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Abstract. Accurate maps of irrigation extent and dynamics are crucial for studying food security and its far-reaching impacts 

on Earth systems and the environment. While several efforts have been made to map irrigated area in China, few have provided 

multiyear maps, incorporated national land surveys, addressed data discrepancies, and considered the fractional coverage of 15 

cropland within coarse-resolution pixels. Here, we addressed these important gaps and developed new annual maps of China’s 

irrigated cropland from 2000 to 2020, named as CIrrMap250 (China’s irrigation map with a 250 m resolution). We harmonized 

irrigation statistics and surveys and reconciled them with remote sensing data. The refined estimates of irrigated area were 

then integrated with multiple remote sensing data (i.e., vegetation indices, hybrid cropland product, and paddy field maps) and 

an irrigation suitability map through a semi-automatic training approach. We evaluated our CIrrMap250 maps using ~20,000 20 

reference samples, high-resolution irrigation water withdrawal data, and existing local to nationwide maps. Our CIrrMap250 

maps demonstrated an overall accuracy of 0.79-0.88 for the years 2000, 2010, and 2020, and outperformed currently available 

maps. The CIrrMap250-estimated irrigation area explained 50-60% of the variance in irrigation water withdrawal across China. 

CIrrMap250 revealed that China’s irrigation area has increased by about 180,000 km2 (or 25%) from 2000 to 2020, with the 

majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress. Moreover, our product 25 

unveiled a noticeable northward shift of China’s irrigation area, attributed to substantial expansions in irrigated cropland across 

Northeast and Northwest China. The accurate representation of irrigation extent in CIrrMap250 will greatly support 

hydrologic, agricultural, and climate studies in China, aiding in improved water and land resources management. 
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1 Introduction 

Irrigation is increasingly important as an adaption strategy to climate change (Zaveri and B. Lobell, 2019; Bhattarai et al., 30 

2023) and plays a vital role in ensuring food security by reducing both water and heat stresses of crops (Zhu and Burney, 2022; 

Zhu et al., 2022). Covering 20% of global croplands, irrigated agriculture contributes to 40% of global food production (Unesco 

World Water Assessment Programme, 2019). However, it uses 60-70% of total freshwater withdrawals and 80-90% of 

consumptive water uses (Qin et al., 2022; Wu et al., 2022). The extensive use of irrigation water use intensifies water 

management and drives myriad Earth system and environmental impacts (Mcdermid et al., 2021; Mcdermid et al., 2023). 35 

These impacts include changes in hydroclimatic and biogeochemical cycling (Kang and Eltahir, 2018; Mishra et al., 2020; 

Thiery et al., 2020; Guo and Zhou, 2022; Yang et al., 2023), depletion of aquifers and surface water bodies (Cheng et al., 2014; 

Noori et al., 2021), freshwater salinization (Thorslund et al., 2021), and landslides (Lacroix et al., 2020). Given the vital 

importance of irrigation, knowing its precise location and dynamics is essential.  However, this proves challenging due to the 

hidden nature of irrigation signals and the frequent confusion between irrigated and rainfed fields (Ozdogan and Gutman, 40 

2008; Zhang et al., 2022d; Chen et al., 2023).  

 Remote sensing provides significant opportunities for cost-effective and spatially explicit mapping of land surfaces 

(Potapov et al., 2021). Over the past decade, there has been growing interest in using Earth observations to map irrigation 

extent (Massari et al., 2021). The existing remote sensing methods for irrigation mapping are generally based on three 

indicators: vegetation greenness, soil moisture, and integrated vegetation-soil moisture. Vegetation indices derived from 45 

optical sensors, such as the normalized difference vegetation index (NDVI) (Rouse et al., 1974), green index (GI) (Gitelson, 

2005), and normalized difference water index (NDWI) (Gao, 1996; Mcfeeters, 1996), have been widely employed to detect 

irrigated areas based on the underlying fact that irrigated fields typically exhibit higher productivity and greenness compared 

to adjacent rainfed ones, especially under drought conditions. Techniques used include threshold splitting (Ozdogan et al., 

2010; Zhu et al., 2014; Esmaeili et al., 2023; Wang et al., 2023), spectral matching (Ozdogan and Gutman, 2008; Lu et al., 50 

2021), decision trees (Ozdogan and Gutman, 2008; Shahriar Pervez et al., 2014; Ambika et al., 2016; Xiong et al., 2017), and 

supervised classification (Deines et al., 2017; Deines et al., 2019; Xie et al., 2019).  The soil moisture-based approach utilizes 

remotely sensed soil moisture signals from microwave and optical sensors to detect irrigated areas by using similar techniques 

like threshold splitting (Yao et al., 2022) and supervised/unsupervised classification (Gao et al., 2018; Dari et al., 2021). The 

rationale behind this approach is that irrigation alters soil moisture, leading to distinct spatiotemporal dynamics compared to 55 

adjacent rainfed areas. The vegetation-soil moisture integration approach combines vegetation indices with soil moisture for 

irrigation detection. This approach has gained attention and achieved success in recent years (Pun et al., 2017; Elwan et al., 

2022; Longo-Minnolo et al., 2022; Zuo et al., 2023), leveraging the strengths of both vegetation- and soil moisture-based 

methods for more accurate irrigation mapping.  

 Despite significant advancements, broad-scale mapping of irrigated areas (e.g., national and global levels) remains 60 

challenging due to substantial variations in irrigation practices, landscapes, and climatic characteristics (Salmon et al., 2015; 
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Zhang et al., 2022d). This challenge is further compounded by the lack of sufficient ground reference data (Xie et al., 2019; 

Xie and Lark, 2021). Consequently, high-quality irrigation maps are still missing in most countries (Chen et al., 2023; Mpakairi 

et al., 2023). In recent years, researchers have sought to address the challenges of large-scale irrigation mapping by integrating 

remote sensing data, agricultural statistics, existing irrigation maps, and other relevant datasets such as irrigation suitability 65 

(Meier et al., 2018; Xie et al., 2021; Zhang et al., 2022a; Zhang et al., 2022d). They have successfully generated new irrigation 

maps at the global and national scales, featuring higher spatial resolution and mapping accuracy compared to existing products. 

These efforts underscore the great potential of multisource data-fusion techniques for large-scale irrigation mapping.  

 China is a big agricultural country with the largest irrigated area in the world (International Commission on Irrigation 

and Drainage, 2018). With only 8% of the world’s cropland, China feeds 20% of the global population and has a tight 70 

connection with the food supply chain of other nations. Therefore, developing reliable maps of irrigated cropland is particularly 

important for sustainable food production in China. Despite this, less attention has been devoted to mapping irrigated areas in 

China compared to other countries with extensive irrigation, such as the United States and India (Zhu et al., 2014; Zhang et 

al., 2022d). It is only in recent years that maps of irrigated cropland specifically tailored for China have emerged, facilitated 

by the integration of multisource data, including remote sensing, reported statistics, and existing land use/cover maps (Xiang 75 

et al., 2020; Bai et al., 2022; Zhang et al., 2022b; Zhang et al., 2022c; Zhang et al., 2022d).  

