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Dear Reviewer, 

Thank you very much for the great efforts on our manuscript. Inspired by your valuable 

comments, we have made a major revision to our manuscript. The key revisions include: 

(1) The data description has been carefully rewritten to avoid any potential 

misinterpretations by users. 

(2) Additional experiments have been conducted to provide further explanation of 

our methodology. 

(3) Additional information and discussion regarding our results have been 

incorporated. 

(4) Many paragraphs, sentences, and figures have been revised to improve 

readability, conciseness, and clarity. 

The detailed point-to-point responses are as follows. Texts in red are the reviewer’s 

comments; those in black are our responses to the reviewer’s comments; and those in 

blue and italics are the revised texts appeared in the revised manuscript.  



The manuscript “CIrrMap250: Annual maps of China’s irrigated cropland from 2000 

to 2020 developed through multisource data integration” applies a random forest 

algorithm to classify and produce a new irrigation map product (CIrrMap250) over 

China at 250m resolution. The authors evaluate the new maps quantitatively and 

qualitatively (using reference data, withdrawal data and other existing irrigation 

products) over the 2000-2020 period. Generally, the paper is properly structured. It is 

well suited for this journal. However, the manuscript and supporting document appear 

rushed with several inconsistencies and mistakes. Some remarks: 

• Check (and re-check) all the reported details. I.e., the performance metrics and 

other variables in the figures, tables and elsewhere in the manuscript (and the 

supplementary document). Please correct all inconsistencies. More below. 

 

Response: Thanks for your detailed and valuable comments. We sincerely apologize 

for the mistakes we made in the original manuscript. We have thus carefully read 

through the revised manuscript and supplementary file, including figures, equations, 

tables, and text. please refer to our point-by-point response below for further details.   

 

 

• What is the definition of ‘irrigated cropland’ as used in this study? At first I was 

rather intrigued when the authors mentioned in the initial sections that their product 

gives the irrigated cropland (which I interpreted as the fraction of vegetation cover that 

is actually irrigated). On further reading, however, it seemed the authors were only 

labeling the pixels as either irrigated [1] or not [0] and then presenting the total fraction 

vegetation cover (FVC) of [1] as the ‘irrigated cropland’ …is my understanding correct? 

If this is the case, what differentiates this product from a binary [1,0] irrigation map 

that is combined with the many (readily available) FVC products. Actually, one would 

argue that the latter method is better as it is not prone to misinterpretation by the user. 

Users are likely to misinterpret the produced CIrrMap250 irrigation maps to mean the 

ACTUAL irrigated pixel proportion and not the total vegetation cover. Also, how do 

you address pixels that have possibly been assigned an FVC of ~0 (e.g. at early growth 

stages) but have an [actual] irrigated area/extent larger than 0? 

 

Response: Thanks for the valuable comments. Your understanding is correct. In this 

study, each 250-meter pixel was categorized as either irrigated or non-irrigated. No 

further classification was conducted to distinguish between irrigated and non-irrigated 

cropland at the subpixel level. Therefore, if a pixel was classified as “irrigated”, it was 

assumed that all cropland within that pixel was irrigated.  

 The binary irrigation maps were spatially filtered and finally multiplied by the 

corresponding cropland mask layers to produce the annual maps of irrigated cropland 



in China (i.e., CIrrMap250). As a result, the pixel value of our product indicates the 

percentage of a 250 m resolution pixel covered by irrigated croplands (i.e., pixel value 

= irrigated area / pixel area ×100). Unlike simple binary maps, this post-processing step 

was implemented to consider the fractional coverage of croplands within coarse-

resolution pixels, thereby enhancing the accuracy of irrigated area estimates in China, 

where farms are typically small and fragmented. For instance, in a binary irrigation map, 

if 10 grids in a county are classified as “irrigated”, the calculated irrigated area would 

be 250×250×10 = 625,000 m² without considering fractional coverage of cropland. 

However, if the cropland coverage within each grid in the county is only 50%, then the 

actual irrigated area should be halved, amounting to 312,500 m². 

 To mitigate any misinterpretations, we have explicitly clarified our product in the 

introduction and methodology sections. Additionally, we have removed phrases such 

as “irrigation cropland proportion”, “fraction coverage of irrigated cropland”, and “the 

mixed pixel issue” from our dataset descriptions.  

 The newly developed maps (CIrrMap250) feature a spatial resolution of 250 meters 

at an annual frequency from 2000 to 2020. Our maps show the percentage of each 250 

m by 250 m pixel that is covered by irrigated cropland (i.e., pixel value = irrigated area 

/ pixel area ×100). 

 Finally, we multiplied the binary, spatially filtered irrigation maps by their 

corresponding cropland mask layers to generate annual irrigation maps for China. The 

final product, CIrrMap250, represents the percentage of a 250 m pixel covered by 

irrigated croplands (i.e., pixel value = irrigated area / pixel area ×100). Unlike simple 

binary maps, our product considers the fractional coverage of croplands within coarse-

resolution MODIS pixels, thereby enhancing the accuracy of irrigation area estimates 

in China, where farms are typically small and fragmented.  

 Consistent with prior researches (Zhu et al., 2014; Meier et al., 2018; Zhang et al., 

2022a; Wu et al., 2023), irrigated cropland in our study is defined as cropland that is 

subject to irrigation. Consequently, a crucial step of mapping irrigated cropland 

involved selecting or generating suitable cropland mask layers. The classification of 

irrigated and non-irrigated cropland was exclusively conducted at the cropland grids 

(i.e., irrigated cropland was restricted to cropland areas). Thus, each irrigation map 

corresponds to a specific cropland mask. For example, CIrrMap250 utilized the 

cropland mask from the high-resolution (30-meter) hybrid cropland product 

(CCropLand30) (Zhang et al., 2024), while IrriMap_CN employed the cropland mask 

from the National Land Cover Dataset (NLCD) (Zhang et al., 2022a). Consequently, 

binary irrigation maps cannot be merged with other cropland masks due to significant 

disparities in cropland identification by different cropland datasets. For instance, a pixel 

classified as irrigated cropland in the irrigation map based on cropland mask A may 



become non-irrigated if merged with another cropland mask B, as it may be classified 

as non-cropland in cropland mask B.  

 The Fraction of Vegetation Cover (FVC) typically represents the percentage of 

ground covered by green vegetation, ranging from 0% to 100%. However, in our study, 

fraction coverage of cropland denotes the proportion of cropland area within each 250 

m by 250 m pixel. For example, a pixel value of 0.2 in the cropland mask layer indicates 

that 20% of the 250-meter grid is covered by cropland. The classification of irrigated 

and non-irrigated cropland was exclusively performed on the cropland grids identified 

by cropland masks. Cropland proportion in each pixel was assumed to remain 

unchanged throughout the year in our study and other similar studies (Zhu et al., 2014; 

Meier et al., 2018; Zhang et al., 2022a; Wu et al., 2023).  

 

 

• The CIrrMap250 product is limited to China. Have the authors considered applying 

a similar methodology to other regions, e.g. extend it globally? Obviously, training and 

test datasets from other global sites would be required, but would it be viable to apply 

your RF classifier/model (as-is) to other regions beyond China? What would be the 

limitations? 

 

Response: In this study, we developed CIrrMap250 by integrating multisource data 

through a semi-automatic training approach (Zhang et al., 2022d; Xie et al., 2019). 

While our irrigation mapping method is applicable to other regions worldwide, we 

acknowledge that its effectiveness largely depends on the availability and reliability of 

multisource datasets, particularly those related to irrigation statistics and surveys. This 

dependency stems from our methodology’s framework, which uses a threshold-

calibration method to generate training samples for each county in China based on 

remote sensing data, reported statistics/surveys, and an irrigation suitability maps 

Consequently, the random forest models trained in this study were customized for China 

and may not be directly transferable to other regions due to significant variations in 

irrigation practices, landscapes, and climatic characteristics (Salmon et al., 2015; Zhang 

et al., 2022d). 

 

 

Specific comments : 

L16:  “… and considered the fraction coverage of irrigated cropland (i.e., the mixed 

pixel issue). In this study, we addressed these important gaps …” - This is somewhat 

misleading as the mixed pixel issue is not addressed in this manuscript. I was expecting 

that the authors were referring to ‘mixed pixel’ in terms of irrigation, i.e. proportion of 

the fraction vegetation cover (FVC) that is irrigated or not. If not mistaken, the only 



consideration here is the total FVC, which is provided within most RS products anyway, 

and can thus be similarly combined (rather straightforwardly) with any available 

binary/boolean [1,0] irrigation maps. Also see your comment in L495 : “CIrrMap250 

cannot differentiate irrigated and rain-fed croplands at the subpixel scales. There are 

many small and fragmented croplands in … with complex terrain and diverse 

vegetation types. CIrrMap250 should be used with caution in these regions due to the 

wide existence of the mixed pixels” 

 

Response: Yes, we agree that this is confusing as the issue of mixed pixels has not been 

explicitly addressed in our work. We have revised the sentence to mitigate any 

confusion.  

 Accurate maps of irrigation extent and dynamics are crucial for studying food 

security and its far-reaching impacts on Earth systems and the environment. While 

several efforts have been made to map irrigated area in China, few have provided 

multiyear maps, incorporated national land surveys, addressed data discrepancies, and 

considered the fractional coverage of cropland within coarse-resolution pixels. 

 Actually, here, we intend to highlight a gap in previous studies, wherein binary 

cropland masks were utilized for irrigation mapping. In such masks, each pixel is 

classified eighter as cropland or non-cropland, disregarding the fractional coverage of 

cropland within the coarse-resolution pixels. This may lead to overestimations or 

underestimations of the extent of irrigated cropland due to the following two reasons. 

