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Abstract. Accurate maps of irrigation extent and dynamics are important to studycrucial for studying food security and its far-

reaching impacts on Earth systems and the environment. While several efforts have been made to map irrigated areasarea in 

China, few of them have provided multi-yearmultiyear maps, incorporated national land surveys, addressed data discrepancies, 15 

and considered the fractionfractional coverage of irrigated cropland (i.e., the mixed pixel issue). In this studywithin coarse-

resolution pixels. Here, we addressed these important gaps and developed new annual maps of China’s irrigated cropland from 

2000 to 2020, named as CIrrMap250. (China’s irrigation map with a 250 m resolution). We harmonized irrigated areairrigation 

statistics and land surveys and reconciled them with remote sensing data. The refined estimates of irrigated area were then 

integrated with multiple remote sensing data (i.e., vegetation indices, hybrid cropland product, and paddy field maps) and an 20 

irrigation suitability map through a semi-automatic training approach. We then evaluated our CIrrMap250 maps using 

independently interpreted ~20,000 reference locationssamples, high-resolution irrigation water withdrawal data, and existing 

local to nationwide maps. Our evaluation results showed thatOur CIrrMap250 agreed well with the reference points, withmaps 

demonstrated an overall accuracy of 0.79-0.88 for the years 2000, 2010, and 2020, respectively.and outperformed currently 

available maps. The CIrrMap250-estimated irrigatedirrigation area can explainexplained 50-60% of the variance in irrigation 25 

water withdrawalswithdrawal across China. Our CIrrMap250 product showed superior performance than currently available 

ones (i.e., IrriMap_CN, IAAA, and GFSAD). CIrrMap250 revealed that China’s irrigatedirrigation area has increased by about 

180,000 km2 (or 25%) from 2000 to 2020, with the majority (61%) beingoccurring in the water-unsustainable and occurring 

in regions facing high to severe to extreme water stress. Moreover, our product unveiled a noticeable northward shift of China’s 

irrigatedirrigation area, attributed to substantial expansionexpansions in irrigated cropland across Northeast and Northwest 30 
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China. The accurate representation of irrigation areaextent in CIrrMap250 will greatly support hydrologic, agricultural, and 

climate studies in China for, aiding in improved water and land resources management. 

1 Introduction 

Irrigation is increasingly important as an adaption strategy to climate change (Zaveri and B. Lobell, 2019; Bhattarai et al., 

2023) and plays a vital role in ensuring food security by reducing both water and heat stresses of crops (Zhu and Burney, 2022; 35 

Zhu et al., 2022). WithCovering 20% of spatial coverage in global croplands and providing, irrigated agriculture contributes 

to 40% of global food production (Unesco World Water Assessment Programme, 2019), irrigated agriculture is a critical 

component of land and water resource management . Globally, agricultural irrigation accounts for. However, it uses 60-70% 

of total freshwater withdrawals and 80-90% of consumptive water uses (Qin et al., 2022; Wu et al., 2022). Large volumes The 

extensive use of irrigation water use intensifyintensifies water management and drivedrives myriad Earth system and 40 

environmental impacts (Mcdermid et al., 2021; Mcdermid et al., 2023). These impacts include changes in hydroclimatic and 

biogeochemical cycling (Kang and Eltahir, 2018; Mishra et al., 2020; Thiery et al., 2020; Guo and Zhou, 2022; Yang et al., 

2023), depletion of aquifers and surface water bodies (Cheng et al., 2014; Noori et al., 2021), freshwater salinization 

(Thorslund et al., 2021), and landsideslandslides (Lacroix et al., 2020). Given the vital importance of irrigation, it is essential 

to know the exactknowing its precise location and its’ dynamics, which, however, are is essential.  However, this proves 45 

challenging, due to the hidden nature of irrigation signals and the frequent confusion between irrigated and rainfed fields 

(Ozdogan and Gutman, 2008; Zhang et al., 2022d; Chen et al., 2023).  

 Remote sensing provides significant opportunities for cost-effective and spatially explicit mapping of land surfaces 

(Potapov et al., 2021). While numerous land use/cover and thematic cropland products have been made available to the public, 

they often lack information on irrigation status  . Over the past decade, there has been a growing interest in using satellite Earth 50 

observations to map irrigation extentsextent (Massari et al., 2021). Currently,The existing remote sensing methods for 

irrigation mapping irrigated areasare generally based on satellite data can be broadly categorized intothree indicators: 

vegetation-based greenness, soil moisture-based, and integrated vegetation-soil moisture integrated approaches. Various 

vegetation. Vegetation indices derived from optical sensors, such as the normalized difference vegetation index (NDVI) (Rouse 

et al., 1974), green index (GI) (Gitelson, 2005), and normalized difference water index (NDWI) (Gao, 1996; Mcfeeters, 1996), 55 

have been widely employed to detect irrigated areas usingbased on the underlying fact that irrigated fields typically exhibit 

higher productivity and greenness compared to adjacent rainfed ones, especially under drought conditions. Techniques used 

include threshold splitting (Ozdogan et al., 2010; Zhu et al., 2014; Esmaeili et al., 2023; Wang et al., 2023)methods , spectral 

matching techniques (Ozdogan and Gutman, 2008; Lu et al., 2021), decision trees (Ozdogan and Gutman, 2008; Shahriar 

Pervez et al., 2014; Ambika et al., 2016; Xiong et al., 2017), and supervised classification (Deines et al., 2017; Deines et al., 60 

2019; Xie et al., 2019)algorithms .  The underlying principle of the vegetationsoil moisture-based approach is that irrigated 

fields typically exhibit higher productivity, greenness, and moisture content compared to adjacent rainfed areas, especially 
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under drought conditions. Moreover,utilizes remotely sensed soil moisture signals from microwave and optical sensors has 

also been applied to detected irrigate to detect irrigated areas by using similar techniques like threshold splitting methods (Yao 

et al., 2022), and supervised/unsupervised classification (Gao et al., 2018; Dari et al., 2021)algorithms , and remote sensing-65 

modeling comparison approaches .. The rationale behind the soil moisture-based methodthis approach is that irrigation alters 

soil moisture and leads, leading to distinct spatiotemporal dynamics compared to adjacent rainfed areas. Additionally, theThe 

vegetation-soil moisture integratedintegration approach, which combines vegetation indices with soil moisture for irrigated 

areairrigation detection,. This approach has also gained attention and achieved success in recent years (Pun et al., 2017; Elwan 

et al., 2022; Longo-Minnolo et al., 2022; Zuo et al., 2023)., leveraging the strengths of both vegetation- and soil moisture-70 

based methods for more accurate irrigation mapping.  

 Despite significant advancements in remote sensing technique for irrigation, broad-scale mapping, identifying of 

irrigated areas at large spatial scales (e.g., national and global levels) remains a grand challengechallenging due to substantial 

variations in irrigation practices, geographicallandscapes, and climatic characteristics (Salmon et al., 2015; Zhang et al., 

2022d). This challenge is further compounded by the lack of sufficient ground reference data (Xie et al., 2019; Xie and Lark, 75 

2021). Consequently, high-precision irrigated areaquality irrigation maps are still lacking globally andmissing in most 

countries (Chen et al., 2023; Mpakairi et al., 2023). In recent years, researchers have sought to address the challenges of large-

scale irrigation mapping by integrating remote sensing data with, agricultural statistics, existing irrigation maps, and other 

relevant datasets, such as irrigation suitability (Meier et al., 2018; Xie et al., 2021; Zhang et al., 2022a; Zhang et al., 2022d)and 

existing irrigated area maps . They have successfully generated new irrigation maps at the global orand national scalescales, 80 

featuring higher spatiotemporalspatial resolution and mapping accuracy compared to previousexisting products. These efforts 

underscore the great potential of multisource data -fusion techniques for large-scale irrigation mapping.  

 China is a big agricultural country with the largest irrigated area in the world (International Commission on Irrigation 

and Drainage, 2018).. With only 8% of the world’s arable landcropland, China feeds 20% of the global population and has a 

tight connection with the food supply chain of other nations. Therefore, the development ofdeveloping reliable maps of 85 

irrigated cropland is particularly important for sustainable food production in China. Despite this, less attention has been 

devoted to mapping areas of irrigated croplandareas in China than incompared to other countries with extensive irrigation, 

such as the United States and India (Zhu et al., 2014; Zhang et al., 2022d). It is only in recent years that several maps of 

irrigated cropland specifically tailored for China have emerged, facilitated by the integration of multisource data, including 

remote sensing, reported statistics, and existing irrigation maps, and irrigation suitabilityland use/cover maps (Zhang et al., 90 

2022c; Bai et al., 2022; Xiang et al., 2020; Bai et al., 2022; Zhang et al., 2022b; Zhang et al., 2022c; Zhang et al., 2022d).  