 While previous studies have considerably improved our understanding of the spatial distribution of irrigated cropland 

in China, limitations remain. First, few studies have provided annual irrigation maps, hindering spatiotemporal analysis of 

China’s irrigated areas. As a result, it remains unclear where the changes in irrigation area are water-sustainable (e.g., irrigation 

expansion in places without water stress) (Mehta et al., 2024). Second, irrigation area data from official statistical bureaus, 80 

collected through field-sampling surveys and bottom-up aggregation, have been extensively utilized to constrain the overall 

extent of irrigated cropland in previous studies. Besides statistical data, the National Land Surveys conducted by the State 

Council of China also provide estimates on irrigated cropland acreage. The surveys involve many investigators and rely on 

high-resolution satellite remote sensing imagery and advanced survey techniques (Chen et al., 2022). Harmonizing irrigation 

statistics with the National Land Surveys could potentially help to reduce biases and uncertainties in each data source (Yu et 85 

al., 2021), but this has rarely been taken into account. Third, the majority of farms in China are small and fragmented, with the 

average farmland size being smaller than a hectare (Teluguntla et al., 2018). This leads to the widespread presence of mixed 

pixels where cropland and other land use/cover types coexist. However, in most previous studies, binary cropland masks were 

used for irrigation mapping. These masks assign each pixel as either cropland or non-cropland, neglecting the fractional 

coverage of cropland within coarse-resolution pixels. This may lead to overestimation or underestimation of irrigation extent. 90 

Finally, it is worth noting that, apart from Zhang et al. (2022a), many studies assessed their irrigation maps with a limited 

number of reference samples, potentially compromising the reliability of their evaluation results (Zhu et al., 2014; Xiang et 

al., 2020; Bai et al., 2022; Zhang et al., 2022d). Obtaining sufficient reference samples is crucial for robust evaluations of 

national-scale irrigated cropland maps, a task that is, however, challenging due to the substantial cost and time involved.  
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 Building on our previous work (Zhang et al., 2022d; Zhang et al., 2024), this study aims to bridge these gaps and 95 

create new annual maps of irrigated cropland in China (2000-2020) by integrating remote sensing data (i.e., vegetation indices, 

hybrid cropland maps, and paddy field maps), reported statistics and surveys, and an irrigation suitability map. The newly 

developed maps (CIrrMap250) feature a spatial resolution of 250 meters at an annual frequency from 2000 to 2020. Our maps 

show the percentage of each 250 m by 250 m pixel that is covered by irrigated cropland (i.e., pixel value = irrigated area / 

pixel area ×100). Other objectives of this study are: (i) assessing the accuracy of CIrrMap250 using ~20,000 reference samples 100 

and high-resolution irrigation water withdrawal data; (ii) comparing the performance of CIrrMap250 with four existing local 

to nationwide irrigation maps, including IrriMap_CN (Zhang et al., 2022a), IAAA (Siddiqui et al., 2016), GFSAD (Thenkabail 

et al., 2016), and OPTRAM30 (Yao et al., 2022); and (iii) investigating the spatiotemporal dynamics of China’s irrigation 

extent and quantifying the water sustainability of changes in irrigated area.  

 105 

2 Data acquisition and processing 

2.1 Remote sensing data 

We collected the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 vegetation indices, i.e., NDVI 

and Enhanced Vegetation Index (EVI) (Huete et al., 1997), from the NASA’s Earth Science Data Systems 

(https://www.earthdata.nasa.gov/). These indices are generated every 16 days with a 250 m spatial resolution. Meanwhile, the 110 

MODIS band 4 (545-565 nm) surface reflectance from the MOD09A1 product was used and resampled from the original 500 

m to 250 m using the nearest neighbor interpolation method (Debeurs and Townsend, 2008). The resampled data were then 

used together with the 250-m and 8-day band 1 (620-670 nm) surface reflectance from MOD09Q1 to derive the Greenness 

Index (GI) (Supplementary Table S1). We extracted MODIS data for all cropland pixels in China, using only high-quality data 

on cloud- and snow/ice-free pixels (Hilker et al., 2012). Low-quality MODIS data were excluded based on the quality band 115 

and were interpolated using high-quality data from the nearest neighboring cropland pixels.  

 We created a new 30 m resolution hybrid cropland product for China (CCropLand30) by fusing state-of-the-art remote 

sensing land use/cover products with the latest national land surveys (Zhang et al., 2024). CCropLand30 was generated at a 5-

year interval from 2000 to 2020 and exhibited a higher accuracy compared to existing products (Zhang et al., 2024). Building 

upon CCropLand30, we developed 250 m resolution cropland layers for the years 2000, 2005, 2010, 2015, and 2020, which 120 

show the cropland proportion within each 250 m grid. Additionally, we extracted paddy fields from China’s Land-use/cover 

dataset (CLUD) for the years 2000, 2005, 2010, 2015 and 2020 (Liu et al., 2014; Xu et al., 2018). Paddy fields, which include 

cultivated land where rice and lotus roots are grown and supported by water and irrigation facilities, were considered as part 

of irrigated cropland with high confidence (Zhang et al., 2022c). 

 125 

https://www.earthdata.nasa.gov/
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2.2 Irrigation statistics and surveys 

2.2.1 Harmonization of irrigation statistics and surveys 

We collected annual irrigation area data (2000-2020) from various statistical yearbooks provided by the National Bureau of 

Statistics of China and local statistical bureaus. These yearbooks include the Provincial Statistical Yearbook, the Rural 

Statistical Yearbook, the China Statistical Yearbook for Regional Economy, and the China Water Statistical Yearbook. The 130 

data were sourced from the China Economic and Social Big Data Research Platform (https://data.cnki.net/). We compiled 

county-level irrigation data for over 80% of provinces and prefecture-level data for the rest (Zhang et al., 2022d), which provide 

more irrigation information for China than earlier studies (Zhu et al., 2014; Xiang et al., 2020; Zhang et al., 2022b).  