First, many studies generated the cropland mask layers by resampling the original 30-

meter cropland data to coarse resolution (e.g., 1 km or 500 m). This resampling process 

could overlook cropland that covers a relatively small proportion of the coarse-

resolution grid, while overestimating cropland in grids that are not totally covered by 

cropland. Secondly, the threshold-splitting method was commonly used in conjunction 

with irrigated area statistics to depict the spatial distribution of irrigated cropland; and 

this method relies on the assumption that the spatially allocated irrigated area should be 

equal to the statistics. If it is assumed that each grid cell is fully covered by cropland, 

the extent of irrigated cropland may be significantly underestimated. For instance, if 

the statistical irrigated area of a county is 625,000 m2, and 10 grids (pixel area：

250×250 = 62,500 m2) would be classified as irrigated cropland in a binary cropland 

mask. However, if the cropland proportion within each grid in the county is only 50%, 

then in reality, 20 grids should be classified as irrigated cropland. 

 

 

L17: “… named as CIrrMap250 …” – consider describing all abbreviations such as 

CIrr before use. 



 

Response: The abbreviation “CIrrMap250” has been explained. 

 Here, we addressed these important gaps and developed new annual maps of 

China’s irrigated cropland from 2000 to 2020, named as CIrrMap250 (China’s 

irrigation map with a 250 m resolution). 

 

 

L23: “… accuracy of 0.79-0.88 for years 2000, 2010, and 2020, respectively” - only for 

years 2000, 2010, 2020? What about the other years in between? Is it because the 

evaluation data were only available for those 3 years? If so, make it a bit clear here. 

 

Response: Yes, the evaluation was conducted only for years 2000, 2010, and 2020, 

because the reference data were only available for the 3 years.  

 Our CIrrMap250 maps demonstrated an overall accuracy of 0.79-0.88 for the 

years 2000, 2010, and 2020, and outperformed currently available maps.. 

 

 

L42: its’ >> its 

 

Response: Sorry for our carelessness. It has been revised.  

 Given the vital importance of irrigation, knowing its precise location and dynamics 

is essential.   

 

 

L45-46: “While numerous land use/cover and thematic cropland products have been 

made available to the public, they often lack information on irrigation status …” - Why 

would it be important to provide land use land cover (LULC) maps with irrigation status 

information? Should rain/precipitation or evapotranspiration information be provided 

within LULC maps/products as well? 

 

Response: We agree with you. This sentence has been removed in the revised 

manuscript.  

 

 

L51: “…normalized difference water index (NDWI)…” - Note that there is another 

index that goes by the same name but used to detect floods/open water bodies (NDWI, 

McFeeters (1996)) – so it could ideally be used to map areas that employ flood irrigation 



(rice paddies, for example). 

 

Response: Thank you for this reminder. The Normalized Difference Water Index 

(NDWI) proposed by Gao (1996) is known for its sensitivity to both soil and plant water 

content, making it a valuable tool for monitoring rice paddy fields (Dong et al., 2016; 

Singha et al., 2019). Consequently, it was utilized in this study as well as many other 

studies (Deines et al., 2017; Deines et al., 2019; Xiang et al., 2020; Zhang et al., 2022), 

for mapping irrigated areas. Regarding the NDWI proposed by McFeeters (1996), we 

acknowledge its potential utility for mapping areas employing flood irrigation, such as 

rice paddies. We have incorporated this reference into the revised manuscript. 

 

 

L57: “…been applied to detected irrigate areas…”  >> …to detect irrigated areas 

 

Response: Sorry for our carelessness. It has been revised.  

 The soil moisture-based approach utilizes remotely sensed soil moisture signals 

from microwave and optical sensors to detect irrigated areas by using similar 

techniques like threshold splitting (Yao et al., 2022) and supervised/unsupervised 

classification (Gao et al., 2018; Dari et al., 2021). 

 

 

L74: “China is a big agricultural country with the *largest irrigated area in the world …” 

– any reference for this? 

 

Response: Yes, we have added the reference.   

 China is a big agricultural country with the largest irrigated area in the world 

(International Commission on Irrigation and Drainage, 2018) 

 International Commission on Irrigation and Drainage: World Irrigated Area-2018, 

https://www.icid.org/world-irrigated-area.pdf, 1-6, 2018. 

 

 

L85: “… in paces …” – do you mean places? 

 

Response: Yes, it’s a type error. It has been revised.  

 As a result, it remains unclear where the changes in irrigation area are water-

sustainable (e.g., irrigation expansion in places without water stress) (Mehta et al., 

2024). 

https://www.icid.org/world-irrigated-area.pdf


 

L97: “many other studies “ – which studies? Add some reference[s] here 

 

Response: We have added the related references.  

 Finally, it is worth noting that, apart from Zhang et al. (2022a), many studies 

assessed their irrigation maps with a limited number of reference samples, potentially 

compromising the reliability of their evaluation results (Zhu et al., 2014; Xiang et al., 

2020; Bai et al., 2022; Zhang et al., 2022d). 

 

 

L104-105: “CIrrMap250) have a spatial resolution of 250 meters and describe irrigated 

cropland distribution through fractional coverage” – what of the temporal resolution? 

Also, as already mentioned above, this statement is misleading as one could assume 

you are providing the fraction of total FVC that is under irrigation. 

 

Response: The newly developed irrigated cropland maps (CIrrMap250) have an annual 

temporal resolution. The phrase “describe irrigated cropland distribution through 

fractional coverage” has been removed to prevent potential confusion. We have 

rewritten the data descriptions in the introduction and methodology sections. Please 

refer to our response to your first comment. 

 The newly developed maps (CIrrMap250) feature a spatial resolution of 250 meters 

at an annual frequency from 2000 to 2020. Our maps show the percentage of each 250 

m by 250 m pixel that is covered by irrigated cropland (i.e., pixel value = irrigated area 

/ pixel area ×100). 

 Finally, we multiplied the binary, spatially filtered irrigation maps by their 

corresponding cropland mask layers to generate annual irrigation maps for China. The 

final product, CIrrMap250, represents the percentage of a 250 m pixel covered by 

irrigated croplands (i.e., pixel value = irrigated area / pixel area ×100). Unlike simple 

binary maps, our product considers the fractional coverage of croplands within coarse-

resolution MODIS pixels, thereby enhancing the accuracy of irrigation area estimates 

in China, where farms are typically small and fragmented.  

 

 

L113-116: “These indices were generated every 16 days with a spatial resolution of 250 

meters…” – to be consistent with other descriptions in the section, provide the product 

number of the vegetation indices product; is it MOD13Q1?“ …band 4 …band1” – 

consider adding the spectral ranges here as well 



 

Response: Yes, the product number is MOD13Q1. We have added the product number 

as well as the spectral ranges for the bands. 

 We collected the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) 

MOD13Q1 vegetation indices, i.e., NDVI and Enhanced Vegetation Index (EVI) (Huete 

et al., 1997), from the NASA’s Earth Science Data Systems 

(https://www.earthdata.nasa.gov/). These indices are generated every 16 days with a 

250 m spatial resolution. Meanwhile, the MODIS band 4 (545-565 nm) surface 

reflectance from the MOD09A1 product was used and resampled from the original 500 

m to 250 m using the nearest neighbor interpolation method (Debeurs and Townsend, 

2008). The resampled data were then used together with the 250-m and 8-day band 1 

(620-670 nm) surface reflectance from MOD09Q1 to derive the Greenness Index (GI) 

(Supplementary Table S1). 

 

 

L119: “Greenness Index (GI) (Supplementary Table S1)” – in Table.S1 (supplementary 

document) under GI, you write the ‘formula’ as GI=NIR/green,  and ‘MODIS bands’ 

as ‘Bands 01, 04’. The sub-caption however reads: ‘Red: band 01’ and ‘Green: band 

04’ …which is which? Please correct. 

 

Response: Apologies for our carelessness. In calculating the GI index, we utilized 

‘Bands 02, 04’ instead of ‘Bands 01, 04’. We have revised the table accordingly, as 

listed below for your reference.  

Table S1. Summary of the MODIS-derived vegetation indices used in this study 

Vegetation 

indices 
Formula MODIS bands  Resolution  

NDVI (NIR - Red) / (NIR + Red) 
Band 01 (Red)  

Band 02 (NIR) 
250 m/16 day 

EVI 
2.5*(NIR-Red) / (NIR+ 

6*Red–7.5*Blue+1) 

Band 01 (Red) 

Band 02 (NIR) 

Band 03 (Blue) 

250 m/16 day 

GI NIR/Green 
Band 02 (NIR) 

Band 04 (Green) 
250 m/8 day 

where NIR is the near-infrared band (841-876 nm), and Red (620 – 670 nm), Blue (459-



479 nm) and Green (545-565 nm) are the are the visible red band, visible blue band, 

and visible green band, respectively. 

 

 

L121: “… The data for unreliable pixels were reconstructed using a straightforward 

nearest neighbor interpolation method…” - is this the right way to go about it? For 

example, for an overcast pixel (which is maybe vegetated), why would you take the 

remotely sensed spectral signal of the next/closest cloud-free pixel (which is maybe 

urban/built-up)? Meaning you may end up missing vegetated pixels under irrigation or 

vice versa. Why not just drop such pixels from your analysis (i.e. at that particular time)? 

 

Response: We completely understand your concern. Indeed, directly applying the 

interpolation method to all MODIS data in China could significantly impact the results. 

As you pointed out, if the neighboring pixel with reliable data is located in an urban or 

built-up area, the reconstructed pixel is likely to be erroneously excluded from irrigated 

cropland due to the low value of vegetation index. However, in this study, we actually 

extracted MODIS data only for cropland pixels in China. For cropland pixels with 

unreliable data, their values were interpolated from the nearest neighboring cropland 

pixels with reliable data. This approach helps to avoid interpolating data for cropland 

pixels from areas covered by other land use types, such as urban and forest. We have 

provided a more detailed explanation in the revised manuscript. 

 We extracted MODIS data for all cropland pixels in China, using only high-quality 

data on cloud- and snow/ice-free pixels (Hilker et al., 2012). Low-quality MODIS data 

were excluded based on the quality band and were interpolated using high-quality data 

from the nearest neighboring cropland pixels. 

 We chose not to exclude pixels with unreliable data at a particular time from our 

analysis because our mapping process relies heavily on the peak values of MODIS 

vegetation indices during the growth period. Omitting pixels with unreliable data for a 

specific time could potentially result in unreliable peak values of vegetation indices, 

thereby affecting our mapping results.  