 While these previous studies have considerably improved our understanding of the spatial distribution of irrigated 

cropland in China, limitations remain. First, few studies providehave provided annual irrigation maps of irrigated cropland, 

hindering a spatiotemporal analysis of China’s irrigated areas in China. As a result, it remains unclear where the expansion of 

irrigatedchanges in irrigation area isare water-sustainable (i.e., irrigated area expanded .g., irrigation expansion in pacesplaces 95 

without experiencing water stress) (Mehta et al., 2024). Second, irrigatedirrigation area data from official statistical bureaus, 
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which were collected through field-sampling surveys in conjunction withand bottom-up aggregation, have been extensively 

utilized to constrain the overall extent of irrigated cropland in previous studies. Besides statistical data, the National Land 

Surveys conducted by the State Council of China actually also offer accurate and reliable informationprovide estimates on 

irrigated cropland areasacreage. The National Land Surveyssurveys involve a great number ofmany investigators and reliesrely 100 

on state-of-the-arthigh-resolution satellite remote sensing imagery and advanced survey techniques (Chen et al., 2022). The 

harmonization of irrigated areaHarmonizing irrigation statistics with the National Land Surveys mightcould potentially help 

to reduce biases and uncertainties associated with irrigated areain each data source (Yu et al., 2021),  but this has rarely been 

taken into account. Third, the majority of farms in China are small and fragmented, with the average farmland size being 

lesssmaller than a hectare (Teluguntla et al., 2018). This leads to the widespread presence of mixed pixels in which both where 105 

cropland and other land use/cover types are presentcoexist. However, in most previous studies described irrigated, binary 

cropland in a Boolean fashion, where masks were used for irrigation mapping. These masks assign each pixel is entirely 

occupied byas either irrigated cropland or non-irrigated cropland., neglecting the fractional coverage of cropland within coarse-

resolution pixels. This may lead to overestimation or underestimation of irrigated cropland, depending on the proportion of 

cropland within the grid cell. irrigation extent. Finally, it is worth noting that, apart from Zhang et al. (2022a)the study 110 

conducted by , many other studies assessed their irrigation maps with a relatively limited number of reference samples, 

potentially compromising the reliability of their evaluation results (Zhu et al., 2014; Xiang et al., 2020; Bai et al., 2022; Zhang 

et al., 2022d).. Obtaining a sufficient number of reference pointssamples is crucial for a robust evaluationevaluations of 

national-scale irrigated cropland maps, a task that is, however, challenging due to the substantial cost and time involved.  

 Building on our previous work (Zhang et al., 2022d; Zhang et al., 2024), this study aims to bridge the importantthese 115 

gaps mentioned aboveand create new annual maps of irrigated cropland in China (2000-2020) by integrating remotely 

sensedremote sensing data (i.e., vegetation indices, hybrid cropland productsmaps, and paddy field maps), irrigated area 

reported statistics and surveys, and an irrigation suitability to create new annual maps of irrigated cropland in China (2000-

2020).map. The newly developed irrigated cropland maps (named as CIrrMap250) havefeature a spatial resolution of 250 

meters and describe irrigated cropland distribution through fractional coverage. Our specificat an annual frequency from 2000 120 

to 2020. Our maps show the percentage of each 250 m by 250 m pixel that is covered by irrigated cropland (i.e., pixel value = 

irrigated area / pixel area ×100). Other objectives of this study are: (i) to assessassessing the accuracy of CIrrMap250 using a 

sufficient number of referencing points~20,000 reference samples and high-resolution data on irrigation water 

withdrawalswithdrawal data; (ii) to comparecomparing the performance of CIrrMap250 with threefour existing large-

scalelocal to nationwide irrigation maps that cover the entire China, including IrriMap_CN (Zhang et al., 2022a), IAAA 125 

(Siddiqui et al., 2016), and GFSAD (Thenkabail et al., 2016), as well as a field scale map,  i.e.,and OPTRAM30 (Yao et al., 

2022); and (iii) to investigateinvestigating the spatiotemporal dynamics of China’s irrigated croplandirrigation extent and 

quantifyquantifying the water sustainability of changes in irrigated area...  
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2 Data acquisition and processing 130 

2.1 Remote sensing data 

We collected the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 vegetation indices, i.e., NDVI 

and Enhanced Vegetation Index (EVI) (Huete et al., 1997), from the NASA’s Earth Science Data Systems 

(https://www.earthdata.nasa.gov/). These indices wereare generated every 16 days with a 250 m spatial resolution of 250 

meters.. Meanwhile, the MODIS band 4 (545-565 nm) surface spectral reflectance of MODIS band 4 from the MOD09A1 135 

product was used and resampled from the original 500 metersm to 250 meters throughm using the nearest neighbor 

interpolation method (Debeurs and Townsend, 2008). TheseThe resampled data, in conjunction were then used together with 

the 250-meterm and 8-day band 1 (620-670 nm) surface reflectance of band 1 from the MOD09Q1 product, were used to 

derive the Greenness Index (GI) (Supplementary Table S1). AllWe extracted MODIS data were for all cropland pixels in 

China, using only high-quality screened against quality and usefulness indicators, and only pixels free from cloudsdata on 140 

cloud- and snow/ice that meeting the highest quality criteria were deemed reliable-free pixels (Hilker et al., 2012). TheLow-

quality MODIS data for unreliable pixels were reconstructedexcluded based on the quality band and were interpolated using a 

straightforwardhigh-quality data from the nearest neighbor interpolation method.neighboring cropland pixels.  

 We created a new high-30 m resolution (30-m) hybrid cropland product for China (CCropLand30) by fusing state-

of-the-art remote sensing land use and land /cover products with the latest national land surveysurveys (Zhang et al., 2024). 145 

CCropLand30 was generated at a 5-year interval from 2000 to 2020 and it exhibited a higher accuracy compared to existing 

products (Zhang et al., 2024).. Building upon CCropLand30, we developed 250- m resolution cropland layers for the years 

2000, 2005, 2010, 2015, and 2020, which describe cropland distribution using the fractional coverage method, i.e., estimating 

the show the cropland proportion of cropland inwithin each 250-meter m grid. These layers serve as the foundation for mapping 

irrigated cropland. Additionally, we extracted paddy fields from China’s Land-use/cover dataset (CLUD) for the years 2000, 150 

2005, 2010, 2015 and 2020 (Liu et al., 2014; Xu et al., 2018). Paddy fields, which include cultivated land where rice and lotus 

roots are grown and supported by water and irrigation facilities, and they could bewere considered as part of irrigated cropland 

with high confidence (Zhang et al., 2022c). 

 

 2.2 Irrigated area Irrigation statistics and surveys 155 

2.2.1 Harmonization of irrigated areairrigation statistics and surveys 

We collected annual irrigation area data on irrigated area (2000-2020) from diversevarious statistical yearbooks provided by 

the National Bureau of Statistics of China and local statistical bureaus. These yearbooks encompassinclude the Provincial 

Statistical Yearbook, the Rural Statistical Yearbook, the China Statistical Yearbook for Regional Economy, and the China 

Water Statistical Yearbook. The primary data source for these datasets iswere sourced from the China Economic and Social 160 

Big Data Research Platform (https://data.cnki.net/). We compiled high-resolution (i.e., county-level) irrigated area irrigation 

https://www.earthdata.nasa.gov/
https://data.cnki.net/
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data for more thanover 80% of  provinces in China and prefecture-level data for the remaining provinces for each year from 

2000 to 2020 rest (Zhang et al., 2022d), which provide substantially more detailedirrigation information on the distribution of 

irrigated croplandfor China than earlier studies (Zhu et al., 2014; Xiang et al., 2020; Zhang et al., 2022b; Zhu et al., 2014).  

  In addition to statistical data, we utilized land survey also provides accuratedata to obtain more detailed and reliable 165 

information on irrigated areas. for select years. Currently, China has currently conducted three rounds of National Land 

Surveys in 1980s, 2010 and 2020., respectively. The National Land Surveyssurveys engaged a significant number of surveyors 

nationwide and utilized high-resolution satellite remote sensing imagery, along with advanced survey techniques such aslike 

mobile internet, cloud computing, and drones (Chen et al., 2022). The results and maps from these land surveys were not made 

public until recently dueDue to the national security concerns. The , the land survey maps were not publicly available. 170 

However, the Ministry of Natural Resource of the People’s Republic of China has recently released the county-level survey 

results (of the second and third National Land Surveys, including data on cropland and its subtypes, i.e., sub-categories 

(dryland, irrigated land, and paddy field) of the second and third National Land Surveys (https://www.mnr.gov.cn/). The 

Within the dataset, the surveyed area of irrigated land and paddy field reflects the extent of irrigated cropland, and 

coverscovering the periods 2009-2016 and 2019-2022. DuringFor the years with available survey data, irrigated areairrigation 175 

statistics were harmonized with the surveyed irrigated areasurvey data at the county scale using Eq. 1. This process operated 

under the assumption that1. The data harmonization was based on two assumptions: (1) the maximum value between statistical 

and surveyed irrigatedirrigation area should be more reliable, and (2) irrigatedirrigation area should be lesssmaller than the 

total cropland area. The first assumption was made due toaccounts for the underestimation tendency of both statistical and 

surveyedsurvey data due to underestimate irrigated area, owing topossible insufficient and representative field sampling 180 

(Zhang et al., 2022a) and the prevalence of fragmented and small croplandscrop fields (Teluguntla et al., 2018). We also tested 

alternativeAlternative harmonization methods (e.g.,, such as mean and minimum),  values, were also tested but they 

demonstrated inferior performance compared toperformed worse than the maximum harmonization approach. InFor years 

lackingwithout survey data, the irrigation area was estimated by adjusting the harmonized irrigated area was determineddata 

from adjacent survey years using Eq. 2, assuming that the relative change information derived from the irrigation statistics 185 

(Eq. 2). This method preserved the interannual changes observed in statistical irrigatedirrigation area are reliablewhile 

enhancing data consistency across years.   