  In addition to statistical data, we utilized land survey data to obtain more detailed and reliable information on irrigated 

areas for select years. Currently, China has conducted three rounds of National Land Surveys in 1980s, 2010 and 2020, 135 

respectively. The surveys engaged a significant number of surveyors and utilized high-resolution satellite remote sensing 

imagery, along with advanced survey techniques like mobile internet, cloud computing, and drones (Chen et al., 2022). Due 

to national security concerns, the land survey maps were not publicly available. However, the Ministry of Natural Resource 

recently released county-level survey results of the second and third National Land Surveys, including data on cropland and 

its sub-categories (dryland, irrigated land, and paddy field) (https://www.mnr.gov.cn/). Within the dataset, the surveyed 140 

irrigated land and paddy field reflects the extent of irrigated cropland, covering the periods 2009-2016 and 2019-2022. For the 

years with survey data, irrigation statistics were harmonized with the survey data at the county scale using Eq. 1. The data 

harmonization was based on two assumptions: (1) the maximum value between statistical and surveyed irrigation area should 

be more reliable, and (2) irrigation area should be smaller than the total cropland area. The first assumption accounts for the 

underestimation tendency of both statistical and survey data due to possible insufficient and representative field sampling 145 

(Zhang et al., 2022a) and the prevalence of fragmented and small crop fields (Teluguntla et al., 2018). Alternative 

harmonization methods, such as mean and minimum values, were also tested but performed worse than the maximum 

harmonization approach. For years without survey data, the irrigation area was estimated by adjusting the harmonized data 

from adjacent survey years using relative change information derived from the irrigation statistics (Eq. 2). This method 

preserved the interannual changes observed in statistical irrigation area while enhancing data consistency across years.   150 

 Aℎ𝑎𝑟𝑚
𝑡𝑠 = 𝑚𝑖𝑛(𝑚𝑎𝑥(A𝑠𝑡𝑎𝑡

𝑡𝑠 , A𝑠𝑢𝑟𝑣
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )  (1) 

 Aℎ𝑎𝑟𝑚
𝑡2 = 𝑚𝑖𝑛⁡(Aℎ𝑎𝑟𝑚

𝑡𝑠 × (1 +
A𝑠𝑡𝑎𝑡
𝑡2 −A𝑠𝑡𝑎𝑡

𝑡𝑠

A𝑠𝑡𝑎𝑡
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )   (2) 

where 𝐴ℎ𝑎𝑟𝑚⁡ , 𝐴𝑠𝑡𝑎𝑠⁡ and 𝐴𝑠𝑢𝑟𝑣⁡ represent the harmonized, statistical and surveyed irrigation area, respectively; 𝐶𝐴  is the 

surveyed area of cropland; and 𝑡𝑠 and 𝑡2⁡indicate the year with and without land surveys, respectively.  

 155 

https://data.cnki.net/
https://www.mnr.gov.cn/
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2.2.2 Reconciliation between statistical/survey data and remote sensing data 

Cropland area statistics and survey data are inherently incompatible with remote sensing data due to different measurement 

techniques. While statistical and survey data measure the net area of cropland, remote sensing data represents the gross area 

of cropland, including subpixel, non-cropland features such as field ridges, linear elements, and scattered features like roads, 

ponds, and rural houses (Zhang et al., 2024). As a result, statistical and surveyed cropland areas exhibit a negative  and 160 

systematic bias compared to those derived from remote sensing data (Zhang et al., 2021; Zhang et al., 2022d). Similarly, as a 

subset of cropland, irrigated cropland is also reported as a net area in statistics and surveys that is different from remote sensing 

data. Directly using the statistical or surveyed irrigation acreage to constrain remote sensing-based irrigated cropland would 

likely result in underestimating irrigation extent (Schepaschenko et al., 2015). To address this discrepancy, we adjusted the 

harmonized irrigation area (Section 2.2.1) to reconcile the statistical and survey data with remote sensing data, as shown in Eq. 165 

3. This adjustment was performed based on the assumption that the proportion of irrigated cropland remains consistent in the 

statistical/survey data and the remote sensing-derived maps. For instance, if statistical or survey data indicates that 99% of the 

cropland in a given county is irrigated, the remote sensing-derived irrigation proportion should also be approximately 99%.  

 A𝑟𝑒𝑐𝑜𝑛
𝑡 = Aℎ𝑎𝑟𝑚

𝑡 ×
CA𝑅𝑆

𝑡

CA𝑠𝑢𝑟𝑣
𝑡    (3) 

where A𝑟𝑒𝑐𝑜𝑛
𝑡  and Aℎ𝑎𝑟𝑚

𝑡 ⁡are the reconciled and harmonized irrigation area, respectively, for the year t; CA𝑅𝑆
𝑡  is the remote 170 

sensing-derived cropland area estimated from our hybrid cropland product (Zhang et al., 2024); CA𝑠𝑢𝑟𝑣
𝑡  is the surveyed 

cropland area; CA𝑅𝑆
𝑡 /CA𝑠𝑢𝑟𝑣

𝑡 denotes the bias ratio of remote sensing-derived cropland area relative to surveys. This ratio was 

estimated for each county and constrained to the median value of all counties in its agricultural zones (Zhang et al., 2022c) to 

exclude extreme bias ratios and to ensure a conservative adjustment. In years lacking survey data, the bias ratio was estimated 

using a straightforward nearest-neighbor interpolation method.   175 

 

2.3 Auxiliary data 

This study utilized various auxiliary datasets (Supplementary Table S2), including meteorological and environmental 

variables, irrigation water withdrawal, water scarcity index, and administrative boundaries. Daily meteorological observations 

such as precipitation, relative humidity, air temperature and pressure were collected from approximately 2400 meteorological 180 

stations across China, provided by the National Meteorological Information Center (NMIC, http://data.cma.cn/). These datasets 

were combined with the MCD43A3 albedo product to compute daily potential evapotranspiration (PET) using the Priestley-

Taylor method (Priestley and Taylor, 1972). The daily PET values were aggregated to annual values for the period from 2000 

to 2020, which were then used to derive the aridity index, defined as the ratio of precipitation to PET. The environmental 

variables included elevation, slope, cropping intensity, soil type, and distance to water bodies. Elevation data was sourced from 185 

the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), and the slope map was generated from the 

http://data.cma.cn/
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SRTM DEM data using the slope function in ArcGIS. The distance to water bodies was calculated based on the spatial 

distribution of water bodies (rivers, lakes, reservoirs, canals, and ponds) using the Euclidean distance tool in ArcGIS. The 

above auxiliary data were partly obtained from the National Tibetan Plateau (https://data.tpdc.ac.cn/) and the remaining from 

the Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx).  190 

 Additionally, the prefecture-level irrigation water withdrawal data for 2009-2011 and 2018-2020 were compiled from 

provincial water resources departments and local statistical bureaus. The prefecture-level data on water scarcity index (WSI) 

for 2010-2020 were extracted from our previous study (Zhang et al., 2023b). WSI is defined as the ratio of total water use to 

water availability, as shown in Supplementary Table S2. Total water use encompasses both groundwater and surface water 

withdrawals for irrigation, industry, domestic purposes, forestry, livestock, and fishery. Water availability refers to the total 195 

surface water and groundwater generated by precipitation.  