 

 

L157-159: “In years lacking survey data, the harmonized irrigated area was determined 

using Eq. 2, assuming that the relative changes in statistical irrigated area are reliable” 

- could you explain the rationale behind Equation (2)? How to interpret it? to me it 

appears that a year without survey data could end up having a lower 

assigned/harmonized irrigated area despite having a larger irrigated [statistical] area 

without land survey (Astatt2). For instance, if we assume: Aharmts=20, Astatts=20, 



Astatt2=30, CAsurvts=40 ; then Aharmt2 becomes min(20*(30-20)/20,40)=10? 

…the harmonized value (Aharmt2) even becomes negative if we consider Astatt2 to be 

less than Astatts. What am I missing? Please clarify. 

 

Response: We apologize for the typographical error in Equation 2, where the relative 

changes of the statistical irrigated area should plus one before being multiplied with 

Aℎ𝑎𝑟𝑚
𝑡𝑠 . The correct equation should be: 

 Aℎ𝑎𝑟𝑚
𝑡2 = 𝑚𝑖𝑛⁡(Aℎ𝑎𝑟𝑚

𝑡𝑠 × (1 +
A𝑠𝑡𝑎𝑡
𝑡2 −A𝑠𝑡𝑎𝑡

𝑡𝑠

A𝑠𝑡𝑎𝑡
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )   (2) 

For your example, Aharmts=20, Astatts=20, Astatt2=30, CAsurvts=40; then Aharmt2 

becomes min (20*(1+(30-20)/20),40) =30. In this case, the relative change of the 

statical irrigated area is (30-20)/20*100=50%. Consequently, the harmonized data in 

the survey year should be adjusted by increasing 50%, i.e., 20*(1+0.5) =30. This 

ensures that the relative changes between Aharmt and Aharmt2, and between Astatts 

and Astatts2 remain consistent. This process preserves the interannual changes 

observed in the statistical irrigated area while enhancing data consistency across years. 

For instance, in a span of five years lacking survey data, the recorded statistical irrigated 

areas are 11, 12, 13, 14, and 15 hectares respectively, whereas the reconciled irrigated 

areas in adjacent years with survey data might amount to 101, 102, 103, 104, and 105 

hectares. Without the aforementioned adjustment, notable data inconsistencies would 

arise. In the revised manuscript, we corrected Equation 2, and meanwhile, double-

checked all other equations to ensure their correct formulation. 

 For years without survey data, the irrigation area was estimated by adjusting the 

harmonized data from adjacent survey years using relative change information derived 

from the irrigation statistics (Eq. 2). This method preserved the interannual changes 

observed in statistical irrigation area while enhancing data consistency across years.   

 𝐴ℎ𝑎𝑟𝑚
𝑡2 = 𝑚𝑖𝑛⁡(𝐴ℎ𝑎𝑟𝑚

𝑡𝑠 × (1 +
𝐴𝑠𝑡𝑎𝑡
𝑡2 −𝐴𝑠𝑡𝑎𝑡

𝑡𝑠

𝐴𝑠𝑡𝑎𝑡
𝑡𝑠 ), 𝐶𝐴𝑠𝑢𝑟𝑣

𝑡𝑠 )   (2) 

where 𝐴ℎ𝑎𝑟𝑚⁡ , 𝐴𝑠𝑡𝑎𝑠⁡ and 𝐴𝑠𝑢𝑟𝑣⁡ represent the harmonized, statistical and surveyed 

irrigation area, respectively; 𝐶𝐴 is surveyed area of cropland; and 𝑡𝑠 and 𝑡2⁡indicate 

the year with and without land surveys, respectively. 

 

 

L189: “… used in combination with the MCD43A3 albedo product” - this is a daily 

product. Did the authors calculate the daily PET? how did you reconcile this with the 

other 8/16-day products? 

 



Response: Yes, the MCD43A3 albedo is a daily product, so we computed the daily 

PET accordingly. These daily PET values were summed to annual values spanning from 

2000 to 2020. In the revised manuscript, we have clarified this point. 

 These datasets were combined with the MCD43A3 albedo product to compute daily 

potential evapotranspiration (PET) using the Priestley-Taylor method (Priestley and 

Taylor, 1972). The daily PET values were aggregated to annual values for the period 

from 2000 to 2020, which were then used to derive the aridity index, defined as the ratio 

of precipitation to PET. 

 In terms of the other 8/16-day products, such as NDVI, EVI, and GI, we utilized 

their annual peak values in this study, rather than directly employing their original 

values. Consequently, both the estimated PET and other MODIS products were utilized 

at annual scales.  

 

 

L211: “… were then then” >> were then 

 

Response: Revised. 

 The resulting county-level maps were then mosaicked and post-processed to 

produce the annual maps of irrigated cropland in China, referred to as CIrrMap250. 

 

 

L222: “*A static irrigation suitability map *were constructed based on …, and aridity 

index of cropland” - was this one map or several (‘*A static’ then ‘*were’). If one, why 

was the temporal variation of the aridity index not considered? 

Response: In this study, we utilized a single and static irrigation suitability map. The 

concept of integrating irrigation suitability into the mapping process was inspired by 

previous researches assessing land potential for irrigation (Worqlul et al., 2015; Worqlul 

et al., 2017; Li and Chen, 2020; Zhang et al., 2022b). The aridity index served as a 

metric reflecting climate suitability for irrigation, where lower values indicate a higher 

deficit of available water for crops, thereby suggesting a greater need for irrigation. 

However, aridity is typically measured by comparing long-term average water supply 

(precipitation) to long-term average water demand (evapotranspiration) (Zomer et al., 

2022), rather than through the lens of a single year’s data. Consequently, in our study, 

we utilized a 21-year average aridity index (covering the period 2000-2020) in 

conjunction with elevation and slope data to produce a static irrigation map for China. 

 Regarding your concerns, we conducted an additional experiment to evaluate the 

influence of temporal variations in the aridity index on irrigation mapping results. 



Specifically, we computed the aridity index for each year and applied it to derive annual 

irrigation suitability maps spanning from 2000 to 2020. The resulting 21 suitability 

maps were then applied to each corresponding year to generate irrigated cropland maps 

using the methodology outlined in our study. We kept other factors the same to ensure 

that any disparities in the mapping results from our original ones are solely attributed 

to the use of annual irrigation suitability maps. As shown in Figure R1, the 

incorporation of annual irrigation suitability maps has a negligible impact on the 

accuracy of irrigation maps. 

 

Figure R1. Accuracy of irrigation maps derived from the experiments with static and 

varying irrigation suitability maps, respectively. The static irrigation map was derived 

from elevation, slope, and the 21-year (i.e., 2000-2020) averaged aridity index, while 

the varying irrigation suitability maps from elevation, slope, and annual aridity index.  

 

 

L230: “… (Supplementary Table S2)” – in Table S2 (supplementary document), why 

do you have the same ‘Suitability value’ for the lowest suitability classes S3 and S4. 

I.e., for the ‘elevation’ and ‘slope’ irrigation suitability factors, S3=2 and S4=2. 

 

Response: It appears to be an unintentional error in the original table. For the irrigation 

suitability factors ‘elevation’ and ‘slope’, the correct values should be S3=2 and S4=1. 

The suitability values for each factor should follow a monotonic pattern, with higher 

values indicating greater suitability for irrigation. We have corrected this unintentional 

error and have also double-checked all the other tables in our manuscript to avoid 

similar typo errors.  

Table S3. Suitability values for the influencing factors of irrigation suitability 

Influencing factors Reclassification Suitability value 



elevation 

S1: < min+100 

S2: [min+100, min+300] 

S3: [min+300, min+500] 

S4: > min+500 

S1=4 

S2=3 

S3=2 

S4=1 

slope 

S1: <2% 

S2: [2%, 4%] 

S3: [4%, 8%] 

S4: > 8% 

S1=4 

S2=3 

S3=2 

S4=1 

aridity index 

S1: <0.1 

S2: [0.1, 0.2] 

S3: [0.2, 0.3]  

S4: [0.3, 0.4] 

S5: [0.4, 0.5] 

S6: [0.5, 0.6] 

S7: [0.6, 0.7] 

S8: [0.7, 0.8] 

S9: [0.8, 0.9] 

S10: >0.9 

S1=10 

S2=9 

S3=8 

S4=7 

S5=6 

S6=5 

S7=4 

S8=3 

S9=2 

S10=1 

Note: min is minimum elevation of the mapping unit 

 

 

L258: “and time-invariant environmental variables (i.e., latitude, longitude, crop 

intensity” – why is the crop intensity considered time-invariant? 

 

Response: In this study, we utilized a stable (time-invariant) cropping intensity dataset 

(Xu, 2017) due to the lack of publicly available annual cropping intensity dataset when 

our work was conducted. While an annual dynamic global cropping intensity dataset is 

available for the years covering 2001-2019 (Liu et al., 2021), employing this dynamic 

dataset did not yield improvements in mapping accuracy; in fact, it resulted in a slightly 

decreased accuracy, potentially attributable to its relatively lower precision in China. 

The test results, as depicted in Figure R2, are provided for your reference. Consequently, 

we opted to utilize the available time-invariant crop intensity data for this study. 



 

Figure R2. Comparison of irrigation mapping accuracy for the year 2000, 2010, and 

2020 in the experiments of using stable and dynamic cropping intensity datasets, 

respectively.   

 

 

L261: “To enhance the accuracy of these maps, a spatial filter (a 7x7 window)…” - 

clarify what you mean by this. Why 7x7? …‘constituting <5% of the window area’ is 

ambiguous. Is the 250 m resolution retained after this? 

 

Response: After classification, we employed a spatial filtering to remove isolated 

irrigation pixels and identify potentially omitted irrigated croplands. Specifically, we 

first calculated the irrigation proportion within a 7×7-pixel window for each 

preliminary irrigation pixel. Then, all cropland pixels within the moving window were 

assigned as “non-irrigated” if the calculated ratio fell below 5%. Conversely, if the ratio 

exceeded 95%, we assumed all cropland pixels within the moving window to be 

irrigated. The spatial filtering operation preserved the original spatial resolution of the 

maps (250 m). The size of the moving window was determined to be 7×7 pixels through 

a trial-and-error process. We tested three different window sizes (5×5, 7×7, and 9×9) in 

the post-processing step and found that the 7×7 window size yielded the highest 

mapping accuracy.  