 Aℎ𝑎𝑟𝑚
𝑡𝑠 = 𝑚𝑖𝑛(𝑚𝑎𝑥(A𝑠𝑡𝑎𝑡

𝑡𝑠 , A𝑠𝑢𝑟𝑣
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )  (1) 

 Aℎ𝑎𝑟𝑚
𝑡2 = 𝑚𝑖𝑛(Aℎ𝑎𝑟𝑚

𝑡𝑠 ×
A𝑠𝑡𝑎𝑡
𝑡2 −A𝑠𝑡𝑎𝑡

𝑡𝑠

A𝑠𝑡𝑎𝑡
𝑡𝑠 ,× (1 +

A𝑠𝑡𝑎𝑡
𝑡2 −A𝑠𝑡𝑎𝑡

𝑡𝑠

A𝑠𝑡𝑎𝑡
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )   (2) 

where 𝐴ℎ𝑎𝑟𝑚 , 𝐴𝑠𝑡𝑎𝑠 and 𝐴𝑠𝑢𝑟𝑣 represent the county-level areas of harmonized, statistical and surveyed irrigated 190 

croplandirrigation area, respectively; 𝐶𝐴 is the surveyed area of cropland; and 𝑡𝑠 and 𝑡2indicate the year with and without 

land surveys, respectively.  

 

https://www.mnr.gov.cn/
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2.2.2 Reconciliation between statistical/surveyedsurvey data and remote sensing data 

Cropland area statistics and survey data are inherently incompatible with remote sensing data due to differences indifferent 195 

measurement techniques. The former measuresWhile statistical and survey data measure the net area of cropland, while the 

latterremote sensing data represents the gross area of cropland that includes, including subpixel, non-cropland features such as 

field ridges, linear elements, and scattered features (e.g.,like roads, ponds, and rural houses) (Zhang et al., 2024). Consequently. 

As a result, statistical and surveyed cropland areas exhibit a negative  and systematic bias compared to those derived from 

remote sensing data (Zhang et al., 2021; Zhang et al., 2022d). Irrigated cropland is Similarly, as a partsubset of cropland, and 200 

itsirrigated cropland is also reported as a net area in statistics and surveys also indicate the net area of irrigated area. 

Consequently, a gap exists between the irrigated area from statistics/surveys and that derivedis different from remote sensing 

data. Direct use ofDirectly using the statistical/ or surveyed irrigatedirrigation acreage to constrain remote sensing-based 

irrigated cropland extentwould likely leads to underestimation of irrigated croplandsresult in underestimating irrigation extent 

(Schepaschenko et al., 2015). To filladdress this gapdiscrepancy, we adjusted the harmonized irrigatedirrigation area data 205 

(Section 2.2.1) to reconcile the statistical/surveyed and survey data with remote sensing data, as seenshown in Eq. 3. This 

adjustment was implemented underperformed based on the assumption that the irrigation proportion of irrigated cropland 

remains consistent in both the statistical/surveyedsurvey data and the remote sensing-derived maps. For exampleinstance, if 

the statistical/ or survey data indicates athat 99% irrigation proportionof the cropland in the croplands of a given county is 

irrigated, the remote sensing-derived irrigation proportion should also be as high asapproximately 99%.  210 

 A𝑟𝑒𝑐𝑜𝑛
𝑡 = Aℎ𝑎𝑟𝑚

𝑡 ×
CA𝑅𝑆

𝑡

CA𝑠𝑢𝑟𝑣
𝑡    (3) 

 where A𝑟𝑒𝑐𝑜𝑛
𝑡  and Aℎ𝑎𝑟𝑚

𝑡 are the reconciled and harmonized irrigatedirrigation area, respectively, for the year t; CA𝑅𝑆
𝑡  is the 

remote sensing-derived cropland area that was estimated from our hybrid cropland product (Zhang et al., 2024); CA𝑠𝑢𝑟𝑣
𝑡  is the 

surveyed cropland area; CA𝑅𝑆
𝑡 /CA𝑠𝑢𝑟𝑣

𝑡 indicatedenotes the bias ratio of remote sensing-derived cropland area relative to 

surveys. This ratio was estimated for each county and constrained to the median value of all counties in its agricultural zones 215 

(Zhang et al., 2022c) to exclude extreme bias ratios and to ensure a conservative adjustment. In years lacking survey data, the 

bias ratio was estimated using a straightforward nearest-neighbor interpolation method.   

 

2.3 Auxiliary data 

This study utilized various auxiliary datasets, (Supplementary Table S2), including meteorological and environmental 220 

variables, irrigation water withdrawal, water scarcity index, and administrative boundaries. Daily meteorological observations, 

including such as precipitation, relative humilityhumidity, air temperature and pressure, at were collected from approximately 

2400 meteorological stations were collected fromacross China, provided by the National Meteorological Information Center 

(NMIC, http://data.cma.cn/). These datasets were used in combinationcombined with the MCD43A3 albedo product for the 

http://data.cma.cn/
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computation ofto compute daily potential evapotranspiration (PET) using the Priestley-Taylor method (Priestley and Taylor, 225 

1972) and. The daily PET values were aggregated to annual values for the period from 2000 to 2020, which were then used to 

derive the aridity index (i.e.,, defined as the rationratio of precipitation to PET). Environmental data consists of. The 

environmental variables included elevation, slope, cropcropping intensity, soil type, and distance to water bodies. Elevation 

data originatedwas sourced from the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), and the slope 

map was derivedgenerated from the SRTM DEM data using the slope function in ArcGIS software based on SRTM DEM 230 

data. Distance . The distance to water bodies was determined using the Euclidean distance tool in ArcGIS, employingcalculated 

based on the spatial distribution data of water bodies, including  (rivers, lakes, reservoirs, canals, and ponds.) using the 

Euclidean distance tool in ArcGIS. The above auxiliary data for this study were sourced partly obtained from the National 

Tibetan Plateau (https://data.tpdc.ac.cn/) and partlythe remaining from the Resource and Environment Science and Data Center 

(https://www.resdc.cn/Default.aspx).  235 

 Moreover, data on Additionally, the prefecture-level irrigation water withdrawals at medium-sized administrative 

units known as prefectures were compiled withdrawal data for two distinct time frames (specifically, 2009-2011 and 2018-

2020)  were compiled from Water Resources Departments of the 31 provincesprovincial water resources departments and the 

local statistical bureaus. The prefecture-level data on Water Scarcity Indexwater scarcity index (WSI) spanning the period 

from for 2010 to -2020 were extracted from our earlierprevious study (Zhang et al., 2023b). The. WSI was computedis defined 240 

as the ratio of total water usage (use to water availability, as shown in Supplementary Table S2. Total water use encompasses 

both groundwater and surface water withdrawals for irrigation, industry, domestic water use, and other water use for purposes, 

forestry, livestock, and fishery, and ecology). Water availability refers to water availability (i.e.,the total surface water and 

groundwater generated by precipitation)..  

3 Methodology 245 

In this study, we create CIrrMap250created annual maps of irrigated cropland in China by integrating multisource data through 

a semi-automatic training approach (Xie et al., 2019; Zhang et al., 2022d). Following the acquisition. After acquiring and 

processing ofthe data, our methodology beganstarted with the creation of training samples, as depicted in Figure 1. This step 

involves three major processes that include:(: (i) generating intermediate irrigation maps through a threshold-calibration 

method; (ii) establishing a training pool (i.e., potential training data) via overlay analysis of the intermediate maps; and (iii) 250 

generating training samples through random sampling from the training pool. Building uponUsing these training samples, we 

classifyclassified irrigated and rainfed cropland in each county on an annual basisannually using the random forest algorithm 

(Breiman, 2001).. The mapping outcomes resulting county-level maps were then then mosaicked and post-processed to 

obtainproduce the annual maps of irrigated cropland in China, denotedreferred to as CIrrMap250. AfterwardsSubsequently, 

we evaluated the accuracy of CIrrMap250, and conducted performance and visualization comparisonscompared it with existing 255 

file:///P:/Work_2023/IrrMap/IrrMap_manuscript/(https:/data.tpdc.ac.cn/
https://www.resdc.cn/Default.aspx
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products. LastlyFinally, we examined the spatiotemporal changes in irrigated croplands and quantified the water sustainability 

of irrigation area expansion by comparing itrelating them with water stress areas.  