3 Methodology 

In this study, we created annual maps of irrigated cropland in China by integrating multisource data through a semi-automatic 

training approach (Xie et al., 2019; Zhang et al., 2022d). After acquiring and processing the data, our methodology started 

with the creation of training samples, as depicted in Figure 1. This step involves three major processes: (i) generating 200 

intermediate irrigation maps through a threshold-calibration method; (ii) establishing a training pool (i.e., potential training 

data) via overlay analysis of the intermediate maps; and (iii) generating training samples through random sampling from the 

training pool. Using these training samples, we classified irrigated and rainfed cropland in each county annually using the 

random forest algorithm (Breiman, 2001). The resulting county-level maps were then mosaicked and post-processed to produce 

the annual maps of irrigated cropland in China, referred to as CIrrMap250. Subsequently, we evaluated the accuracy of 205 

CIrrMap250 and compared it with existing products. Finally, we examined the spatiotemporal changes in irrigated croplands 

and quantified the water sustainability of irrigation expansion by relating them with water stress areas.  

file:///P:/Work_2023/IrrMap/IrrMap_manuscript/(https:/data.tpdc.ac.cn/
https://www.resdc.cn/Default.aspx
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Figure 1.  Workflow of this study 

 210 

3.1 Generation of training samples  

We applied a threshold-calibration method to automatically generate the training pool, following previous studies by Xie et al. 

(2019; 2021) and Zhang et al. (2022d). With this method, cropland pixels with annual peak vegetation greenness exceeding an 

optimized threshold were classified as “irrigated”. The threshold was individually calibrated for each county and year using 

available irrigation statistics and surveys. Based on the calculated optimized thresholds, intermediate irrigation maps were 215 

generated at the county level. Pixels consistently classified as “irrigated” in all intermediate maps were identified as irrigation 

candidates, while those classified as “non-irrigated” were considered potential non-irrigated samples. 
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 In this study, we first calculated the peak values of vegetation indices (NDVI, EVI, and GI) for cropland grids in each 

year and adjusted them by irrigation suitability. A static irrigation suitability map was created based on elevation, slope, and 

aridity index of cropland. These factors play a crucial role in shaping the spatial distribution of irrigated cropland in China, as 220 

demonstrated by Liu et al. (2022). Cropland areas characterized by lower elevation, gentler slopes, and higher aridity indices 

were hypothesized to exhibit greater irrigation suitability and potential, in line with previous studies (Worqlul et al., 2015; 

Worqlul et al., 2017; Li and Chen, 2020; Zhang et al., 2022d). Specifically, the irrigation suitability map was derived by 

combining irrigation suitability values of elevation, slope, and aridity index, as in Eq. 4. 

  𝑆𝑖,𝑗,𝑘 =
1

4
𝑤1,𝑘𝑆𝐸𝑙𝑒𝑣𝑖,𝑗 +

1

4
𝑤2,𝑘𝑆𝑆𝑙𝑜𝑝𝑒𝑖,𝑗 +

1

10
𝑤3,𝑘𝑆𝐴𝑟𝑖𝑑𝑖,𝑗  (4) 225 

where Si,j,k is the irrigation suitability for cropland cell i in county j of province k; w is the weight of the influencing factors, 

which was determined through a trial-and-error procedure; SElev, SSlope, and SArid are the irrigation suitability values of 

elevation, slope, and aridity index, respectively (Supplementary Table S3). The peak vegetation index was subsequently 

adjusted by irrigation suitability (Eq. 5), with the assumption that irrigated cropland, being greener and more productive, is 

also more suitable for irrigation compared to rainfed cropland. 230 

 𝑆𝑉𝐼𝑖,𝑗,𝑘
𝑡 = 𝑆𝑖,𝑗,𝑘 × 𝑃𝑒𝑎𝑘⁡(𝑉𝐼𝑖,𝑗,𝑘

𝑔,𝑡
)  (5) 

where SVI denotes the irrigation suitability-adjusted peak vegetation index; VI denotes the vegetation index value; g and t 

represent the growth period and year, respectively.  

 We then generated three intermediate irrigation maps annually from 2000 to 2020 utilizing the SVI (i.e., irrigation 

suitability-adjusted peak NDVI, EVI, and GI) and the paddy field maps. This was achieved through a threshold splitting method 235 

(Pervez and Brown, 2010; Zhu et al., 2014; Meier et al., 2018). Specifically, the SVI values for all cropland pixels within each 

county were ranked in a descending order, and the cumulative irrigated area was sequentially calculated. The accumulated area 

was then compared with the reconciled irrigation area. The SVI value at which the cumulative irrigated area closely matched 

the reconciled irrigated area was identified as the optimal threshold. Notably, for paddy fields, the SVI value was set to the 

maximum SVI among croplands within a county, prioritizing these areas as “irrigated”. The cropland grids were finally 240 

classified into “irrigated” and “rainfed” categories using Eq. 6.  

 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑖,𝑗,𝑘 = {
𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑𝑖,𝑗,𝑘

𝑡 ⁡⁡⁡⁡⁡⁡𝑆𝑉𝐼𝑖,𝑗,𝑘
𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗,𝑘

𝑡

𝑟𝑎𝑖𝑛𝑓𝑒𝑑𝑖,𝑗,𝑘
𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑆𝑉𝐼𝑖,𝑗,𝑘

𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗,𝑘
𝑡   (6) 

 The intermediate irrigation maps were finally overlaid to identify pixels consistently classified as irrigated or rainfed 

cropland across these maps. These pixels were designated as potential training samples, forming the training pool for each 

county and year. From the training pool, we randomly selected 200 rainfed pixels and 200 irrigated pixels to train the random 245 

forest model. This selection ensures a balance between the need for an adequate number of samples and the computational 

efficiency of the classification algorithm (Xie et al., 2019; Zhang et al., 2022d). 
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3.2 Classification of irrigated cropland using random forest 

We employed the random forest algorithm (Breiman, 2001) to classify irrigated and rainfed cropland using the random samples 250 

extracted from the training pool. The hyperparameters of our model were optimized through a trial-and-error process, including 

the number of trees, the minimum number of observations per node, and the number of variables randomly sampled at each 

decision split (Supplementary Table S4). The input features of our model encompassed both time-varying variables (i.e., 

vegetation indices, precipitation, temperature, PET, and aridity index) and stable environmental variables (i.e., latitude, 

longitude, cropping intensity, elevation, distance to water bodies, slope, and soil type). The classification was conducted 255 

independently for each county per year from 2000 to 2020. After that, we merged the annual, county-level mapping results to 

generate preliminary binary irrigation maps in China (i.e., 1 for “irrigated” and 0 for “non-irrigated”).  

 We then employed a spatial filtering to remove isolated irrigation pixels and identify potentially omitted irrigated 

croplands. Specifically, we first calculated the irrigation proportion within a 7×7-pixel window for each preliminary irrigation 

pixel. Then, all cropland pixels within the moving window were assigned as “non-irrigated” if the calculated ratio fell below 260 

5%. Conversely, if the ratio exceeded 95%, we assumed all cropland pixels within the moving window to be irrigated. The 

spatial filtering operation preserved the original spatial resolution of the maps (250 m).  