 In the revised manuscript, we have clarified the spatial filtering process. 

 We then employed a spatial filtering to remove isolated irrigation pixels and 

identify potentially omitted irrigated croplands. Specifically, we first calculated the 

irrigation proportion within a 7×7-pixel window for each preliminary irrigation pixel. 



Then, all cropland pixels within the moving window were assigned as “non-irrigated” 

if the calculated ratio fell below 5%. Conversely, if the ratio exceeded 95%, we assumed 

all cropland pixels within the moving window to be irrigated. The spatial filtering 

operation preserved the original spatial resolution of the maps (250 m). 

 

 

L276: “were acquire from …” >> were acquired 

 

Response: Revised. 

 The second validation dataset, for the year 2020 (Figure 2c), was acquired from 

Chen et al. (2023) that showed the global location of center pivot irrigation systems 

(CPIS). 

 

 

L282-: “Due to the lack of georeferencing information, we georeferenced these land 

use maps using the georeferencing tool in ArcGIS in conjunction with high-resolution 

images “ – the authors do not talk about the data that were used to serve as ground 

control points for the georeferencing (e.g. How many GCPs, their spatial 

distribution, …?) 

Response: In total, we selected 234 control points nationwide, primarily distributed 

along provincial boundaries. In the revised manuscript, we added the information on 

the georeferencing points, and provided the spatial distribution map of these points (see 

below) in the supplementary file.  

 We georeferenced these land use maps using the georeferencing tool in ArcGIS. A 

total of 234 control points were selected from high-resolution images and provincial 

administrative boundaries for the georeferencing process (Supplementary Figure S1). 

The irrigation samples were randomly extracted from irrigated lands and paddy fields, 

while non-irrigated samples were taken from dryland patches. 



 

Figure S1. Spatial distribution of the identified reference points used for georeferencing 

the land-use maps of China’s second National Land Survey 

 

 

L294-: “It’s noteworthy that this percentage represents the proportion of cropland 

within the 250 …, not the proportion of irrigated cropland to total cropland” ; L362: 

“irrigated cropland in CIrrMap250”. As already mentioned, giving the irrigated 

cropland as a percentage is very likely to mislead users into assuming that your 

irrigation product provides the proportion of the total fraction of vegetation cover 

(FVC/cropland) that is irrigated. If feasible, wouldn’t it be more useful to have both 

products, i.e. the total fraction cover product and the proportion of that that is deemed 

irrigated? The authors also acknowledge in L492 that “…cirrmap250 has a relatively 

coarse resolution”. You may still argue that at the relatively higher spatial resolution of 

250m, one could assume the whole cropland (total FVC) to be equivalent to the irrigated 

area. This might be true but still needs validation to avoid being misleading. 

 

Response: To prevent misinterpretation, we have clarified our product in in the 

introduction and methodology sections.  

 The newly developed maps (CIrrMap250) feature a spatial resolution of 250 meters 

at an annual frequency from 2000 to 2020. Our maps show the percentage of each 250 

m by 250 m pixel that is covered by irrigated cropland (i.e., pixel value = irrigated area 



/ pixel area ×100). 

 Finally, we multiplied the binary, spatially filtered irrigation maps by their 

corresponding cropland mask layers to generate annual irrigation maps for China. The 

final product, CIrrMap250, represents the percentage of a 250 m pixel covered by 

irrigated croplands (i.e., pixel value = irrigated area / pixel area ×100). Unlike simple 

binary maps, our product considers the fractional coverage of croplands within coarse-

resolution MODIS pixels, thereby enhancing the accuracy of irrigation area estimates 

in China, where farms are typically small and fragmented.  

 As you pointed out, one potential approach to avoid the misinterpretation is to 

provide both binary irrigated cropland maps and cropland mask layers (representing 

fractional coverage of cropland) to users. While we acknowledge the merits of this 

method, we opted not to implement it for the following reasons. Firstly, data users may 

misinterpret that pixels with value equals to 1 are fully irrigated, and may directly utilize 

the binary irrigation maps for their research, such as estimating irrigation water use or 

assessing the hydroclimatic impact of irrigation. However, relying solely on these maps 

could bring significant biases into their results. Secondly, users would need to combine 

the binary irrigation maps with the cropland mask layers, a process that may introduce 

errors and increase the risk of generating irrigation maps divergent from those we have 

released. Lastly, providing only irrigation maps, instead of both binary irrigation maps 

and cropland mask layers, aligns with the practices of other similar studies (Zhu et al., 

2014; Meier et al., 2018; Xie and Lark, 2021; Zhang et al., 2022a; Wu et al., 2023).  

 

 

L340: “… under severe to extreme…” - In the previous sentence (L339), only low, 

moderate, high and severe WSI ranges are described. What is the extreme WSI range? 

Is extreme synonymous to severe here? 

 

Response: The levels of water stress should be categorized as: low (WSI≤0.2), 

moderate (0.2<WSI≤0.4), severe (0.4 < WSI≤1.0), and extreme (WSI>1), in line with 

our previous study (Zhang et al., 2023). It has been revised in the new manuscript.  

 WSI denotes the fraction of available water resources appropriated by humans and 

is employed to categorize water stress into four levels: low (WSI ≤ 0.2), moderate (0.2 

< WSI ≤0.4), severe (0.4 < WSI ≤ 1.0), and extreme (WSI > 1) (Zhang et al., 2023b). 

Irrigation expansion under severe to extreme water stress was designated as 

“unsustainable” due to the potential of exacerbating depletion of surface water and 

groundwater (Mehta et al., 2024). Conversely, expansion of irrigation under low to 

moderate water stress or shrinkage of irrigation under severe to extreme stress was 

deemed “sustainable”.   



L352: “CIrrMap250 and IrriMap_CN performs similarly in user’s accuracy…” – 

TableS5 (supplementary document) shows  a user accuracy (UA) of 1 (error of 

commission=0). Can this perfect UA be explained? From Fig3c/TableS2 (year 2020), 

IrriMap_CN has a producer accuracy (PA) of 0.2, why this huge discrepancy between 

the [perfect] irrigated.UA (1) and the [rather poor] irrigated.PA (0.2)? 

 

Response: In 2010, the reference points were extracted from the Center Pivot Irrigation 

Systems (CPIS) map developed by Chen et al. (2023). All of these reference points 

represent irrigated samples, as shown in the newly added confusion matrix (see below). 

Consequently, both CIrrMap250 and IrriMap_CN achieved a perfect user’s accuracy 

for the irrigation class. However, IrriMap_CN exhibited a low producer’s accuracy of 

0.2, as only 20% of the irrigated samples were correctly identified. We have clarified it 

in the revised manuscript. 

 For the year 2020, CIrrMap250 detects 88% of center pivot irrigated fields, while 

IrriMap_CN identifies only 20% (Figure 3c and Supplementary Figure S2). Note that 

both CIrrMap250 and IrriMap_CN achieves a perfect user’s accuracy for the irrigation 

class in 2020 because all the reference points are irrigated samples (Section 3.31 and 

Supplementary Table S7). 

 

 

Since you use ~20,000 samples in your classification exercise (into irrigated and non-

irrigated), could you provide (in supplementary doc) the CIrrMap/IrriMap confusion 

matrices for 2000, 2010, 2020 to aid with interpretation (i.e. how many of the reference 

samples are irrigated or not? How do you split these into training and test sets? …more 

details on how the RF classifier used in CIrrMap250 performs, …) 

 

Response: Thanks for your suggestion. As per your advice, we have incorporated the 

Confusion Matrix for CIrrMap250 and existing maps (IrriMap_CN, IAAA, GFSAD) 

in 2000, 2010, and 2020, respectively. The Confusion Matrix presents the numbers of 

correctly and erroneously classified irrigated and non-irrigated samples by different 

products, thereby facilitating a more comprehensive understanding of our results. It’s 

important to note that, in this study, the training samples were generated using a 

threshold-calibration method (refer to Section 3.1), rather than obtained from the 

reference points. All reference samples were independent of the training data and were 

utilized for evaluating irrigation maps.   

 

Table S6. Confusion matrix for CIrrMap250 and existing maps (IrriMap_CN, IAAA, 

GFSAD) in 2000, 2010, and 2020, respectively 



2000 

Products Classified 
Reference 

Irrigated Non-irrigated 

CIrrMap250 
Irrigated 271 75 

Non-irrigated 66 246 

IrriMap_CN 
Irrigated 172 43 

Non-irrigated 165 278 

IAAA 
Irrigated 221 177 

Non-irrigated 116 144 

2010 

Products Classified 
Reference 

Irrigated Non-irrigated 

CIrrMap250 
Irrigated 6818 1385 

Non-irrigated 1365 3325 

IrriMap_CN 
Irrigated 5003 1167 

Non-irrigated 3180 3543 

IAAA 
Irrigated 5274 2183 

Non-irrigated 2909 2527 

GFSAD 
Irrigated 4939 1995 

Non-irrigated 3244 2715 

2020 

Products Classified 
Reference 

Irrigated Non-irrigated 

CIrrMap250 
Irrigated 6340 0 

Non-irrigated 849 0 

IrriMap_CN 
Irrigated 1426 0 

Non-irrigated 5763 0 

 

 

L366-367: “CIrrMap250 yields irrigation ratios (i.e., the ratio of irrigated area to the 

total cropland area) of…” – this sentence contradicts L294 (i.e., “… this percentage 

represents the proportion of cropland within the 250 …, not the proportion of irrigated 

cropland to total cropland”), and many other statements in this report (e.g. L495 

“cirrmap250 cannot differentiate irrigated and rainfed croplads at the subpixel scales”). 

Such inconsistencies make it somewhat difficult to follow and interpret your 

results/analyses. 