 

Figure 1.  Workflow of this study 

 260 

3.1 Generation of training samples  

AWe applied a threshold-calibration method was applied to automatically generate the training pool for irrigated and rainfed 

cropland, following the previous studies by Xie et al. (2019; 2021) and Zhang et al. (2022d). We . With this method, cropland 

pixels with annual peak vegetation greenness exceeding an optimized threshold were classified as “irrigated”. The threshold 

was individually calibrated for each county and year using available irrigation statistics and surveys. Based on the calculated 265 

optimized thresholds, intermediate irrigation maps were generated at the county level. Pixels consistently classified as 
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“irrigated” in all intermediate maps were identified as irrigation candidates, while those classified as “non-irrigated” were 

considered potential non-irrigated samples. 

 In this study, we first calculated the peak vegetation indexvalues of vegetation indices (NDVI, EVI, and GI) for 

cropland grids in each year and adjusted itthem by irrigation suitability. The growth-period peak values of NDVI, EVI, and GI 270 

were determined for cropland grids in each year. A static irrigation suitability map were constructedwas created based on the 

elevation, slope, and aridity index of cropland . As demonstrated by , these. These factors are pivotalplay a crucial role in 

influencingshaping the spatial distribution of irrigated cropland in China, as demonstrated by Liu et al. (2022).. Cropland with 

areas characterized by lower elevation, gentler slopeslopes, and higher aridity index wasindices were hypothesized to have 

higherexhibit greater irrigation suitability and potential, in line with previous studies (Worqlul et al., 2015; Worqlul et al., 275 

2017; Li and Chen, 2020; Zhang et al., 2022d).. Specifically, the cropland irrigation suitability map was derived by combining 

the irrigation suitability values of elevation, slope, and aridity index, as in Eq. 34. 

  𝑆𝑖,𝑗,𝑘 =
1

4
𝑤1,𝑘𝑆𝐸𝑙𝑒𝑣𝑖,𝑗 +

1

4
𝑤2,𝑘𝑆𝑆𝑙𝑜𝑝𝑒𝑖,𝑗 +

1

10
𝑤3,𝑘𝑆𝐴𝑟𝑖𝑑𝑖,𝑗  (34) 

where Si,j,k is the irrigation suitability for cropland cell i in county j of province k; w is the weight of the influencing factors, 

which was determined bythrough a trial-and-error procedure; SElev, SSlope, and SArid are the irrigation suitability values of 280 

elevation, slope, and aridity index, respectively (Supplementary Table S2S3). The peak vegetation index was subsequently 

adjusted by irrigation suitability (Eq. 4), which5), with the assumption that irrigated cropland is not only, being greener and 

more productive but, is also more suitable for irrigation thancompared to rainfed cropland. 

 𝑆𝑉𝐼𝑖,𝑗,𝑘
𝑡 = 𝑆𝑖,𝑗,𝑘 × 𝑃𝑒𝑎𝑘(𝑉𝐼𝑖,𝑗,𝑘

𝑔,𝑡
)  (45) 

where SVI denotes the irrigation suitability-adjusted peak vegetation index; VI denotes the value of vegetation index, value; g 285 

and t represent the growth period and year, respectively.  

 We then generated three intermediate irrigation maps for each yearannually from 2000 to 2020 utilizing the SVI (i.e., 

irrigation suitability-adjusted peak NDVI, EVI, and GI) and the paddy field maps. This was accomplishedachieved through a 

threshold splitting method (Pervez and Brown, 2010; Zhu et al., 2014; Meier et al., 2018). Specifically, the SVI values for all 

croplands cropland pixels within each county were ranked in a descending order within each county, and the cumulative 290 

irrigated area was sequentially estimated. Subsequently, the calculated. The accumulated area was then compared with the 

reconciled irrigatedirrigation area. The SVI value corresponding to the grid whereat which the cumulative irrigated area closely 

matched the reconciled irrigated area was determinedidentified as the optimal threshold value. Notably, for paddy fields, the 

SVI value was set to the maximum SVI of theamong croplands inwithin a given county, prioritizing it as irrigatedthese areas. 

as “irrigated”. The croplandscropland grids were finally classified into “irrigated” and “rainfed” categories using Eq. 56.  295 

 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑖,𝑗,𝑘 = {
𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑𝑖,𝑗,𝑘

𝑡 𝑆𝑉𝐼𝑖,𝑗,𝑘
𝑡 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗,𝑘

𝑡

𝑟𝑎𝑖𝑛𝑓𝑒𝑑𝑖,𝑗,𝑘
𝑡 𝑆𝑉𝐼𝑖,𝑗,𝑘

𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗,𝑘
𝑡   (56) 
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 TheseThe intermediate irrigation maps were finally overlaid and intersected; andto identify pixels consistently 

identified by these mapsclassified as irrigated or rainfed cropland across these maps. These pixels were designated as potential 

training samples, constitutingforming the training pool for a giveneach county and year and county. We. From the training 

pool, we randomly selected 200 rainfed cropland gridspixels and 200 irrigated cropland grids from the training pool for each 300 

county and each year, whichpixels to train the random forest model. This selection ensures a balance between the 

requirementneed for sufficientan adequate number of samples and the computational efficiency of the classification algorithm 

(Xie et al., 2019; Zhang et al., 2022d). 

 

3.2 Classification of irrigated cropland using random forest 305 

We employed the random forest algorithm (Breiman, 2001) to classify irrigated and rain-fedrainfed cropland using the random 

samples extracted from the training pool. The implementation of the random forest algorithm was performed using the 

MATLAB TreeBagger function. The hyperparameters of the random forestour model were optimized through a trial-and-error 

process. These parameters include, including the number of trees, the minimum number of observations per node, and the 

number of variables randomly sampled at each decision split (Supplementary Table S3). The chosen predictors encompassS4). 310 

The input features of our model encompassed both time-varying variables (i.e., vegetation indices, precipitation, temperature, 

PET, and aridity index) and time-invariantstable environmental variables (i.e., latitude, longitude, cropcropping intensity, 

elevation, distance to water bodies, slope, and soil type). The classification of irrigated and rainfed cropland was conducted 

independently in each county for each county per year from 2000 to 2020. After classificationthat, we merged the annual and, 

county-level mapping results to generate thepreliminary binary irrigation maps of in China (i.e., 1 for “irrigated” and 0 for 315 

“non-irrigated cropland in China. To enhance the accuracy of these maps, a spatial filter (a 7×7 window) was applied to 

eliminate isolated pixels (constituting <5% of the window area) and identify missed irrigated croplands (comprising >95% of 

the window area).”).  

 We then employed a spatial filtering to remove isolated irrigation pixels and identify potentially omitted irrigated 

croplands. Specifically, we first calculated the irrigation proportion within a 7×7-pixel window for each preliminary irrigation 320 

pixel. Then, all cropland pixels within the moving window were assigned as “non-irrigated” if the calculated ratio fell below 

5%. Conversely, if the ratio exceeded 95%, we assumed all cropland pixels within the moving window to be irrigated. The 

spatial filtering operation preserved the original spatial resolution of the maps (250 m).  

 Finally, we multiplied the binary, spatially filtered irrigation maps by each corresponding cropland mask layers to 

generate annual irrigation maps for China. The final product, CIrrMap250, represents the percentage of a 250 m pixel covered 325 

by irrigated croplands (i.e., pixel value = irrigated area / pixel area ×100). Unlike simple binary maps, our product considers 

the fractional coverage of croplands within coarse-resolution MODIS pixels, thereby enhancing the accuracy of irrigation area 

estimates in China, where farms are typically small and fragmented.  
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3.3 Accuracy assessment and inter-comparison 330 

The accuracy of CIrrMap250 was assessed from three distinct perspectives. First, pixel-scale accuracy was evaluated using 

over 20,000 reference points collected from existing literatures and land-use maps of the National Land Survey in China. 

Furthermore, the performance of CIrrMap250 was indirectly assessed by comparing its irrigated area estimates with high-

resolution data on irrigation water withdrawal. In addition, we compared CIrrMap250 with three currently available large-

scale irrigation maps, i.e.,  IrriMap_CN , IAAA , and GFSAD , as well as a field scale (30-m resolution) map in the Hexi 335 

Corridor of Northwest China (Yao et al., 2022).  

 

3.3.1 Assessment with reference points 

We assessed the accuracy of CIrrMap250 using three independent datasetssets of validation samples (Figure 2).. The first 

validation samplesdataset was for the year 2000 were(Figure 2a), obtained from Zhu et al. (2014), which were primarily derived 340 

from the crop growth and soil moisture dataset provided by the China Meteorological Data Sharing Service System 

(https://data.cma.cn/). The second validation samplesdataset, for the year 2020 were acquire(Figure 2c), was acquired from 

Chen et al. (2023), who mapped that showed the global location of center pivot irrigation systems (CPIS) in global arid regions. 