 Finally, we multiplied the binary, spatially filtered irrigation maps by their corresponding cropland mask layers to 

generate annual irrigation maps for China. The final product, CIrrMap250, represents the percentage of a 250 m pixel covered 

by irrigated croplands (i.e., pixel value = irrigated area / pixel area ×100). Unlike simple binary maps, our product considers 265 

the fractional coverage of croplands within coarse-resolution MODIS pixels, thereby enhancing the accuracy of irrigation area 

estimates in China, where farms are typically small and fragmented.  

 

3.3 Accuracy assessment and inter-comparison 

3.3.1 Assessment with reference points 270 

We assessed the accuracy of CIrrMap250 using three independent sets of validation samples. The first validation dataset was 

for the year 2000 (Figure 2a), obtained from Zhu et al. (2014), primarily derived from the crop growth and soil moisture dataset 

provided by the China Meteorological Data Sharing Service System (https://data.cma.cn/). The second validation dataset, for 

the year 2020 (Figure 2c), was acquired from Chen et al. (2023) that showed the global location of center pivot irrigation 

systems (CPIS). We extracted the CPIS polygons across China (mainly distributed in the Northern China) and compared with 275 

our product. In addition, we retrieved the validation samples for the year circa 2010 (Figure 2b) from the provincial land-use 

maps of China’s second National Land Survey (https://www.mnr.gov.cn/). We georeferenced these land use maps using the 

georeferencing tool in ArcGIS. A total of 234 control points were selected from high-resolution images and provincial 

administrative boundaries for the georeferencing process (Supplementary Figure S1). The irrigation samples were randomly 

extracted from irrigated lands and paddy fields, while non-irrigated samples were taken from dryland patches. As shown in 280 

https://data.cma.cn/
https://www.mnr.gov.cn/
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Figure 2d, we totally obtained 20,720 reference samples. The performance of CIrrMap250 was evaluated quantitively using 

the overall accuracy (OA), F1-score, producer’s accuracy (PA), and user’s accuracy (UA) (Supplementary Table S5).  

 

Figure 2. Spatial distribution of validation samples. a, Spatial distribution of the third-party samples in 2000. b, Spatial 

distribution of the samples in 2010 retrieved from provincial land-use maps of China’s second National Land Survey. c, Spatial 285 

distribution of the third-party samples in 2020. d, Numbers of irrigated and non-irrigated samples for different years.  

 

3.3.2 Assessment with irrigation water withdrawal data 

We further assessed the performance of CIrrMap250 by comparing its irrigation area with prefecture-level irrigation water 

withdrawal for the years circa 2010 and 2020. Since irrigated area is a dominate driver of irrigation water withdrawal (Lamb 290 

et al., 2021; Puy et al., 2021), irrigation water withdrawal can indirectly evaluate the accuracy of irrigation maps (Zhang et al., 

2022a). High-accuracy irrigation maps are expected to better explain the variations in irrigation water withdrawal compared 
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to low-accuracy maps. The explanatory power of the irrigation area estimates was assessed by the coefficient of determination 

(R²) from a linear regression model fitted to the irrigation water withdrawal data using the least squares method.  

 295 

3.3.3 Comparison with existing products 

We evaluated CIrrMap250 using three existing irrigation maps covering the entire China, including IrriMap_CN (Zhang et al., 

2022a), IAAA (Siddiqui et al., 2016), and GFSAD (Thenkabail et al., 2016). IrriMap_CN provides annual irrigation maps 

across China for the years from 2000 to 2019 at a 500 m resolution, which was developed using MODIS data and machine 

learning  (Zhang et al., 2022a). The IAAA irrigation maps cover Asia and Africa for the years 2000 and 2010 at a 500 m 300 

resolution. These maps were created based on seasonal vegetation variations captured in MODIS data (Siddiqui et al., 2016). 

The 2010 global irrigation map, GFSAD, has the spatial resolution of 1000 m and was generated by overlaying dominant crops 

with remote sensing-derived irrigated and rainfed cropland map (Thenkabail et al., 2016).  

 Additionally, we evaluated our maps for the Hexi Corridor using a field-scale irrigation map specifically created for 

the region (Yao et al., 2022). The map, OPTRAM30, has a 30 m resolution and demonstrates an accuracy close to 100% when 305 

validated against in situ datasets. In addition to assessing CIrrMap250, we also evaluated IrriMap_CN, IAAA, and GFSAD 

using OPTRAM30.  

 

3.4 Irrigation area change and its correlation with water stress areas 

We examined the irrigation trends in a spatially explicit manner using our new irrigation maps from 2000 to 2020. The trends 310 

were quantified as the slope of the regression line fitted to the time-series irrigation data at the pixel scale using the least 

squares method. Furthermore, we adopted the concept of “center of gravity” to track the spatial dynamics of irrigated areas 

(Zeng and Ren, 2022). The gravity center of irrigated area (X, Y) is represented as: 

  𝑋𝑡 =
∑ 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖

𝑡×𝑥𝑖
𝑛
𝑖=1

𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡   (7) 

 𝑌𝑡 =
∑ 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖

𝑡×𝑦𝑖
𝑛
𝑖=1

𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡  (8) 315 

where 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡  denotes the irrigated area in grid i; xi and yi are the longitude and latitude of grid i, respectively; n is the 

number of irrigated cropland grids; and t is year. 

 In addition, we quantified water sustainability of irrigation changes across China. To do so, we first identified the 

expansion and decline in irrigated areas between 2000 and 2020 at a 5 km resolution, following previous studies (Deines et 

al., 2019; Xie and Lark, 2021). Subsequently, we compared the changes with a prefecture-level water stress map derived from 320 

the mean values of WSI over the period 2010-2020. WSI denotes the fraction of available water resources appropriated by 

humans and is employed to categorize water stress into four levels: low (WSI ≤ 0.2), moderate (0.2 < WSI ≤0.4), severe (0.4 
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< WSI ≤ 1.0), and extreme (WSI > 1) (Zhang et al., 2023b). Irrigation expansion under severe to extreme water stress was 

designated as “unsustainable” due to the potential of exacerbating depletion of surface water and groundwater (Mehta et al., 

2024). Conversely, the expansion of irrigation under low to moderate water stress, or the shrinkage of irrigation under severe 325 

to extreme stress, was deemed “sustainable”.   

4 Results  

4.1 Accuracy assessment  

4.1.1 Pixel-scale assessment  

As shown in Figure 3 and Supplementary Table S6, CIrrMap250 attains an OA and F1-score of 0.79 and 0.78, respectively, 330 

for the year 2000, surpassing the performance of IrriMap_CN and IAAA. In the year 2010, CIrrMap250 achieves a high OA 

of 0.79 and a F1-score of 0.71, whereas the existing maps attain OA values below 0.66 and F1 scores under 0.63. For the year 

2020, CIrrMap250 detects 88% of center pivot irrigated fields, while IrriMap_CN identifies only 20% (Figure 3c and 

Supplementary Figure S2). Note that both CIrrMap250 and IrriMap_CN achieves a perfect user’s accuracy for the irrigation 

class in 2020 because all the reference points are irrigated samples (Section 3.31 and Supplementary Table S7). For irrigated 335 

samples, CIrrMap250 has significantly higher producer’s accuracy in 2000, 2010, and 2020, compared to the existing products. 