 

Response: In this stud, we classified each 250-meter grid cell as either irrigated or non-

irrigated. The binary irrigation maps were finally multiplied by the corresponding 

cropland mask layers to produce the annual maps of irrigated cropland in China (i.e., 

CIrrMap250). As a result, the pixel value of our product indicates the percentage of 

each 250-meter resolution pixel covered by irrigated croplands (i.e., pixel value = 



irrigated area / pixel area ×100).  While our product does not provide the proportion of 

irrigated cropland area to total cropland area at the pixel scale, it can be utilized to 

determine irrigation ratio at the regional scale. Specifically, for a target region, we first 

calculate the irrigated cropland area and the total cropland area, respectively. Then, the 

area of irrigated cropland is divided by the total area of cropland to estimate the 

irrigation ratio for this region. We have revised the related sentence in the new 

manuscript.  

 IrriMap_CN estimates irrigation proportion (i.e., the ratio of irrigated cropland 

area to total cropland area) to be 0.47, 0.37, and 0.61 for China, Northern China, and 

Xinjiang Uygur Autonomous Region, respectively (Supplementary Figure S4). In 

comparison, the values derived from CIrrMap250 are 0.58, 0.70, and 0.96, respectively, 

which align more closely with the official reports (https://gtdc.mnr.gov.cn/).  

 

 

L370-374: “However, CirrMap250 tends … southern part of South China (SC)” – why? 

Could you discuss this section a little bit more. Readers may not go back to the literature 

on the other products to find out by themselves. Also, what does ‘*southern part of 

*South China’ mean? 

 

Response: Thanks for the suggestion. We have provided more explanation and 

discussion on those results. South China is a subregion of China. We have revised the 

phrase “south part of South China” to simply “South China” to prevent any potential 

confusion.  

 Nevertheless, CIrrMap250 tends to yield lower estimates of irrigation area in 

Northeast China (NEC) when compared to IrriMap_CN, possibly due to inaccurate 

statistical and survey data in this region. In contrast to CIrrMap250 and IrriMap_CN, 

IAAA notably underestimates irrigated croplands in Northwest China (NWC) and North 

China (NC), but overestimates in NEC and Southwest China (SWC). This could be 

explained by the fact that IAAA was developed using unsupervised classification 

(Siddiqui et al., 2016), limiting its ability to characterize the spatial heterogeneity of 

irrigation in China (Tian et al., 2024). GFSAD shows overestimations of irrigated area 

in the Dujiangyan district and the North China Plain but exhibits evident omission 

errors in sparsely distributed irrigation regions like NWC and South China (SC). The 

large bias of GFSAD is understandable, as it is not an irrigation-specific product and 

only covers five irrigated crops (Thenkabail et al., 2016; Xie et al., 2021).   

 

 

L388: Fig5 – This figure needs improvement. How come no irrigated pixels in zone B 



are detected by the 1Km GFSAD product? 

 

Response: In the revised manuscript, we have improved the figure by thickening the 

borders of the subplots. Meanwhile, we have provided the legend for different products 

(as shown below). Regarding your comment on lacking irrigated pixels of GFSAD in 

Zone B, we have carefully reviewed the map and indeed found that it did not identify 

any irrigated cropland. This is because GFSAD notably underestimates irrigated 

cropland in Zone B and its surrounding regions. Furthermore, we cross-checked the 

comparison results of the irrigated cropland map with GFSAD in the study by Zhang et 

al. (2022a), they also reported significant underestimation of irrigated cropland by 

GFSAD, particularly in Southern China. The underestimation of irrigated cropland by 

GFSAD may be attributed to the fact that it is not an irrigation-specific product and 

only considers five irrigated crops (Thenkabail et al., 2016; Xie et al., 2021).   

 

Figure 5. Visual comparison of CIrrMap250 with existing maps. The five rows from top 



to bottom correspond to the Google map, CIrrMap250, IrriMap_CN, IAAA and GFSAD, 

respectively. Locations of the four selected zones are presented in Figure 4a. 

 

L391: “Figure 6 …CIrrMap250 exhibits a robust agreement with OPTRAM3” - This is 

not clear from the figure. Qualitatively, Figure 6a may even be interpreted differently 

unless the authors have overlain CIrrMap250 over OPTRAM30. If that is the case, 

please find a better way to illustrate/present the map inter-comparisons. 

 

Response: Thanks for the comment. In the previous version, Figure 6a presented 

overlays of CIrrMap250 on the OPTRAM30 map. We agree it is not easy to interpret. 

We have thus revised the figure. Specifically, we have depicted the irrigated cropland 

distribution in CIrrMap250, IAAA, IrriMap_CN, GFSAD, and OPTRAM30, 

respectively. Additionally, we have further compared CIrrMap250 and IrriMap_CN 

with OPTRAM30 in two local zones to better illustrate the differences between 

CIrrMap250 and IrriMap_CN. We present the revised figure alongside the related 

descriptions below for your reference.  

 When examining in the Hexi Corridor (Figure 6), CIrrMap250 exhibits a high 

agreement with OPTRAM30. While IrriMap_CN captures the general patterns, it tends 

to underestimate the overall irrigation extent, as demonstrated in zones Ⅰ and Ⅱ of the 

region (Figure 6d). The IAAA product struggles to identify irrigated cropland in this 

area, displaying significant omission and commission errors. Similarly, GFSAD has a 

limited ability to accurately depict irrigated areas in the Hexi Corridor. 

 

Figure 6. Comparison of large-scale irrigation maps with the field-scale remote sensing 

irrigation map (OPTRAM30) in the Hexi Corridor of Northwest China. Panels a, b, c, 

e, and f depict the distribution of irrigated cropland in OPTRAM30, CIrrMap250, IAAA, 



IrriMap_CN, and GFSAD, respectively. Panel d shows the comparisons of CIrrMap250 

and IrriMap_CN with OPTRAM30 in two local zones. 

 

 

Figure6 – the [0-100] color scale as provided in Figure4 is missing. In supplementary, 

Figure S2 (b, c, d)   – the magenta color scale (for IrriMap, IAAA, GFSAD) is missing. 

Additionally, why was year 2019 selected in Figure6a,b (CIrrMap250/IrriMap_CN) for 

the comparisons with the 2014-2020 OPTRAM30 product? 

 

Response: The color scale has been provided in the revised figure 6 (see above). The 

OPTRAM30 product was derived by counting the detected irrigation events over an 

extended period (2014-2020) to complement for any missed detections. We opted to 

compare CIrrMap250 and IrriMap_CN with OPTRAM30 using data from the year 

2019 for two reasons. Firstly, the authors of OPTRAM30 have utilized images from 

2019 and 2020 to assess the spatial pattern of their irrigation maps. Second, 

IrriMap_CN covers the period from 2000 to 2019, while our product CIrrMap250 spans 

from 2000 to 2020. To maintain consistency between IrriMap_CN and CIrrMap250, 

we selected the year 2019 for data comparison. 

 Figure S2 becomes Figure S3 now, and it has been replotted in the new manuscript. 

We presented it here for your reference.   



 

Figure S3. Comparison of irrigated cropland distribution from CIrrMap250 with 

existing products (IrriMap_CN, IAAA, GFSAD) for the year 2010. Panel a shows the 

spatial distribution of irrigated cropland from CIrrMap250, while panels b, c, and d 

overlay the existing binary maps IrriMap_CN, IAAA, and GFSAD on CIrrMap250, 

respectively.   

 

 

L406-407:  “…, namely 2010 and 2020. The estimates of irrigated areas from the other 

two maps, namely IAAA and GFSAD, are able to explain only a small proportion of 

the variances in irrigation water withdrawals (i.e., 0.12 and 0.20) …” – Please clarify. 

According to Figure 7c,e, these (IAAS and GFSAD) metrics only apply to year 2010 

NOT 2020. 

 

Response: Yes, these metrics of IAAA and GFSAD only apply to the year 2010. We 

have clarified it in the revised manuscript.  

 As shown in Figures 7c and f, the irrigated area estimates from the other two maps 

(i.e., IAAA and GFSAD) demonstrate limited explanatory power, explaining only 12% 

and 20% of the variation in irrigation withdrawals for the year 2010.  



 

L410: “…irrigated area estimates against irrigation water withdrawals…” – maybe you 

mean ‘irrigated water withdrawals against irrigation area estimates…’? Y against X. 

 

Response: We agree, and it has been revised. 

 Figure 7. Scatterplots of irrigation water withdrawals against irrigated area 

estimates from different products for the years circa 2010 and 2020. The data are 

presented in logarithmic units to reflect both small and large values.   

 

 

L426: “As shown in Figure 9, all subregions exhibit an increasing trend in irrigated area 

from 2000 to 2020” - is this conclusion based on CIrrMap250 or some other [reference] 

data? 

 

Response: Yes, the conclusion is based on our new product CIrrMap250. We have 

revised the sentence.  

 As shown in Figure 9, our annual irrigation maps indicated that all subregions 

exhibited an increasing trend in irrigated area from 2000 to 2020, with NEC expanding 

significantly faster than the other subregions. 

 

 

L435-: Figure 9d - some of the percentage entries in the concentric pie charts are likely 

incorrect. I.e. percentages for years 2000 and 2020 add up to 101% 

(11+7+17+30+24+12) and 98% (11+11+16+26+22+12), respectively. 

 

Response: Thanks for the reminder. We have checked the results carefully and revised 

the figure accordingly. We present the revised figure here for your reference. 



 

Figure 9. Changes in irrigated area across the six subregions of China during 2000-

2020. a, Relative changes in irrigated area. b, Changes in China’s total irrigated area, 

with the contribution of different subregions depicted in the inserted pie chart. c, 

Relative changes in the proportion of irrigated area. d, Proportion of irrigated area for 

the years 2000, 2010 and 2020. 

 

 

L445: “… The net expansion of irrigated area is about 180,000 …” but L427 reads “The 

irrigated area of China increases from 750,000 to 950,000…”, which is ~200,000. Both 

for the 2000-2020 period. Please be consistent with the presented numbers. 