The CPIS are characterized by a circular irrigation pattern centered on pivots, which creates a distinct circular pattern on the 

crop (Figure 2c). This characteristic enables a reliable identification of the CPIS from remote sensing images.). We extracted 345 

the CPIS polygons across China (mainly distributed throughout China and converted them into validation points (i.e., the 

center of each CPIS polygon), which are mainly located in in the Northern China.) and compared with our product. In addition, 

we retrieved the validation samples for the year circa 2010 (Figure 2b) from the provincial land-use maps of theChina’s second 

National Land Survey in China (https://www.mnr.gov.cn/). Due to the lack of georeferencing information, weWe 

georeferenced these land use maps using the georeferencing tool in ArcGIS in conjunction with . A total of 234 control points 350 

were selected from high-resolution images. The irrigated  and provincial administrative boundaries for the georeferencing 

process (Supplementary Figure S1). The irrigation samples were takenrandomly extracted from the patches of irrigated lands 

and paddy fields in the georeferenced land-use maps, while non-irrigated samples were taken from dryland patches. Note that 

the surveyed land-use maps of the third National Land Survey are not available currently. In total, weAs shown in Figure 2d, 

we totally obtained a more than 20,000720 reference samples, enabling a robust assessment of the irrigation maps.   355 

https://data.cma.cn/
https://www.mnr.gov.cn/
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.  

Figure 2. Spatial distribution of validation samples. a and b, Spatial distribution of the third-party samples in 2000 and 

2020, respectively. c, Spatial distribution of the samples for the year 2010 retrieved from provincial land-use maps of the 

second national land survey in China. d, Numbers of irrigated and non-irrigated samples for different years.  

 The performance of CIrrMap250 was evaluated quantitively using the overall accuracy (OA), F1-score, producer’s 360 

accuracy (PA), and user’s accuracy (UA) (Supplementary Table S4). CIrrMap250 describes irrigated cropland distribution 

through fractional coverage rather than in a binary manner. The pixel values in CIrrMap250 indicate the percentage of irrigated 

cropland within each grid cell. It’s noteworthy that this percentage represents the proportion of cropland within the 250-meter 

grid cell (estimated from the 30-meter hybrid cropland product), not the proportion of irrigated cropland to total cropland. 

Essentially, the cropland area within each 250-meter grid cell is categorized as either “irrigated” or “non-irrigated”. Hence, for 365 

pixel-scale accuracy evaluation, CIrrMap250 was converted into binary maps, whereby pixels with values greater than 0 were 

coded as 1, representing irrigated cropland, while other pixels were coded as 0, representing non-irrigated area.S5).  
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Figure 2. Spatial distribution of validation samples. a, Spatial distribution of the third-party samples in 2000. b, Spatial 

distribution of the samples in 2010 retrieved from provincial land-use maps of China’s second National Land Survey. c, Spatial 370 

distribution of the third-party samples in 2020. d, Numbers of irrigated and non-irrigated samples for different years.  

 

3.3.2 Assessment with irrigation water withdrawal data 

We further assessed the performance of CIrrMap250 by comparing its irrigatedirrigation area estimates with high-resolution 

(prefecture-level) data on irrigation water withdrawalswithdrawal for the years circa 2010 and 2020. IrrigatedSince irrigated 375 

area is a majordominate driver toof irrigation water withdrawal (Lamb et al., 2021; Puy et al., 2021). Therefore,, irrigation 

water withdrawal can indirectly validateevaluate the accuracy of irrigation maps (Zhang et al., 2022a). A more accurate 

irrigated cropland map isHigh-accuracy irrigation maps are expected to exhibit a more robust correlation between its 

irrigatedbetter explain the variations in irrigation water withdrawal compared to low-accuracy maps. The explanatory power 
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of the irrigation area estimates and actual irrigation water withdrawals, in contrast to maps with lower accuracy. The strength 380 

of this correlation was gauged usingassessed by the coefficient of determination (R2) inR²) from a linear regression model, 

which quantifies  fitted to the extent to which the variance in irrigation water withdrawals can be explained by changes in 

irrigated area.withdrawal data using the least squares method.  

 

3.3.3 Comparison with existing products 385 

We comparedevaluated CIrrMap250 withusing three existing large-scale irrigation maps covering the entire China, including 

IrriMap_CN (Zhang et al., 2022a), IAAA (Siddiqui et al., 2016), and GFSAD (Thenkabail et al., 2016). IrriMap_CN 

areprovides annual irrigated croplandirrigation maps across China at a 500-meter resolution spanning for the years from 2000 

to 2019. It at a 500 m resolution, which was recently developed using MODIS data and machine learning method based on the 

training samples generated from the existing irrigation maps downscaled from the statistical data (Zhang et al., 2022a). The 390 

IAAA are irrigated areairrigation maps at a 500-m resolutioncover Asia and Africa for the years 2000 and 2020, covering Asia 

and Africa.2010 at a 500 m resolution. These maps were created by leveragingbased on seasonal vegetation variations captured 

in multi-seasonal satellite imagesMODIS data (Siddiqui et al., 2016). GFSAD is aThe 2010 global irrigated croplandirrigation 

map at a 1000-m , GFSAD, has the spatial resolution for the year 2010. It of 1000 m and was generated by overlaying the five 

dominant crops of the world with the remote sensing-derived irrigated and rainfed cropland area map (Thenkabail et al., 2016).  395 

 In additionAdditionally, we obtained evaluated our maps for the Hexi Corridor using a field-scale remote sensing 

irrigation cropland map, denoted as OPTRAM30, developed by . OPTRAM30 was specifically created for the region (Yao et 

al., 2022). Hexi Corridor in Northwest China using the soil moisture change detection method with the optical trapezoid model. 

This map The map, OPTRAM30, has a high30 m resolution of 30 meters and demonstrates an accuracy approachingclose to 

100% when validated against in situ datasets. Given the high accuracy and spatial resolution of OPTRAM30, it can serve as a 400 

valuable reference for the evaluation of large-scale irrigation maps. Hence, we additionally made a comparison ofIn addition 

to assessing CIrrMap250, we also evaluated IrriMap_CN, IAAA, and GFSAD withusing OPTRAM30 in the Hexi Corridor.  

 

3.4 Changes in irrigatedIrrigation area change and comparisonits correlation with water stress areas 

We examined the irrigation trends in irrigated areas in a spatially explicit manner using 21 years of data.our new irrigation 405 

maps from 2000 to 2020. The trends were quantified by calculatingas the slope of the regression line fitted to the time-series 

irrigation data of irrigated areas at the pixel scale using the least squares method. Furthermore, we adopted the concept of 

“center of gravity” to track the spatial dynamics of irrigated areas (Zeng and Ren, 2022). The gravity center of irrigated area 

(X, Y) is represented as: 

  𝑋𝑡 =
∑ 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖

𝑡×𝑥𝑖
𝑛
𝑖=1

𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡   (67) 410 
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 𝑌𝑡 =
∑ 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖

𝑡×𝑦𝑖
𝑛
𝑖=1

𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡  (78) 

where 𝐼𝑟𝑟𝐴𝑟𝑒𝑎𝑖
𝑡  denotes the irrigated area in grid i; xi and yi are the longitude and latitude of grid i, respectively; n is the 

number of irrigated cropland grids; and t is year. 

 In addition, we quantified the water sustainability of changes in irrigation areas. Thechanges across China. To do so, 

we first identified the expansion and decline in irrigated areas between 2000 and 2020 were first identified at the pixel scale. 415 

To better visualize the results, we aggregated changes in irrigated area toat a 5- km resolution, following previous studies 

(Deines et al., 2019; Xie and Lark, 2021).  Subsequently, we compared thesethe changes with a prefecture-level water stress 

map derived from the mean values of WSI over the period 2010-2020. The WSI denotes the fraction of available water 

resources appropriated by humans and is employed to categorize water stress across different prefectures into four levels: low 

(WSI≤ ≤ 0.2), moderate (0.2< < WSI ≤0.4), highsevere (0.4 < WSI≤ ≤ 1.0), and severeextreme (WSI> > 1) (Zhang et al., 420 

2023b). Expansions of irrigated areas. Irrigation expansion under severe to extreme water stress werewas designated as 

“unsustainable” due to theirthe potential to exacerbate theof exacerbating depletion of surface water and groundwater (Mehta 

et al., 2024)resources . Conversely, the expansion of irrigated aerasirrigation under low to moderate water stress, or reductions 

in irrigated areasthe shrinkage of irrigation under severe to extreme stress werewas deemed “sustainable”.   