CIrrMap250 and IrriMap_CN performs similarly in user’s accuracy. For non-irrigated samples, the producer’s accuracy of 

CIrrMap250 is slightly lower than that of IrriMap_CN, but the user’s accuracy is significantly higher than that of IrriMap_CN. 

In terms of producer’s accuracy and user’s accuracy, both CIrrMap250 and IrriMap_CN outperform IAAA and GFSAD. 
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 340 

Figure 3. Performance of CIrrMap250 and existing irrigation maps (IrriMap_CN, IAAA, GFSAD). Panels a, b and c 

show the results for 2000, 2010, and 2020, respectively. OA, PU, and UA represent overall accuracy, producer’s accuracy, and 

user’s accuracy, respectively. Irr and NIrr indicate irrigated and non-irrigated samples, respectively. 
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4.1.2 Nationwide and regional comparison with existing products 345 

Figure 4 shows the spatial distribution of irrigated cropland from different maps. At the national scale, CIrrMap250 and 

IrriMap_CN, specifically developed for China, capture similar irrigation patterns. They both show some irrigation hotspots 

(e.g., North China Plain and Northwest China) and well-known irrigation districts like Hetao, Baojixia, Dujiangyan, 

Qingtongxia, and Fenhe. However, CIrrMap250 shows more widespread irrigation than IrriMap_CN in most areas of China 

(Supplementary Figure S3). IrriMap_CN estimates irrigation proportion (i.e., the ratio of irrigated cropland area to total 350 

cropland area) to be 0.47, 0.37, and 0.61 for China, Northern China, and Xinjiang Uygur Autonomous Region, respectively 

(Supplementary Figure S4). In comparison, the values derived from CIrrMap250 are 0.58, 0.70, and 0.96, respectively, which 

align more closely with the official reports (https://gtdc.mnr.gov.cn/). Nevertheless, CIrrMap250 tends to yield lower estimates 

of irrigation area in Northeast China (NEC) when compared to IrriMap_CN, possibly due to inaccurate statistical and survey 

data in this region. In contrast to CIrrMap250 and IrriMap_CN, IAAA notably underestimates irrigated croplands in Northwest 355 

China (NWC) and North China (NC), but overestimates in NEC and Southwest China (SWC). This could be explained by the 

fact that IAAA was developed using unsupervised classification (Siddiqui et al., 2016), limiting its ability to characterize the 

spatial heterogeneity of irrigation in China (Tian et al., 2024). GFSAD shows overestimations of irrigated area in the 

Dujiangyan district and the North China Plain but exhibits evident omission errors in sparsely distributed irrigation regions 

like NWC and South China (SC). The large bias of GFSAD is understandable, as it is not an irrigation-specific product and 360 

only covers five irrigated crops (Thenkabail et al., 2016; Xie et al., 2021).   

https://gtdc.mnr.gov.cn/
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Figure 4. Spatial distribution of irrigated cropland from different maps for the year 2010. NEC, NC, NWC, SWC, SC 

and CSC represent Northeast China, North China, Northwest China, Southwest China, South China, and Central South China, 

respectively.  365 

 We further compared CIrrMap250 with existing maps in four heavily irrigated zones (A-D locations are shown in 

Figure 4a). Zones A and B are situated in arid regions where crop growth is not possible without irrigation, while zones C and 

D are in humid regions where paddy rice is widespread and relies heavily on supplemental irrigation. As shown in Figure 5, 

CIrrMap250 accurately portrays the actual distribution of irrigated cropland in these zones. In contrast, IrriMap_CN 

underestimates irrigation extent in zones A and B and lacks detailed information in zones C and D. IAAA significantly 370 

underestimates irrigation area in zone A, incorrectly identifies in zone B, and overestimates irrigated cropland in region C. The 

GFSAD product, with a relatively coarse resolution of 1 km, shows the lowest agreement with other maps.  
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Figure 5. Visual comparison of CIrrMap250 with existing maps. The five rows from top to bottom correspond to the 

Google map, CIrrMap250, IrriMap_CN, IAAA and GFSAD, respectively. Locations of the four selected zones are presented 375 

in Figure 4a.  

 When examining in the Hexi Corridor (Figure 6), CIrrMap250 exhibits a high agreement with OPTRAM30. While 

IrriMap_CN captures the general patterns, it tends to underestimate the overall irrigation extent, as demonstrated in zones Ⅰ 
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and Ⅱ of the region (Figure 6d). The IAAA product struggles to identify irrigated cropland in this area, displaying significant 

omission and commission errors. Similarly, GFSAD has a limited ability to accurately depict irrigated areas in the Hexi 380 

Corridor.  

 

Figure 6. Comparison of large-scale irrigation maps with the field-scale remote sensing irrigation map (OPTRAM30) 

in the Hexi Corridor of Northwest China. Panels a, b, c, e, and f depict the distribution of irrigated cropland in OPTRAM30, 

CIrrMap250, IAAA, IrriMap_CN, and GFSAD, respectively. Panel d shows the comparisons of CIrrMap250 and IrriMap_CN 385 

with OPTRAM30 in two local zones.  

 

4.1.3 Comparison with irrigation water use data  

As illustrated in Figure 7, the CIrrMap250-estimated irrigation areas exhibit a notable correlation with irrigation water 

withdrawals. Irrigation area changes derived from CIrrMap250 account for approximately 50% and 60% of the variance in 390 

irrigation water withdrawals circa 2010 and 2020, respectively. In contrast, variations in irrigated area obtained from 

IrriMap_CN can only explain 40% and 48% of the variance in irrigation water withdrawals for 2010 and 2020, respectively. 

As shown in Figures 7c and f, the irrigated area estimates from the other two maps (i.e., IAAA and GFSAD) demonstrate 

limited explanatory power, explaining only 12% and 20% of the variation in irrigation withdrawals for the year 2010. These 

results indirectly imply a superior performance of CIrrMap250 over existing maps.  395 
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Figure 7. Scatterplots of irrigation water withdrawals against irrigated area estimates from different products for the 

years circa 2010 and 2020. The data are presented in logarithmic units to reflect both small and large values.   