 

Response: Thank you for the comment. We have double-checked our results and have 

confirmed that the irrigated area of China has increased from about 760,000 to 940,000 

km2 over 2000-2020, with a net increase of about 180,000 km2. We have revised this 

sentence.  

 More specifically, China’s irrigation aera increased from about 760,000 to 940,000 

km2 at an annual rate of 10,000 km2 (or 1.29%/year). 

 

 

 



L465: “…leading to a decrease in irrigation mapping accuracy by 8%-26% 

(Supplementary Figure S4).” – do these numbers refer to supplementary Figures S3? 

They do not appear in Figure S4. 

 

Response: Apologies for our carelessness. We have placed the figure in the wrong 

place. This sentence should be referred to Figure S6 in the revised manuscript. We 

present the figure below for your reference. Furthermore, we have carefully reviewed 

the figures in Supplementary file to avoid similar mistakes.  

 

Figure S6. Comparison of the performance of irrigation maps constrained by different 

irrigated area data. “without adjustment” means the use of the original irrigation 

statistics, while “with adjustment” indicates the use of the harmonized and reconciled 

irrigated areas (this study). 

 

 

The caption of Figure S3 reads “Comparison of irrigated ratio estimates of CIrrMap250 

and IrrMap_CN in China, Northern China, Xinjiang Uygur Autonomous Region” … 

does this mean that this conclusion only applies to that specific part of China? 

 

Response: Figure S3 has been erroneously presented in the original manuscript. We 

present the correct figure below for your reference. The sentence in the main texts that 

refers to the figure are as follows (see Section 4.1.2): 

 IrriMap_CN estimates irrigation proportion (i.e., the ratio of irrigated cropland 

area to total cropland area) to be 0.47, 0.37, and 0.61 for China, Northern China, and 

Xinjiang Uygur Autonomous Region, respectively (Supplementary Figure S4). In 



comparison, the values derived from CIrrMap250 are 0.58, 0.70, and 0.96, respectively, 

which align more closely with the official reports (https://gtdc.mnr.gov.cn/). 

 

Figure S4. Comparison of irrigated ratio estimates of CIrrMap250 and IrriMap_CN in 

China, Northern China, Xinjiang Uygur Autonomous Region 

 

 

L474-475: “... The accuracy of the irrigated cropland map would decrease by 

approximately 5%-6% (Supplementary Figure S6) “ - Figure S6 (in the supplementary 

document) contradicts this statement. From the figure, it appears that “considering FC 

of cropland” (blue bars according to the plot legend, and “this study” according to the 

caption) yields worse overall accuracies (OA) than “Neglecting FC of cropland” (green 

bars). This is the case for all three (2000, 2010, 2020) years. Is the plot legend correct? 

 

Response: Thanks for the kind reminder. We have mistakenly presented the legend of 

the figure. As depicted in the revised figure (Figure S8, see below), the accuracy of the 

irrigated cropland map would decrease by approximately 5%-6% if we disregard the 

fractional coverage of cropland.  Yes, this decrease in mapping accuracy can be 

observed across the three years (i.e., 2000, 2010, and 2020).  
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Figure S8. Comparison of performance of irrigation maps in the scenarios of 

considering fractional coverage (FC) of cropland (this study) and neglecting FC of 

cropland 
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Responses to the comments of Referee #2 

 

Article ID: essd-2024-2 

Title: CIrrMap250: Annual maps of China’s irrigated cropland from 2000 to 2020 

developed through multisource data integration 

Authors: Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, Luca Brocca 

 

Dear Reviewer, 

Thank you very much for the great efforts on our manuscript. Inspired by your valuable 

comments, we have made a major revision. The key revisions include: 

(1) Analyzing and discussing uncertainties and potential applications of the 

CIrrMap250 product; 

(2) Providing spatial trends in irrigated area from 2000 to 2020 at the subregional 

scale; 

(3) Summarizing the descriptions, formulas, and sources of the different products 

and variables used in the study; 

(4) Thoroughly revising the content and figures to improve readability, conciseness, 

and clarity. 

The detailed point-to-point responses are as follows. Texts in red are the reviewer’s 

comments; those in black are our responses to the reviewer’s comments; and those in 

blue and italics are the revised texts appeared in the revised manuscript.  



General summary: 

This study presents the development of a multi-year (2000-2021) irrigated cropland 

map for China, named CIrrMap250. The authors employ a semi-automatic training 

approach integrating remote sensing data (vegetation indices, hybrid cropland products, 

and paddy field maps), county-level irrigation statistics and surveys, and an irrigation 

suitability map. Utilizing a threshold-calibration method and the random forest 

algorithm, the CIrrMap250 map is evaluated against reference sites and other large-

scale irrigation maps, demonstrating superior accuracy. The study reveals a consistent 

net expansion of irrigated croplands in Northeast and Northwest China, with over 60% 

deemed unsustainable due to severe water stress. The CIrrMap250 map holds 

significant application potential for water resource management and food security. I 

have some comments below and please address them before this article can be 

published. 

 

Thanks for the positive comments. 

 

 

Major comments: 

1 L74-81: China’s vast agricultural landscape comprises diverse cropping systems and 

associated irrigation methods, such as rice paddies in the South and Northeast, and 

corn/wheat rotations in the North China Plain and Northwest. The study does not 

adequately address this diversity. It would be beneficial for the CIrrMap250 to provide 

detailed mappings for irrigation methods for associated crop types, if possible. 

Moreover, the integration of county-level yearbook data on irrigated crop types and 

rotations could enhance the map’s specificity and utility. Clarifying how different 

cropping systems and crop types are distinguished would significantly improve the 

comprehensiveness of the methodology. For example, L123 - Mapping 30-m 

CCropLand30 cropland layer (available every 5-year) - does this dataset also tell you 

which crop type is associated with each pixel? 

 

Response: Thank you for the insightful comments. It would indeed be ideal for 

irrigation mapping to include the full thematic detail required for agricultural 

monitoring, such as irrigation methods and crop types. However, there are two major 

challenges in achieving this. 

 First, to our knowledge, existing cropland data in China, including CCropLand30, 

only provide the spatial distribution of cropland without crop type information due to 

the diversity and complexity of agricultural systems (Zhang et al., 2022a; Van Tricht et 

al., 2023). While numerous studies have mapped some crops (e.g., wheat, rice and 

maize) across China, none of them have included all crop types and accounted for 



mixed or sequential cropping practices (Dong et al., 2020; You et al., 2021; Shen et al., 

2022; Mei et al., 2023; Shen et al., 2023; Zhang et al., 2024a). The mixed and sequential 

cropping practices are crucial because when a specific crop is mapped in a grid for a 

given month, the remaining crop types must be allocated to the rest of the available 

cropland area within that grid. This lack of cropland products that distinguish crop types 

limits the classification of irrigated versus rainfed crop types. 

 Second, although statistical yearbooks provide planted area for different crop types, 

they do not offer information on the irrigated versus rainfed area for each crop types, 

nor do they detail crop rotations. This also hinders the identification of irrigated versus 

non-irrigated crop types. Addressing these challenges and mapping the distribution of 

irrigated and rainfed crops is beyond the scope of this research but will be considered 

in our future work. 

 Regarding irrigation methods, there are indeed some statistical data on the areas of 

different irrigation methods (i.e., flood, drip, and sprinkler irrigation). However, 

spatially explicit allocation of irrigated areas by different methods is a significant 

challenge because irrigation methods cannot be easily distinguished by remote sensing 

data, except for certain systems like center pivot irrigation. This limitation is especially 

pronounced with coarse-resolution imagery such as MODIS.   

 

 

2 Although the CIrrMap250 is purportedly an annual dataset, the primary analyses are 

based on three specific years (2000, 2010, and 2020). Although Figure 9 presents a 20-

year timeseries of irrigated croplands in different regions, it is crucial to present the 

interannual variability of irrigation areas. Analyzing annual data across the entire 20-

year period can reveal the influence of climatic factors, such as temperature and 

precipitation, on irrigation trends. Additionally, showcasing irrigation transitions in 

various regions, beyond the highlighted area between CSC and NC, would provide a 

more comprehensive view of national trends. 

 

Response: The spatiotemporal changes in irrigated areas were analyzed based on the 

annual data of CIrrMap250, rather than three specific years (2000, 2010, and 2020), as 

shown in Figure 8 in the manuscript. Figure 8 shows the interannual trend of irrigated 

areas from 2000 to 2020 at the pixel scale (see below). Pixels with significant temporal 

changes (increasing or decreasing trend) in irrigated area (p<0.05) are marked as 

“expansion” or “reduction,” while those with insignificant changes are marked as 

“stable.” The inset panel at the top of the figure depicts the center-of-gravity movement 

(i.e., spatial trend) of China’s irrigated areas at the national scale. Each circle in the 

inset panel corresponds to the gravity center of China’s irrigated area for a specific year 

(ranging from 2000 to 2020).   



 We further analyzed the spatial trends in irrigated areas from 2000 to 2020 in each 

subregion of China. As shown in Supplementary Figure S5 (see below), the gravity 

center of irrigated areas showed clear trends in NWC, NEC, and NC but was 

insignificant in the remaining subregions. In NWC, the irrigated area significantly 

shifted to the northwest, while in NEC, it significantly shifted to the northeast. 

Meanwhile, there was a northward spatial trend in irrigated areas in NC.  

 The related results have been added in the revised manuscript 

 The gravity center showed clear trends in NWC, NEC, and NC but was insignificant 

in the remaining subregions (Supplementary Figure S5). In NWC, irrigation 

significantly shifted to the northwest, while in NEC, it significantly shifted to the 

northeast. Meanwhile, there was a northward spatial trend in irrigation in NC. 

 

 

Figure 8.  Spatiotemporal changes in irrigated area from 2000 to 2020. Pixels 

exhibiting significant interannual trends (p < 0.05) in irrigated area were labelled as 

“expansion” or “reduction”, while those with insignificant changes are denoted as 

“stable”. Pixels with less than 5% irrigated croplands were excluded from the map. 

The inset panel on the top of the figure depicts the center-of-gravity movement (spatial 

trend) of China’s irrigated areas at the national scale. 



