

regression interpolation of data as boundary values, direct selection of boundary values, and our newly proposed method to 

determine the boundary. The corresponding distributions obtained by the three methods are shown in Fig. 10. Method-3 385 

represents the method we proposed, which can effectively expand the boundary values of soil moisture on both sides. Based 

on the time series analysis of the pixel positions, the boundary values obtained by the first boundary determination method do 

not fully cover the entire time series, so there will be frequent outliers during the correction process, especially in areas with 

low soil moisture values. However, it extends the distribution on the right side of the soil moisture data to a certain extent, but 

there are problems with the extension effect. In the third pixel’s position, we can see that the boundary determined by this 390 

method is too extended, so that it appears on the image showing a nearly parallel trend. The second and third methods can all 

extend the boundaries on both sides, but the third method can extend it more effectively than the second method, which is 

reflected in a larger numerical range. To sum up, the third method we proposed achieves a more effective effect of extending 

the boundary value. 
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 395 

Figure 10: Data distribution CDF and PDF results obtained by three methods.  

4.3 Determination of active water pixel position 

Due to limitations in data acquisition, the means used to verify the accuracy of soil moisture in our study were limited, and 

more soil moisture data sets were not used to verify the accuracy of the filled CCI soil moisture data. However, in some special 

areas, the state of soil moisture may be special, which may lead to uncertainty in data quality, so it is crucial to refine the filling 400 

work. The freeze/thaw state of near-surface soil characterizes the dormancy and activity of land surface processes (Zhao et al., 

2011; Wang et al., 2019; Hu et al., 2019). Since frozen soil cannot be used to retrieve soil moisture, we selected the 2002-2019 

Global AMSR-E/2 Near-surface Freeze/Thaw state (0.25°) dataset to mask the frozen water part (Tianjie, 2018). The daily 

data is synthesized monthly. During the synthesis process, as long as there is liquid water in the month, the pixel is saved, and 

mask data is generated. In the remaining periods (1981.07-2002.05, 2020.01-2022.12), we performed monthly fusion on the 405 

valid mask data within the effective period, obtained mask data for each month, and applied these masks to the filled data. 
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Figure 11: GSSM dataset after masking out frozen water. 

5. Data availability 

The global seamless soil moisture dataset from 1981 to 2022 dataset GSSM is available from https://data.tpdc.ac.cn/en/disall410 

ow/0f28a9b5-92eb-470a-80fe-472aa50a136f (last access: April 26, 2024) (Sun Hao, 2024).  

6. Conclusions 

The main contributions of this article are mainly reflected in three aspects: First, we propose a fitting beta CDF matching 

method that is more consistent with soil moisture data, while taking into account the boundary value selection problem in the 

matching process, which can ensure the characteristics of the soil moisture time series; Second, we used machine learning 415 
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XGBoost model to fill in the corrected data to solve the problem of low spatial coverage of soil moisture products. Finally, the 

dataset was obtained, namely long-term seamless CCI/SMAP monthly data soil moisture products (GSSM). By obtaining this 

dataset, researchers can take into account the advantages of long time range, and high spatial coverage soil moisture products. 
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