 

4.2 Spatiotemporal changes of irrigated croplands 400 

As depicted in Figure 8, our CIrrMap250 revealed that irrigation area expanded significantly in NEC and NWC from 2000 to 

2020. Conversely, notable decreases in irrigated areas were identified in the northern parts of SC and CSC, the northeastern 

part of SWC, and the southern parts of CSC and NC. The decline in irrigated areas tended to be concentrated in populous 

areas, attributed to the rapid urban expansion on cropland (Zhang et al., 2024). The gravity center of irrigation was situated on 

the border of NC and CSC, and exhibited a noticeable northward shift during the study period. This northward trend is likely 405 

to exacerbate the water crisis in Northern China (Li et al., 2023), which has only 20% of China’s water resources but supports 

more than half of its population. The gravity center showed clear trends in NWC, NEC, and NC but was insignificant in the 

remaining subregions (Supplementary Figure S5). In NWC, irrigation significantly shifted to the northwest, while in NEC, it 

significantly shifted to the northeast. Meanwhile, there was a northward spatial trend in irrigation in NC. 
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 410 

Figure 8.  Spatiotemporal changes in irrigated area from 2000 to 2020. Pixels exhibiting significant interannual trends (p 

< 0.05) in irrigated area were labelled as “expansion” or “reduction”, while those with insignificant changes are denoted as 

“stable”. Pixels with less than 5% irrigated croplands were excluded from the map. The inset panel on the top of the figure 

depicts the center-of-gravity movement (spatial trend) of China’s irrigated areas at the national scale. 

 As shown in Figure 9, our annual irrigation maps indicated that all subregions exhibited an increasing trend in irrigated 415 

area from 2000 to 2020, with NEC expanding significantly faster than the other subregions. More specifically, China’s 

irrigation aera increased from about 760,000 to 940,000 km2 at an annual rate of 10,000 km2 (or 1.29%/year). Despite the 

overall upward trend, changes in the proportion of irrigated area varied by subregion - upward trends in NEC and NWC and 

decreasing in SCS, SC, and NC. SC accounted for the largest proportion of irrigated cropland in China (26%-29%), followed 

by CSC (22%-24%), NC (16%-17%), NWC (12%-14%), SWC (11%), and NEC (7%-11%). 420 



21 

 

 

Figure 9. Changes in irrigated area across the six subregions of China during 2000-2020. a, Relative changes in irrigated 

area. b, Changes in China’s total irrigated area, with the contribution of different subregions depicted in the inserted pie chart. 

c, Relative changes in proportion of irrigated area. d, Proportion of irrigated area for the years 2000, 2010 and 2020.  

  425 

4.3. Irrigation changes under different water stress levels 

Figure 10 shows irrigation changes under different water stress levels. We found a gross irrigation expansion of ~250,000 km2 

in China from 2000 to 2020, of which 64% was unsustainable from the perspective of water resources and was in regions with 

severe to extreme water stress. The expansion of irrigated area was mainly situated in NWC, NEC, NC, and the northern parts 

of CSC and SC. The gross reduction was about 70,000 km2, of which 72% was in regions with severe to extreme water stress 430 

and could be considered as sustainable. This sustainable reduction was primarily located in NC, CSC and SC that partly 

mitigated the unstainable expansion in the regions. The net expansion of irrigated area was about 180,000 km2, of which 61% 

was water unsustainable. The subregions NEC and NWC had a larger proportion of unsustainably expanded irrigated area 
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compared to other subregions, accounting for about 70% of China’s net unsustainable irrigation expansion. In contrast, the 

subregions CSC and SWC have a greater proportion of sustainable expansion than in other subregions due to the abundance 435 

of water resources and lower water stress there.   

 

Figure 10. Changes in irrigated area between 2000 and 2020 under different water stress levels. Panels a and b present 

the spatial distribution of gross expansions and reductions in irrigated area under four categories of water stress (i.e., low, 

moderate, severe, and extreme). Panel c shows the gross and net changes in irrigated area by water stress category for China, 440 

while panel d presents the results for the six subregions.  
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5 Discussion 

5.1 Improvement of CIrrMap250 over existing products 

Our CIrrMap250 product provides annual maps of China’s irrigated cropland from 2000 to 2020, exhibiting higher accuracy 445 

compared to existing products. The improved performance of CIrrMap250 can be attributed to several key factors. First, 

CIrrMap250 has digested unprecedentedly detailed irrigation statistics and reliable national land surveys, and at the same time, 

has reconciled the discrepancies between statistical/survey data and remote sensing data. We compiled county-level statistical 

data for 80% of provinces in China, along with prefecture-level data for the remaining provinces. These datasets, for the first 

time, were harmonized with China’s National Land Surveys, greatly reducing the errors and uncertainties in reported statistics. 450 

The harmonized irrigated area data were further adjusted to reconcile the statistical/survey data with remote sensing data to 

account for their inconsistency. Without data harmonization and reconciliation, the irrigation extent would be significantly 

underestimated, leading to a decrease in irrigation mapping accuracy by 8%-26% (Supplementary Figure S6).  

 Furthermore, CIrrMap250 considered the fractional coverage of cropland within coarse-resolution pixels, rather than 

using binary cropland masks in most existing products. The majority of farms in China are small and fragmented. We observed 455 

that 37% of China’s cropland grids had cropland proportions below 50% for the year 2020, and only 40% of cropland grids 

showed cropland proportions above 90%. Therefore, it becomes crucial to consider the fraction coverage of cropland in 

cropland masks for irrigation mapping. To underscore this necessity, we conducted an additional experiment, wherein we 

adopted the 250 m cropland masks that described cropland distribution in a binary manner (i.e., each pixel was classified as 

either cropland or non-cropland) for irrigation mapping. As depicted in Supplementary Figure S7, a substantial portion of 460 

irrigated cropland would be overlooked if the fractional coverage of cropland were removed, particularly in South China. The 

accuracy of the final irrigation maps would decrease by approximately 5%-6% if we used such binary cropland masks 

(Supplementary Figure S8).  

 Lastly, CIrrMap250 has incorporated an irrigation suitability analysis, based on the premise that irrigated cropland 

should not only be greener and more productive but also more suitable for irrigation compared to rainfed cropland. To 465 

demonstrate the importance of integrating irrigation suitability into the irrigation mapping process, we randomly generated 

250 sets of weights (assigned to the influencing factors) for all provinces in China, resulting in 250 distinct irrigation suitability 

maps. Based on these maps, we then created 250 different irrigated cropland maps for the year 2010 using the method proposed 

in this study. As shown in Supplementary Figure S9, regardless of the choice of irrigation suitability maps, these irrigation 

maps consistently outperform the baseline irrigation map, which disregarded irrigation suitability during the mapping process. 470 

Furthermore, there is a narrow range (0.75-0.77) in the overall accuracy of these irrigation maps, implying the robustness (low 

sensitivity) of the mapping method to the use of different irrigation suitability maps. 
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5.2 Uncertainties, limitations, and potential applications of CIrrMap250  

Despite the advancements of CIrrMap250 compared to existing products, we acknowledge several uncertainties and limitations 475 

associated with the product. CIrrMap250 was developed by integrating data from multiple sources using a semi-automatic 

training method, leveraging joint information related to irrigation in each data source. However, each data source inherently 

presents uncertainties and deficiencies (Shahriar Pervez et al., 2014; Tian et al., 2024). Irrigation area statistics, in particular, 

can contain significant uncertainties due to technical and political factors, such as variations in statistical method and 

administrative division (Thenkabail et al., 2009; Meier et al., 2018), which have not been well characterized. These biases and 480 

uncertainties would manifest in CIrrMap250, since our training samples were derived from these statistics-constrained 

irrigation maps. In this study, we addressed this issue by merging reported irrigation statistics with independent survey results. 