 

Figure S5. Spatial trends in irrigated areas from 2000 to 2020 in the six subregions 

of China. The top panel shows the interannual trend in irrigated area at the pixel scale 

(same as Figure 8 in the main text) and illustrates the locations of the gravity centers 

of irrigated areas for each subregion. Panels a-d depict the center-of-gravity movement 

of irrigated areas from 2000 to 2020 in each subregion. 

 

 



3. Since this data product is a fusion of data from multiple sources, would it be good 

and necessary to quantify uncertainties of different sources? Such as the assumption 

outlined in 2.2.1, L151-155, and also in 2.2.2 L164-184. Section 5.2 L486-502 

discussed the uncertainties and limitations. What are the limitations associated with 

integrating multiple sources? For example, for the same region, how do remote-sensing 

indices, statistics, and survey data differ from each other (or not)? In which regions 

does each index perform better? Please give some discussion as it may be useful to 

evaluate the CIrrMap250 product and provide future user information. 

 

Response: Thanks for the comment. We agree that it is crucial to convey the underlying 

uncertainties of data from different sources and the final product. However, it is 

challenging for us to quantify uncertainties of each data source given the unavailability 

of ground reference data. Instead, we evaluated our final product CIrrMap250 and 

discussed possible product uncertainties in relation to data sources. To do so, we have 

conducted additional analyses and discussions on the uncertainties associated with 

CIrrMap250 (see below).  

 Despite the advancements of CIrrMap250 compared to existing products, we 

acknowledge several uncertainties and limitations associated with the product. 

CIrrMap250 was developed by integrating data from multiple sources using a semi-

automatic training method, leveraging joint information related to irrigation in each 

data source. However, each data source inherently presents uncertainties and 

deficiencies (Shahriar Pervez et al., 2014; Tian et al., 2024). Irrigation area statistics, 

in particular, can contain significant uncertainties due to technical and political factors, 

such as variations in statistical method and administrative division (Thenkabail et al., 

2009; Meier et al., 2018), which have not been well characterized. These biases and 

uncertainties would manifest in CIrrMap250, since our training samples were derived 

from these statistics-constrained irrigation maps. In this study, we addressed this issue 

by merging reported irrigation statistics with independent survey results. Nonetheless, 

uncertainties related to irrigated areas may remain unresolved in certain regions. For 

instance, we found considerable discrepancies between the statistical and surveyed 

irrigation areas in SC and NEC (Supplementary Figure S10a), implying greater 

uncertainties in these subregions compared to others. Furthermore, the irrigation 

statistics and surveys were reconciled with remote sensing data to address 

inconsistencies between the two sources. However, the bias ratio may be inaccurately 

estimated in the reconciliation process, introducing additional uncertainties to the 

results. 

 Cropland mask layers used to distinguish cropland from non-cropland are another 

source of uncertainty. These layers were constructed using our hybrid cropland product 



(Zhang et al., 2024), which integrates five state-of-the-art remote sensing land 

use/cover products. This hybrid product significantly reduced uncertainties associated 

with cropland distribution in China. However, remote sensing-derived cropland data 

show large uncertainties in southern China. As illustrated in Supplementary Figure 

S10b, only 27% of croplands on average in SWC, SC, and CSC are consistently 

identified by remote sensing products, compared to 39% in northern subregions (NEC, 

NC, and NWC). These uncertainties are reflected in our hybrid cropland product, which 

shows greater accuracy in the northern subregions than in the southern ones 

(Supplementary Figure S10c). Meanwhile, the temporal resolution of the cropland 

layers is five years, which may not accurately capture changes in cropland distribution 

in regions experiencing rapid changes. The uncertainties and errors in the cropland 

mask layer, particularly in southern China, could propagate into CIrrMap250. 

 An additional source of uncertainty is the MODIS-derived vegetation indices (i.e., 

NDVI, EVI, and GI). These indices are prone to data gaps due to cloud and cloud 

shadow contaminations. In this study, we filled the data gaps by using a simple nearest 

neighbor interpolation method, which may introduce uncertainties to CIrrMap250. 

Additionally, irrigated croplands in humid southern China are more sparsely 

distributed and show weaker contrast with rainfed fields compared to northern China. 

This makes the peak vegetation indices less effective and more uncertain in 

distinguishing irrigated from rainfed cropland (Xie et al., 2019; Zhang et al., 2022a). 

Consequently, our CIrrMap250 product exhibits higher accuracy in NEC, NWC, and 

NC than in SC, CSC, and SWC subregions (Supplementary Figure S10d).  

 Lastly, CIrrMap250 has the limitation of a relatively coarse spatial resolution of 

250 m and does not fully address the mixed-pixel problem. While CIrrMap250 offers a 

higher spatial resolution than many existing large-scale irrigation maps, it may not be 

suitable for local applications, such as field or irrigation district levels. The mixed-

pixel problem significantly affects the precision of cropland masks (Zhang et al., 2024) 

and weakens the distinction between vegetation indices for irrigated and rainfed 

cropland. Even though CIrrMap250 considers the fractional coverage of cropland, it 

does not differentiate between irrigated and rainfed croplands at subpixel scales, like 

many other existing irrigation maps. There are many small and fragmented croplands 

in the mountainous regions of southern China. CIrrMap250 should be used with 

caution in these areas due to the prevalence of mixed pixels.  

 



 

Figure S10. Uncertainty analysis of the CIrrMap250 product. a. Comparison of 

statistics and surveys of irrigated area across different subregions. b. Proportion of 

croplands consistently identified by five state-of-the-art remote sensing land use/cover 

products, including GlobeLand30 (Chen et al., 2015), GLAD (Potapov et al., 2021), 

CLUD (Liu et al., 2014), CLCD (Yang and Huang, 2021), and CACD (Yu et al., 2021). 

c. Comparison of the accuracy of the hybrid cropland product CCropLand30 across 

different subregions. d. Comparison of the accuracy of CIrrMap250 (for the year 2010) 

across different subregions. 

 

 

4. The study employs numerous data products and indices, yet lacks clear definitions 

and descriptions. A detailed table in the main text or supplementary material, listing all 

data products used and indices defined, could enhance clarity. Including equations for 

calculating indices such as PET, aridity index, Water Scarcity Index (WSI), NDVI, EVI, 

and GI is essential for transparency. Defining WSI and its components, including 

whether groundwater pumping in North China is considered, would further elucidate 

the methodology. Providing detailed and comprehensive information, similar to the 

content in Tables S1-S3, would greatly benefit readers. 

 

Response: Thank you for the suggestion. We have compiled a comprehensive list of 



the products and variables utilized in this study, which can be found in Supplementary 

Table S2. Each entry in the table includes a detailed description, formula, and the 

respective data source. Please refer to the table below for details. 

 

Table S2. Summary of the products and variables used in this study 

Product 

/variable 
Description Formula Source  

CCropLand30 
Hybrid cropland product 

for China 
- 

Zhang et al. 

(2024) 

CLUD 
China’s Land-use/cover 

dataset 
- 

Liu et al.  

(2014) 

NDVI/EVI/GI 

Normalized Vegetation 

Index / Enhanced 

Vegetation Index / 

Greenness Index 

See Table S1 MODISa 

Irrigation 

suitability 

Suitability of cropland for 

irrigation 

Equation 4 in the main 

text 
This studyb 

SVI 

Irrigation suitability-

adjusted peak vegetation 

index 

Equation 5 in the main 

text 
This studyb 

Precipitation  Annual precipitation  ∑ 𝑃𝐶𝑃𝑖
𝑌𝑑𝑎𝑦𝑠

𝑖=1
 NMICc 

Temperature  
Mean annual 

temperature 

1

𝑌𝑑𝑎𝑦𝑠
∑ 𝑇𝑀𝑃𝑖

𝑌𝑑𝑎𝑦𝑠

𝑖=1
 NMICc 

PET 
Annual 

evapotranspiration 
∑ 𝑃𝐸𝑇𝑖

𝑌𝑑𝑎𝑦𝑠

𝑖=1
 This studyb 

Aridity index  
Degree of dryness of the 

climate 
𝑀𝐴_𝑃𝐶𝑃/𝑀𝐴_𝑃𝐸𝑇 This studyb 

Irrigation water 

withdrawal 

Total amount of water 

withdrawals used for 

crop irrigation 

- PWRDd 

WSI Water scarcity index 𝑇𝑊𝑈/𝑊𝐴 
Zhang et al. 

(2023) 

Cropping 

intensity 

Number of crops grown 

on the same field in a 

given agricultural year  

- 
Xu et al. 

(2017) 

Soil type 
Genetic soil classification 

system in China 
- RESDCe 

Elevation Mean elevation  - SRTMf 



Slope  Mean slope - This studyb 

Distances to 

water bodies  

Euclidean distance to 

rivers, lakes, reservoirs, 

canals, and ponds 

 This studyb 

Note. aindicates variables derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data 

(https://modis.gsfc.nasa.gov/). bindicates variables generated in this study. cindicates the National 

Meteorological Information Center (http://data.cma.cn/). dindicates the provincial water resources 

departments. eindicates the Resource and Environment Science and Data Center 

(https://www.resdc.cn/Default.aspx). findicates the Shuttle Radar Topography Mission 

(https://www.earthdata.nasa.gov/sensors/srtm). Ydays represents the number of days in a given year; 

PCPi denotes the amount of precipitation at the ith day; TMPi indicates mean air temperature at the ith 

day; PETi represents evapotranspiration estimated using the Priestley-Taylor method (Priestley and 

Taylor, 1972); MA_PCP and MA_PET denote mean annual precipitation and PET, respectively; TWU 

represents total water use, including both groundwater and surface water withdrawals for irrigation, 

industry, domestic purposes, forestry, livestock, and fishery; WA represents water availability and refers 

to the total surface water and groundwater generated by precipitation. 

 

 

5. 3.1 L219 - Can you also give a brief description of the threshold-calibration method, 

instead of stating “following the previous studies” - letting the readers of this paper 

understand your method is important. Particularly Equation 5 - how do you determine 

the threshold? Since you have 20-year data, is this threshold constant? Or does it change 

year-by-year? Please elaborate. 