4 Results  425 

4.1 Accuracy assessment of irrigated cropland maps 

4.1.1 Pixel-scale assessment  

As depictedshown in Figure 3 and Supplementary Table S5S6, CIrrMap250 attains an OA and F1-score of 0.79 and 0.78, 

respectively, for the year 2000, surpassing the performance of IrriMap_CN and IAAA. In the year 2010, CIrrMap250 achieves 

a high OA of 0.79 and a F1-score of 0.71, whereas the existing maps attain OA values below 0.66 and F1 scores under 0.63. 430 

For the year 2020, CIrrMap250 detects 88% of the fields with center pivot irrigation systemsirrigated fields, while IrriMap_CN 

identifies only 20% (Figure 3c and Supplementary Figure S1).S2). Note that both CIrrMap250 and IrriMap_CN achieves a 

perfect user’s accuracy in 2020 mainly because all the reference points are irrigated samples (Section 3.31 and Supplementary 

Table S7). For irrigated samples, CIrrMap250 has significantly higher producer’s accuracy in 2000, 2010, and 2020, compared 

to the existing products. CIrrMap250 and IrriMap_CN performs similarly in user’s accuracy. For non-irrigated samples, the 435 

producer’s accuracy of CIrrMap250 is relativelyslightly lower than that of IrriMap_CN, but the user’s accuracy is significantly 

higher than that of IrriMap_CN. In terms of producer’s accuracy and user’s accuracy, both CIrrMap250 and IrriMap_CN 

obviously outperform IAAA and GFSAD. 
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 440 

Figure 3. Performance of CIrrMap250 and the existing irrigation maps (IrriMap_CN, IAAA, GFSAD). Panels a, b and 

c show the results for 2000, 2010, and 2020, respectively. OA, PU, and UA arerepresent overall accuracy, producer’s accuracy, 

and user’s accuracy, respectively. Irr and NIrr indicate irrigated and non-irrigated samples, respectively. 
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4.1.2 Nationwide and regional comparison with existing products 445 

Figure 4 comparesshows the spatial distribution of irrigated cropland in CIrrMap250 with the existingfrom different maps. At 

the national scale, CIrrMap250 and IrriMap_CN, specifically developed for China, can capture similar irrigation patterns. 

IrrigationThey both show some irrigation hotspots (e.g,., North China Plain and Northwest China) and well-known irrigation 

districts like Hetao, Baojixia, Dujiangyan, Qingtongxia, and Fenhe are consistently identified by these maps. The irrigated 

croplands depicted by. However, CIrrMap250 areshows more widely distributed widespread irrigation than those portrayed 450 

by IrriMap_CN across the majorityin most areas of China (Supplementary Figure S2). CIrrMap250 yieldsS3). IrriMap_CN 

estimates irrigation ratiosproportion (i.e., the ratio of irrigated cropland area to the total cropland area) ofto be 0.5847, 0.7037, 

and 0.96, respectively,61 for China, Northern China, and Xinjiang Uygur Autonomous Region. These values , respectively 

(Supplementary Figure S4). In comparison, the values derived from CIrrMap250 are 0.58, 0.70, and 0.96, respectively, which 

align more closely with the reality and the official reportreports (https://gtdc.mnr.gov.cn/), in comparison to those derived from 455 

IrriMap_CN, which are only 0.47, 0.37, 0.61, respectively (Supplementary Figure S2). However). Nevertheless, CIrrMap250 

tends to yield lower estimates of irrigation area in Northeast China (NEC) when compared to IrriMap_CN., possibly due to 

inaccurate statistical and survey data in this region. In contrast to CIrrMap250 and IrriMap_CN, IAAA notably underestimates 

irrigated croplands in Northwest China (NWC) and North China (NC), but overestimates them in NEC and Southwest China 

(SWC). This could be explained by the fact that IAAA was developed using unsupervised classification (Siddiqui et al., 2016), 460 

limiting its ability to characterize the spatial heterogeneity of irrigation in China (Tian et al., 2024). GFSAD shows 

overestimations of irrigated area in the Dujiangyan district and the North China Plain, but exhibits evident omission errors in 

sparsely distributed irrigation regions like NWC and the southern part of South China (SC). The large bias of GFSAD is 

understandable, as it is not an irrigation-specific product and only covers five irrigated crops(Thenkabail et al., 2016; Xie et 

al., 2021).   465 

https://gtdc.mnr.gov.cn/
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Figure 4. Spatial distribution of irrigated cropland infrom different irrigation maps for the year 2010. NEC, NC, NWC, 

SWC, SC and CSC are the abbreviations ofrepresent Northeast China, North China, Northwest China, Southwest China, South 

China, and Central South China. IrrPct represents the proportion of irrigated cropland relative to the total area of a grid cell.  , 470 

respectively.  

 We further compared CIrrMap250 with the existing maps in four heavily irrigated zones (A-D locations are shown 

in Figure 4a). Zones A and B are situated in arid regions where crop growth depends greatly onis not possible without irrigation, 

while Zoneszones C and D are located in humid regions where paddy rice is extensively cultivatedwidespread and relies 

heavily on supplemental irrigation. As depictedshown in Figure 5, CIrrMap250 accurately portrays the actual distribution of 475 

irrigated cropland in these zones. In contrast, IrriMap_CN underestimates irrigation extent in zones A and B and lacks detailed 

information on irrigated cropland in zones C and D. IAAA significantly underestimates the irrigatedirrigation area in zone A, 
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incorrectly identifies irrigated cropland in zone B, and overestimates irrigated cropland in region C. The GFSAD product, with 

a relatively coarse resolution of 1 kilometer, haskm, shows the lowest agreement with the distribution of actual irrigated 

cropland among the fourother maps.  480 
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Figure 5.  Visual comparison of CIrrMap250 with the existing maps. The five rows from top to bottom correspond to the 

Google map, CIrrMap250, IrriMap_CN, IAAA and GFSAD, respectively. Locations of the four selected zones are presented 

in Figure 4a.  485 

and GFSAD, respectively.  When examiningLocations of the four selected zones are presented in Figure 4a. 
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 Figure 6 provides an additional comparison of the aforementioned large-scale irrigation maps with the field-scale 

remote sensing irrigation map (OPTRAM30) in the Hexi Corridor of Northwest China.(Figure 6), CIrrMap250 exhibits a 

robusthigh agreement with OPTRAM30 in mapping irrigated cropland.. While IrriMap_CN captures the general pattern of 

irrigated croplandspatterns, it tends to underestimate the overall irrigation extent of irrigated cropland in this , as demonstrated 490 

in zones Ⅰ and Ⅱ of the region. In contrast, (Figure 6d). The IAAA product struggles to identify irrigated cropland in this area, 

displaying significant omission and commission errors. Similarly, GFSAD has a limited ability to accurately depict irrigated 

areas in the Hexi Corridor.  
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 495 

Figure 6. Comparison of large-scale irrigation maps (CIrrMap250, IrriMap_CN, IAAA, GFSAD) with the field-scale 

remote sensing irrigation map (OPTRAM30) in the Hexi Corridor of Northwest China. Panels a, b, c, e, and f depict the 

distribution of  

 

4.1.3 Comparison irrigated area cropland in OPTRAM30, CIrrMap250, IAAA, IrriMap_CN, and GFSAD, respectively. Panel 500 

d shows the comparisons of CIrrMap250 and IrriMap_CN with OPTRAM30 in two local zones.  

 

4.1.3 Comparison high-resolutionwith irrigation water use data  

As illustrated in Figure 7, there is a good correlation between the the CIrrMap250-estimated irrigated area and the irrigation 

water withdrawal. Changes in irrigated area determined by areas exhibit a notable correlation with irrigation water withdrawals. 505 

Irrigation area changes derived from CIrrMap250 account for approximately 50% and 60% of the variance in irrigation water 

withdrawals for the years circa 2010 and 2020, respectively. In contrast, changesvariations in irrigated areas derivedarea 

obtained from IrriMap_CN can only explain 40% and 48% of the variance in irrigation water withdrawals for the same periods, 

namely 2010 and 2020. The , respectively. As shown in Figures 7c and f, the irrigated area estimates of irrigated areas from 

the other two maps, namely (i.e., IAAA and GFSAD, are able to explain) demonstrate limited explanatory power, explaining 510 

only a small proportion12% and 20% of the variancesvariation in irrigation water withdrawals (i.e., 0.12 and 0.20), suggesting 
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a relatively low performance of these maps in Chinafor the year 2010. These results indirectly imply the bettera superior 

performance of CIrrMap250 over the existing irrigation maps.  

 

 515 
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Figure 7. Scatterplots of irrigated area estimates against irrigation water withdrawals against irrigated area estimates 

from different products for the years circa 2010 and 2020.  The data are presented in logarithmic units to reflect both small 

and large values.   