Nonetheless, uncertainties related to irrigated areas may remain unresolved in certain regions. For instance, we found 

considerable discrepancies between the statistical and surveyed irrigation areas in SC and NEC (Supplementary Figure S10a), 

implying greater uncertainties in these subregions compared to others. Furthermore, the irrigation statistics and surveys were 485 

reconciled with remote sensing data to address inconsistencies between the two sources. However, the bias ratio may be 

inaccurately estimated in the reconciliation process, introducing additional uncertainties to the results. 

 Cropland mask layers used to distinguish cropland from non-cropland are another source of uncertainty. These layers 

were constructed using our hybrid cropland product (Zhang et al., 2024), which integrates five state-of-the-art remote sensing 

land use/cover products. This hybrid product significantly reduced uncertainties associated with cropland distribution in China. 490 

However, remote sensing-derived cropland data show large uncertainties in southern China. As illustrated in Supplementary 

Figure S10b, only 27% of croplands on average in SWC, SC, and CSC are consistently identified by remote sensing products, 

compared to 39% in northern subregions (NEC, NC, and NWC). These uncertainties are reflected in our hybrid cropland 

product, which shows greater accuracy in the northern subregions than in the southern ones (Supplementary Figure S10c). 

Meanwhile, the temporal resolution of the cropland layers is five years, which may not accurately capture changes in cropland 495 

distribution in regions experiencing rapid changes. The uncertainties and errors in the cropland mask layer, particularly in 

southern China, could propagate into CIrrMap250. 

 An additional source of uncertainty is the MODIS-derived vegetation indices (i.e., NDVI, EVI, and GI). These indices 

are prone to data gaps due to cloud and cloud shadow contaminations. In this study, we filled the data gaps by using a simple 

nearest neighbor interpolation method, which may introduce uncertainties to CIrrMap250. Additionally, irrigated croplands in 500 

humid southern China are more sparsely distributed and show weaker contrast with rainfed fields compared to northern China. 

This makes the peak vegetation indices less effective and more uncertain in distinguishing irrigated from rainfed cropland (Xie 

et al., 2019; Zhang et al., 2022a). Consequently, our CIrrMap250 product exhibits higher accuracy in NEC, NWC, and NC 

than in SC, CSC, and SWC subregions (Supplementary Figure S10d).  

 Lastly, CIrrMap250 has the limitation of a relatively coarse spatial resolution of 250 m and does not fully address the 505 

mixed-pixel problem. While CIrrMap250 offers a higher spatial resolution than many existing large-scale irrigation maps, it 
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may not be suitable for local applications, such as field or irrigation district levels. The mixed-pixel problem significantly 

affects the precision of cropland masks (Zhang et al., 2024) and weakens the distinction between vegetation indices for irrigated 

and rainfed cropland. Even though CIrrMap250 considers the fractional coverage of cropland, it does not differentiate between 

irrigated and rainfed croplands at subpixel scales, like many other existing irrigation maps. There are many small and 510 

fragmented croplands in the mountainous regions of southern China. CIrrMap250 should be used with caution in these areas 

due to the prevalence of mixed pixels. Additionally, CIrrMap250 was created at an annual frequency and therefore does not 

provide monthly and seasonal irrigation information. A pixel is classified as “irrigated” if it has been irrigated at any point 

during the year, regardless of the specific month or season. While a growth-season-based irrigation product could be more 

desirable, it faces significant challenges, such as the lack of high-resolution crop type information (e.g., rice, wheat, maize) 515 

and high-quality training samples with sufficient temporal resolution.  

 Despite these limitations, CIrrMap250 makes a valuable contribution to the field of irrigation mapping and is poised 

to significantly support agricultural, hydrological, and climate studies, as well as water resource management in China. 

Ongoing efforts to address these limitations and explore potential enhancements will undoubtedly improve the accuracy and 

utility of our irrigation maps in the future. One of the major applications of CIrrMap250 will be estimating irrigation water use 520 

or requirements, considering that irrigated area is a dominate driver of irrigation water withdrawal (Ozdogan and Gutman, 

2008; Puy et al., 2021). Secondly, the spatial detail provided by CIrrMap250 can be integrated into crop, hydrological, and 

climate models to improve the simulations of water uses and land-atmosphere interactions (Uniyal and Dietrich, 2021; 

Mcdermid et al., 2023; Yang et al., 2023). This integration will advance our understanding of how irrigation practices influence 

crop yield, and hydrological and climatic processes from local to nationwide scales. Lastly, CIrrMap250 provides insights into 525 

irrigation changes and can assist in optimizing the spatial distribution of irrigated croplands (Rosa et al., 2020a; Rosa et al., 

2020b), thereby supporting more informed decisions for sustainable water and land use.  

6 Data availability 

The annual maps of China’s irrigated cropland from 2000 to 2020 (named as CIrrMap250) can be accessed at: 

https://doi.org/10.6084/m9.figshare.24814293.v2 (Zhang et al., 2023a). All maps are presented in the GeoTIFF format, with 530 

the geographic coordinate of WGS84. Pixel size is 0.00225 × 0.00225 degree (~250 m ×250 m at Equator). Our maps show 

the percentage of each 250 m pixel covered by irrigated cropland (i.e., pixel value = irrigated area / pixel area ×100). Note that 

our product accounts for the fractional coverage of croplands within coarse-resolution MODIS pixels but does not differentiate 

between irrigated and rainfed croplands at subpixel scales. For example, if a pixel has 50% cropland coverage, all cropland 

within that pixel would be classified as either “irrigated” or “non-irrigated”. 535 

https://doi.org/10.6084/m9.figshare.24814293.v1
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7 Conclusions 

China, as a big agricultural country with extensive irrigation, underscores the critical importance of developing reliable 

irrigation maps for sustainable land-water-food nexus management. This study presented new annual maps of irrigated 

cropland in China spanning from 2000 to 2020, referred to as CIrrMap250. These maps were developed by integrating 

multisource data, including remote sensing data, reported statistics and surveys, and an irrigation suitability map. Validation 540 

against 20,720 reference samples demonstrated that our irrigation maps achieved high accuracy and outperformed the currently 

available products covering the entire China. The superiority of our product over existing maps were further confirmed through 

the assessments using irrigation water withdrawal data and local-scale visual comparisons. Based on the 21 years of data, we 

found a clear upward trend and northward shift in China’s irrigation area. The irrigation expansion is particular notable in 

water-scare regions like Northeast China and Northwest China, potentially exacerbating water scarcity concerns. CIrrMap250 545 

will significantly enhance agricultural, hydrological, and climate studies, as well as water resource management in China. 
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