 

Response: We have provided a brief description of the threshold-calibration method, 

following your suggestion.  

 We applied a threshold-calibration method to automatically generate the training 

pool, following previous studies by Xie et al. (2019; 2021) and Zhang et al. (2022d). 

With this method, cropland pixels with annual peak vegetation greenness exceeding an 

optimized threshold were classified as “irrigated”. The threshold was individually 

calibrated for each county and year using available irrigation statistics and surveys. 

Based on the calculated optimized thresholds, intermediate irrigation maps were 

generated at the county level. Pixels consistently classified as “irrigated” in all 

intermediate maps were identified as irrigation candidates, while those classified as 

“non-irrigated” were considered potential non-irrigated samples. 

 

 

6. L223-226, please elaborate on this statement - “Cropland with lower elevation, 

gentler slope, and higher aridity index was hypothesized to have higher irrigation 

https://modis.gsfc.nasa.gov/
http://data.cma.cn/
https://www.resdc.cn/Default.aspx
https://www.earthdata.nasa.gov/sensors/srtm


suitability and potential” - is this statement a hypothesis? Or has it already been 

demonstrated in Liu et al.? It is not clear by now. 

 

 Response: Liu et al. (2022) did not directly validate this hypothesis but highlighted 

the significant role of geographical factors such as elevation, slope, and precipitation in 

shaping the spatial distribution of irrigated cropland in China using a Select K Best 

algorithm. Hence, it is a hypothesis that lower elevation, gentler slopes, and higher 

aridity indices characterize cropland areas with greater irrigation suitability and 

potential. This hypothesis aligns with previous studies (Worqlul et al., 2015; Worqlul et 

al., 2017; Li and Chen, 2020; Zhang et al., 2022b), and is proposed for following reasons.  

 In regions with higher elevations, accessing water resources becomes more 

challenging, reducing the likelihood of irrigation. For instance, our field observations 

on the Loess Plateau’s high-elevation areas revealed that residents rely solely on deep 

wells for domestic water, with crop growth entirely dependent on rainfall. Moreover, 

agricultural productivity at higher altitudes in China is hindered by the absence of 

irrigation infrastructure and increased costs associated with transportation and labor. 

Meanwhile, areas with steeper slopes generally have lower water holding capacities and 

are less suitable for irrigation systems. Typically, slopes exceeding 8% are considered 

impractical for surface irrigation systems. Therefore, areas with gentler slopes are more 

conducive to the presence of irrigated cropland. Lastly, croplands with higher aridity 

indices, characterized by lower precipitation but higher potential evapotranspiration 

(PET), are also more likely to require irrigation due to greater water demand.  

 We have clarified the hypothesis in the new manuscript 

 A static irrigation suitability map was created based on elevation, slope, and 

aridity index of cropland. These factors play a crucial role in shaping the spatial 

distribution of irrigated cropland in China, as demonstrated by Liu et al. (2022). 

Cropland areas characterized by lower elevation, gentler slopes, and higher aridity 

indices were hypothesized to exhibit greater irrigation suitability and potential, in line 

with previous studies (Worqlul et al., 2015; Worqlul et al., 2017; Li and Chen, 2020; 

Zhang et al., 2022d). 

 

 

7. L275-280 the description of Figure 2c and the figure caption don’t match - Figure 2c 

shows 2010, but the text indicates 2020. Please check your text and figure captions. 

Also, since you can identify the center pivot irrigation system, can you also provide an 

irrigation method map, distinguishing between sprinkler irrigation (mostly in North 

China) and flood irrigation (more common in South China)? 

 



Response: As shown in Figure 2 (see below), panel c shows the spatial distribution of 

the third-party samples in 2020. We have double-checked all the texts and figure 

captions carefully to ensure consistency. 

  Center pivot irrigation systems are identifiable in remote sensing imagery due to 

their distinctive circular irrigation pattern centered on pivots, which creates a unique 

visual signature on crops (Chen et al., 2023). However, other irrigation methods such 

as flood irrigation, drip irrigation, and sprinkler irrigation are not easily distinguishable 

using remote sensing data, especially using coarse-resolution datasets like MODIS. 

 

 

Figure 2. Spatial distribution of validation samples. a, Spatial distribution of the third-

party samples in 2000. b, Spatial distribution of the samples in 2010 retrieved from 

provincial land-use maps of China’s second National Land Survey. c, Spatial 

distribution of the third-party samples in 2020. d, Numbers of irrigated and non-

irrigated samples for different years. 

 

 

8. L337-340, please define WSI. What are the major water resources used in WSI? How 

about considering pumping groundwater for irrigation in North China? Is it a part of 

the WSI calculation and evaluation of the irrigation map? 



 

Response: The Water Scarcity Index (WSI) is defined as the ratio of total water use 

(TWU) to water availability (WA), i.e., WSI = TWU/WA. This index quantifies the 

fraction of available water resources appropriated by humans. TWU encompasses both 

groundwater and surface water withdrawals for irrigation, industry, domestic purposes, 

forestry, livestock, and fishery. WA refers to the total surface water and groundwater 

generated by precipitation. The definition of WSI is provided in the main text of the 

new manuscript as well as in Table S2 of the Supplementary file. 

  The prefecture-level data on water scarcity index (WSI) for 2010-2020 were 

extracted from our previous study (Zhang et al., 2023b). WSI is defined as the ratio of 

total water use to water availability, as shown in Supplementary Table S2. Total water 

use encompasses both groundwater and surface water withdrawals for irrigation, 

industry, domestic purposes, forestry, livestock, and fishery. Water availability refers to 

the total surface water and groundwater generated by precipitation.  

 

 

9. Figure 5, please give a scale legend for region A, B, C, and D. i.e., how big are these 

four regions? 

 

Response: Thank you for your suggestion. In the revised figure, scale bars have been 

added for regions A, B, C, and D, as shown below. 



 

Figure 5. Visual comparison of CIrrMap250 with existing maps. The five rows from 

top to bottom correspond to the Google map, CIrrMap250, IrriMap_CN, IAAA and 

GFSAD, respectively. Locations of the four selected zones are presented in Figure 4a. 

 

 

10. Figure 8. The transition only shows three years, 2000, 2010, and 2020. What about 

the interannual variability, since you have 20-year annual data? It would be good to 

show an interannual timeseries of irrigation transitions across China. Figure 8 

highlights an area between CSC and NC; how about other regions in China? What are 

the transitions across regions over the 20-year period? 

 

Response: The spatiotemporal changes in irrigated areas were analyzed based on the 

annual data of CIrrMap250, rather than three specific years (2000, 2010, and 2020). 

Figure 8 shows the interannual trend of irrigated areas from 2000 to 2020 at the pixel 

scale. Pixels with significant temporal changes (increasing or decreasing trend) in 



irrigated area (p<0.05) are marked as “expansion” or “reduction,” while those with 

insignificant changes are marked as “stable.” The inset panel at the top of Figure 8 

depicts the center-of-gravity movement (i.e., spatial trend) of China’s irrigated areas at 

the national scale. Each circle in the inset panel corresponds to the gravity center of 

China’s irrigated area for a specific year (ranging from 2000 to 2020). The spatial trend 

in irrigated area at the subregional scale has also been provided in Supplementary 

Figure S5. Please refer to our response to your second comment. 

  

 

11. Please also discuss the potential use of CIrrMap250, who will be interested in using 

this data? Science communities, Hydrologic models? Climate models? Or water 

resource managers? 

 

Response: Following your suggestion, we briefly discussed the potential use of 

CIrrMap250 in the revised manuscript. However, more specific uses are dependent on 

users and actual applications. 

 Despite these limitations, CIrrMap250 makes a valuable contribution to the field 

of irrigation mapping and is poised to significantly support agricultural, hydrological, 

and climate studies, as well as water resource management in China. Ongoing efforts 

to address these limitations and explore potential enhancements will undoubtedly 

improve the accuracy and utility of our irrigation maps in the future. One of the major 

applications of CIrrMap250 will be estimating irrigation water use or requirements, 

considering that irrigated area is a dominate driver of irrigation water withdrawal 

(Ozdogan and Gutman, 2008; Puy et al., 2021). Secondly, the spatial detail provided 

by CIrrMap250 can be integrated into crop, hydrological, and climate models to 

improve the simulations of water uses and land-atmosphere interactions (Uniyal and 

Dietrich, 2021; Mcdermid et al., 2023; Yang et al., 2023). This integration will advance 

our understanding of how irrigation practices influence crop yield, and hydrological 

and climatic processes from local to nationwide scales. Lastly, CIrrMap250 provides 

insights into irrigation changes and can assist in optimizing the spatial distribution of 

irrigated croplands (Rosa et al., 2020a; Rosa et al., 2020b), thereby supporting more 

informed decisions for sustainable water and land use. 

 

 

 

Minor comments: 

1: L17-20: “...reconciled them with remote sensing data … integrated with multiple 

remote sensing data …” These two sentences seem redundant. 



 

Response: These sentences describe the data sources utilized in developing 

CIrrMap250, as well as the primary method employed for data integration. This 

information is crucial and has been retained.  

 We harmonized irrigation statistics and surveys and reconciled them with remote 

sensing data. The refined estimates of irrigated area were then integrated with multiple 

remote sensing data (i.e., vegetation indices, hybrid cropland product, and paddy field 

maps) and an irrigation suitability map through a semi-automatic training approach. 

 

 

2: L94: “both cropland and other land use” 

 

Response: Revised. 

 This leads to the widespread presence of mixed pixels where cropland and other 

land use/cover types coexist. 

 

 

3: L231: “with the assumption that” 

 

Response: Revised. 

 The peak vegetation index was subsequently adjusted by irrigation suitability (Eq. 

5), with the assumption that irrigated cropland, being greener and more productive, is 

also more suitable for irrigation compared to rainfed cropland. 

 

 

4: 3.3 L265-270 and 3.3.3 L310-323, these texts seem similar and redundant. 

Response: Thanks for the suggestion. The content in “3.3 L265-270” has been removed. 
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