 

4.2 Spatiotemporal changes of irrigated croplands 520 

As depicted in Figure 8, irrigated our CIrrMap250 revealed that irrigation area expandsexpanded significantly in NEC and 

NWC from 2000 to 2020. Conversely, it reduced notablynotable decreases in irrigated areas were identified in the northern 

parts of SC and CSC, the northeastern part of SWC, and the southern parts of CSC and NC. The decline in irrigated areas 

tendstended to be concentrated in populous areas, which can be attributed to the rapid urban expansion on large areas of 

cropland (Zhang et al., 2024). The gravity center of gravity for irrigated area isirrigation was situated on the border of NC and 525 

CSC, and exhibitsexhibited a noticeable northward shift from 2000 to 2020.during the study period. This northward spatial 

trend in irrigated area is likely to exacerbate the water crisis in Northern China (Li et al., 2023), which has only 20% of China’s 

water resources but supports more than half of its population. The gravity center showed clear trends in NWC, NEC, and NC 

but was insignificant in the remaining subregions (Supplementary Figure S5). In NWC, irrigation significantly shifted to the 

northwest, while in NEC, it significantly shifted to the northeast. Meanwhile, there was a northward spatial trend in irrigation 530 

in NC. 
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Figure 8.  Spatiotemporal changes in irrigated area from 2000 to 2020. Pixels withexhibiting significant increasing or 

decreasing trendinterannual trends (p< < 0.05) markedin irrigated area were labelled as “expansion” or “reduction”, while 535 

those with insignificant changes are denoted as “stable”. Pixels with <less than 5% irrigated croplands were excluded from the 

map. InsertedThe inset panel on the top of the figure depicts the center-of-gravity movement (spatial trend) of China’s irrigated 

areaareas at the national scale. 

 As shown in Figure 9, our annual irrigation maps indicated that all subregions exhibitexhibited an increasing trend in 

irrigated area from 2000 to 2020, with NEC expanding significantly faster than the other subregions. The irrigated area of 540 

China increasesMore specifically, China’s irrigation aera increased from 750about 760,000 to 950940,000 km2 at thean annual 

rate of about 10,000 km2/year (or 1.29%/year). Notably, NEC and NWC contribute to about half of this expansion. Despite 

the consistentoverall upward trend in irrigated area, the relative, changes in the proportion of irrigated areas, in relation to 

China’s total irrigated area, are inconsistent across different subregions. The proportion of irrigated area in NEC area varied 

by subregion - upward trends in NEC and NWC and NWC shows an upward trend, whereas thatdecreasing in SCS, SC, and 545 

NC displays a downward trend.. SC hasaccounted for the largest proportion of irrigated cropland in China (26%-3029%), 

followed by CSC (22%-24%), NC (16%-17%), NWC (12%-14%), SWC (11%), and NEC (7%-11%). 
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Figure 9. Changes in irrigated area ofacross the six subregions of China during 2000-2020. a, Relative changes in irrigated 550 

area. b, Changes in China’s total irrigated area, with the contribution of different subregions depicted in the inserted pie chart. 

c, Relative changes in the proportion of irrigated area. d, Proportion of irrigated area for the years 2000, 2010 and 2020.  

  

4.3. Irrigated croplandIrrigation changes under different water stress levels 

Figure 10 shows theirrigation changes in irrigated cropland under different levels of water stress levels. We findfound a gross 555 

irrigation expansion of irrigated area by about ~250,000 km2 in China from 2000 to 2020, of which 64% iswas unsustainable 

from the perspective of water resources and has beenwas in regions with high to severe to extreme water stress. The expansion 

of irrigated area iswas mainly situated in NWC, NEC, NC, and the northern parts of CSC and SC. The gross reduction in 

irrigated area iswas about 70,000 km2, of which 72% has been sustainable and locatedwas in regions with high to severe to 

extreme water stress. These and could be considered as sustainable. This sustainable reduction in irrigated area,was primarily 560 

located in NC, CSC and SC, mitigates that partly mitigated the unstainable irrigated cropland expansion. in the regions. The 



32 

 

net expansion of irrigated area iswas about 180,000 km2, of which 61% iswas water unsustainable. The subregions NEC and 

NWC havehad a larger proportion of unsustainably expanded irrigated area compared to other subregions, accounting for about 

70% of China’s net unsustainable irrigation expansion. In contrast, the subregions CSC and SWC have a greater proportion of 

sustainably expanded irrigated areasustainable expansion than in other subregions due to the abundance of water resources and 565 

lower water stress there.   
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Figure 10. Changes in irrigated area between 2000 and 2020 under different water stress levels. Panels a and b 

showpresent the spatial distribution of gross expansionexpansions and reduction ofreductions in irrigated areas, 570 

respectively,area under low to severe four categories of water stress. (i.e., low, moderate, severe, and extreme). Panel c and d 

showshows the gross and net changes in irrigated area by water stress category for China and, while panel d presents the results 

for the six subregions.  

 

5 Discussion 575 

5.1 Improvement of CIrrMap250 over existing products 

Our CIrrMap250 product provides annual maps of China’s irrigated cropland from 2000 to 2020, exhibiting higher accuracy 

compared to existing products. The improved performance of CIrrMap250 can be attributed to several key factors. First, 
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CIrrMap250 has digested unprecedentedly detailed irrigated areairrigation statistics and reliable national land surveys, and 

meanwhileat the same time, has considered discrepancy beenreconciled the discrepancies between statistical/survey data and 580 

remote sensing data. We compiled county-level statistical data for over 80% of provinces in China, along with prefecture-level 

data for the remaining provinces. These datasets, for the first time, were harmonized with the national land surveysChina’s 

National Land Surveys, greatly reducing the errors and uncertainties in irrigated areareported statistics. The harmonized 

irrigated area data were further adjusted to reconcile the statistical/surveyed data with remote sensing data. The reconciliation 

was necessary because statistical and surveyed irrigated area represents the net extent of irrigated cropland, whereas remote 585 

sensing-derived irrigated area indicates the gross extent. Without adjusting the original irrigated area statisticssurvey data with 

remote sensing data to account for their inconsistency. Without data harmonization and reconciliation, the irrigation extent 

would be significantly underestimated, leading to a decrease in irrigation mapping accuracy by 8%-26% (Supplementary 

Figure S4S6).  

 Furthermore, CIrrMap250 describes irrigated cropland distribution through considered the fractional coverage of 590 

cropland within coarse-resolution pixels, rather than theusing binary approach adopted cropland masks in most existing 

products. The majority of farms in China are small and fragmented. For instance, in the year 2020, we We observed that about 

37% of the 250-mChina’s cropland grids were occupied by less than half of croplands in China, while less thanhad cropland 

proportions below 50% for the year 2020, and only 40% of cropland grids were occupied by more than 90% of 

croplands.showed cropland proportions above 90%. Therefore, it becomes crucial to consider the fraction coverage of cropland 595 

in cropland masks for the purpose ofirrigation mapping irrigated areas. We. To underscore this necessity, we conducted an 

additional irrigation mapping experiment, in whichwherein we adopted the 250- m cropland maps weremasks that described 

cropland distribution in a binary manner and resampled from the 30-m hybrid cropland product.(i.e., each pixel was classified 

as either cropland or non-cropland) for irrigation mapping. As depicted in Supplementary Figure S5S7, a substantial portion 

of irrigated cropland would be overlooked if the fractional coverage of cropland is not taken into accountwere removed, 600 

particularly in South China. The accuracy of the irrigated cropland map final irrigation maps would decrease by approximately 

5%-6% if we used such binary cropland masks (Supplementary Figure S6S8).  

 Lastly, CIrrMap250 has incorporated an irrigation suitability map, derived by combining irrigation suitability values 

of three influential factors-elevation, slope,analysis, based on the premise that irrigated cropland should not only be greener 

and aridity index—using a weighted average method.more productive but also more suitable for irrigation compared to rainfed 605 

cropland. To demonstrate the importance of integrating irrigation suitability into the irrigation mapping process, we randomly 

generated 250 sets of weights (assigned to the influencing factors) for all provinces in China, resulting in 250 distinct irrigation 

suitability maps. Based on these maps, we then created 250 different irrigated cropland maps for the year 2010 using the 

method proposed method ofin this study. As shown in Supplementary Figure S7S9, regardless of the choice of irrigation 

suitability maps, these irrigation maps consistently outperform the baseline irrigation map, which was created using the method 610 

in this study but excludeddisregarded irrigation suitability during the mapping process. Furthermore, there is a narrow range 
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(0.75-0.77) in the overall accuracy of these irrigation maps, implying the robustness (low sensitivity) of the mapping method 

to the use of different irrigation suitability maps. 

 

5.2 Uncertainties and, limitations, and potential applications of CIrrMap250  615 

Despite the advancements made inof CIrrMap250 compared to existing products, we acknowledge several uncertainties and 

limitations associated with the product. CIrrMap250 was developed by integrating data from multiple sources using a semi-

automatic training method, leveraging joint information related to irrigation in each data source. However, each data source 

inherently presents uncertainties and deficiencies (Shahriar Pervez et al., 2014; Tian et al., 2024)Firstly, the accuracy of 

CIrrMap250 is intricately tied to irrigated . Irrigation area statistics. Despite our efforts to harmonize irrigation statistics with 620 

national land surveys, inherent biases and uncertainties persist , in particular, can contain significant uncertainties due to 

technical and political factors, such as variations in statistical methodsmethod and administrative division (Thenkabail et al., 

2009; Meier et al., 2018)divisions., which have not been well characterized. These biases and uncertainties are inevitably 

reflectedwould manifest in CIrrMap250, since our training samples were derived from these statistics-constrained irrigation 

maps. In this study, we addressed this issue by merging reported irrigation statistics with independent survey results. 625 

Nonetheless, uncertainties related to irrigated areas may remain unresolved in certain regions. For instance, we found 

considerable discrepancies between the statistical and surveyed irrigation areas in SC and NEC (Supplementary Figure S10a), 

implying greater uncertainties in these subregions compared to others. Furthermore, the irrigation statistics and surveys were 

reconciled with remote sensing data to address inconsistencies between the two sources. However, the bias ratio may be 

inaccurately estimated in the reconciliation process, introducing additional uncertainties to the results. 630 

 Cropland mask layers used to distinguish cropland from non-cropland are another source of uncertainty. These layers 

were constructed using our hybrid cropland product (Zhang et al., 2024), which integrates five state-of-the-art remote sensing 

land use/cover products. This hybrid product significantly reduced uncertainties associated with cropland distribution in China. 

However, remote sensing-derived cropland data show large uncertainties in southern China. As illustrated in Supplementary 

Figure S10b, only 27% of croplands on average in SWC, SC, and CSC are consistently identified by remote sensing products, 635 

compared to 39% in northern subregions (NEC, NC, and NWC). These uncertainties are reflected in our hybrid cropland 

product, which shows greater accuracy in the northern subregions than in the southern ones (Supplementary Figure S10c). 

Meanwhile, the temporal resolution of the cropland layers is five years, which may not accurately capture changes in cropland 

distribution in regions experiencing rapid changes. The uncertainties and errors in the cropland mask layer, particularly in 

southern China, could propagate into CIrrMap250. 640 

 An additional source of uncertainty is the MODIS-derived vegetation indices (i.e., NDVI, EVI, and GI). These indices 

are prone to data gaps due to cloud and cloud shadow contaminations. In this study, we filled the data gaps by using a simple 

nearest neighbor interpolation method, which may introduce uncertainties to CIrrMap250. Additionally, irrigated croplands in 

humid southern China are more sparsely distributed and show weaker contrast with rainfed fields compared to northern China. 
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This makes the peak vegetation indices less effective and more uncertain in distinguishing irrigated from rainfed cropland (Xie 645 

et al., 2019; Zhang et al., 2022a)the statistics-constrained irrigation maps. Furthermore, . Consequently, our CIrrMap250 

product exhibits higher accuracy in NEC, NWC, and NC than in SC, CSC, and SWC subregions (Supplementary Figure S10d).  

 Lastly, CIrrMap250 has the limitation of a relatively coarse spatial resolution of 250 meters.m and does not fully 

address the mixed-pixel problem. While the CIrrMap250 offers a higher spatial resolution of CIrrMap250 is higher than many 

existing large-scale irrigation maps, it may still not be applicable to smaller spatial scales (e.g.,not be suitable for local 650 

applications, such as field or irrigation district levels. The mixed-pixel problem significantly affects the precision of cropland 

masks (Zhang et al., 2024)scales). In addition, the mix-pixel problems could bring uncertainties to our mapping results. Despite 

the consideration of and weakens the distinction between vegetation indices for irrigated and rainfed cropland. Even though 

CIrrMap250 considers the fractional averagecoverage of cropland, CIrrMap250 cannotit does not differentiate between 

irrigated and rain-fedrainfed croplands at the subpixel scales., like many other existing irrigation maps. There are many small 655 

and fragmented croplands in the mountainous regions of South China with complex terrain and diverse vegetation 

types.southern China. CIrrMap250 should be used with caution in these regionsareas due to the wide existenceprevalence of 

the mixed pixels. The mix-pixel problems could not only significantly affect the precision of cropland masks , but also the 

difference in vegetation indices between irrigated and rainfed cropland.  

 Despite these limitations, our CIrrMap250 makes a valuable contribution to the field of irrigation mapping and will 660 

greatlyis poised to significantly support hydrologic, agricultural, hydrological, and climate studies, as well as water resource 

management in China. EffortsOngoing efforts to overcome the aboveaddress these limitations and explore avenues for 

potential enhancements will undoubtedly improve the accuracy and utility of our irrigation maps in the future. One of the 

major applications of CIrrMap250 will be estimating irrigation water use or requirements, considering that irrigated area is a 

dominate driver of irrigation water withdrawal (Ozdogan and Gutman, 2008; Puy et al., 2021). Secondly, the spatial detail 665 

provided by CIrrMap250 can be integrated into crop, hydrological, and climate models to improve the simulations of water 

uses and land-atmosphere interactions (Uniyal and Dietrich, 2021; Mcdermid et al., 2023; Yang et al., 2023). This integration 

will advance our understanding of how irrigation practices influence crop yield, and hydrological and climatic processes from 

local to nationwide scales. Lastly, CIrrMap250 provides insights into irrigation changes and can assist in optimizing the spatial 

distribution of irrigated croplands (Rosa et al., 2020a; Rosa et al., 2020b), thereby supporting more informed decisions for 670 

sustainable water and land use.  

 

6 Data availability 

The annual maps of China’s irrigated cropland from 2000 to 2020 (named as CIrrMap250) can be accessed at: 

https://doi.org/10.6084/m9.figshare.24814293.v1 (Zhang et al., 2023a). All maps are presented in the GeoTIFF format, with 675 

the geographic coordinates using thecoordinate of WGS84 reference system.. Pixel size is 0.00225 × 0.00225 degree (~250 m 

https://doi.org/10.6084/m9.figshare.24814293.v1
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×250 m at Equator). The maps show the percentage of each 250 m pixel that is covered by irrigated cropland (i.e., pixel value 

= irrigated area / pixel area ×100). 

 

7 Conclusions 680 

This study outlines the development of China, as a big agricultural country with extensive irrigation, underscores the critical 

importance of developing reliable irrigation maps for sustainable land-water-food nexus management. This study presented 

new annual maps of irrigated cropland in China spanning from 2000 to 2020, denotedreferred to as CIrrMap250. The new 

product wasThese maps were developed by integrating multisource data, including remote sensing data (vegetation indices, 

hybrid cropland product, and paddy field maps), irrigated area, reported statistics and surveys, and an irrigation suitability 685 

map. The integration of these data was achieved through a semi-automatic training approach, which first generated training 

samples using a threshold-calibration method and subsequently employed the random forest algorithm for classifying irrigated 

and rainfed cropland. We evaluated the accuracy of CIrrMap250 using over Validation against 20,000720 reference collected 

from existing literatures and land-use maps of the National Land Survey in China. Furthermore, an indirect assessment of 

CIrrMap250 was carried out using higher-resolution data on irrigation water withdrawals. Our CIrrMap250 product was 690 

compared to three available large-scale samples demonstrated that our irrigation maps (i.e., IrriMap_CN, IAAA, and GFSAD) 

as well as a field scale map (i.e., OPTRAM30). 

 Results indicated that CIrrMap250 attained an overall accuracy of 0.79-0.88 for the years 2000, 2010 and 2020, 

surpassing the precision of the existing achieved high accuracy and outperformed the currently available products. 

Furthermore, the CIrrMap250-estimated irrigated area can explain 50-60% of the variance in prefecture-level irrigation water 695 

withdrawals, and showed a stronger correlation with irrigation water withdrawals than the existing products. The visual 

comparison covering the entire China. The superiority of our product over existing maps were further confirmed the better 

performance of CIrrMap250 over the existing products. Leveraging through the assessments using irrigation water withdrawal 

data and local-scale visual comparisons. Based on the 21 years of data, we found a consistentclear upward trend in the irrigated 

area across all subregions of China from 2000 to 2020. Notably, the growth rate in Northeast and Northwest China surpasses 700 

that of the remaining subregions. Consequently, the center of gravity of China’s irrigated cropland shifted significantly and 

northward shift in China’s irrigation area. The irrigation expansion is particular notable in water-scare regions like Northeast 

China and Northwest China, potentially exacerbating the water crisis in North China. Over the period from 2000 to 2020, we 

observed a net increase of about 180,000 km2 (or 25%) in China’s irrigated area. However, a significant portion (61%) of this 

expansion is deemed unsustainable from a water resources perspective and have been in regions facing high to severe water 705 

stress.  

 The performance improvement of CIrrMap250 over existing products can be attributed to the digestion of detailed 

irrigated area statistics and reliable national land surveys, the consideration of discrepancy been statistical/survey data and 
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remote sensing data, the description of irrigation cropland distribution through fractional coverage, and the incorporation of 

irrigation suitability. We anticipate that our CIrrMap250 product scarcity concerns. CIrrMap250 will greatly support 710 

hydrologic,significantly enhance agricultural, hydrological, and climate studies, as well as water resource management in 

China for improved water and land resources management. . 
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