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Abstract. The risk of water erosion in mainland China is intensifying due to climate change. A high-precision rainfall

erosivity dataset is crucial for revealing the spatiotemporal patterns of rainfall erosivity and identifying key areas of water

erosion. However, due to the insufficient spatiotemporal resolution of historical precipitation data, there are certain biases in10
the estimation of rainfall erosivity in China, especially in regions with complex terrain and climatic conditions. Over the past

decade, the China Meteorological Administration has continuously improved its ground-based meteorological observation

capabilities, forming a dense network of ground-based observation stations. These high-precision precipitation data provide a

solid foundation for quantifying the patterns of rainfall erosivity in China. In this study, we first performed rigorous quality

control on the 1-minute ground observation precipitation data from nearly 70,000 stations nationwide from 2014 to 2022,15
ultimately selecting 60,129 available stations. Using the precipitation data from these stations, we calculated event rainfall

erosivity and generated a national mean annual rainfall erosivity dataset with a spatial resolution of 0.25°. This dataset shows

that the mean annual rainfall erosivity in mainland China is approximately 1241 MJ·mm·ha−1·h−1·yr−1, with areas exceeding

4000 MJ·mm·ha−1·h−1·yr−1 mainly concentrated in the southern China and southern Tibetan Plateau. Compared to our study,

previously released datasets overestimate China ’ s mean annual rainfall erosivity by 31%~65%, and there are significant20
differences in performance across different river basins. In summary, the release of this dataset facilitates a more accurate

assessment of the current water erosion intensity in China. The dataset is available from the National Tibetan Plateau/Third

Pole Environment Data Center (https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).

1 Introduction

Rainfall-induced soil erosion stands as the primary contributor to global soil loss, as highlighted by the Intergovernmental25
Panel on Climate Change (IPCC, 2019), posing a significant threat to soil functionality. This phenomenon jeopardizes

various crucial aspects including food security, water quality, and climate change mitigation (FAO and IPTS, 2015; Panagos

et al. 2020). Precipitation serves as the principal driver of erosion processes, influencing soil particle detachment, aggregate

breakdown, and particle transport via runoff (Wischmeier and Smith, 1965, 1978). In this context, the rainfall erosivity index

has been introduced to delineate rainfall's potential in causing soil loss, particularly through the Universal Soil Loss Equation30
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(USLE), which links rainfall characteristics to soil loss based on extensive data from thousands of plot-years of natural

rainfall and runoff (Nearing et al., 2017).

Rainfall erosivity is commonly assessed by multiplying the accumulated kinetic energy (E) by the maximum 30-minute

rainfall intensity (I30) of a rainfall event. From a dynamic standpoint, this index encapsulates the comprehensive effects on

soil particle detachment and transport processes. The E of a rainfall event can be quantified utilizing raindrop microphysics,35
which includes physical parameters such as raindrop size and falling velocity measured using distrometers. However,

quantifying these parameters at a large spatial scale poses a considerable challenge due to the unrealistic for a dense

observational network of expensive distrometers. To simply the calculation, substantial efforts have been made to detect the

empirical relations between E and rainfall intensity (I) (hereafter E-I relation). Various E-I models have been developed,

employing linear, polynomial, exponential, logarithmic, and power-law functions. It is notable that the accuracy of E is40
determined not only by the models used, but also the temporal resolution of the in-situ precipitation observations. Studies

have indicated that E values derived from 1-hourly in-situ precipitation data tend to underestimate those obtained from 1-

minute data by approximately 10% (Agnese et al., 2006; Yin et al., 2007). In 2023, Dai et al. (2023) introduced the first

global rainfall microphysics-based E, utilizing parameters retrieved from radar reflectivity. Compared to the radar remote

sensing-based E values, the multi-year averaged annual rainfall kinetic energy calculating using E-I method was smaller with45
biases ranging from -6.17% to -12.5% across distinct regions worldwide.

The I30 value for a rainfall event is derived from precipitation process data, including sub-hourly in-situ and remote sensing-

based precipitation data. When the in-situ data is used, I30 tend to be increasingly underestimated with increasing time

intervals of precipitation data. It has reported that I30 value is derived by multiplying maximum hourly precipitation intensity

derived from hourly records by 1.668 (Yin et al., 2007). Consequently, the in-situ precipitation data with 1-minute temporal50
resolution are the best suitable data for deriving I30 of an rain event. Recent years, there occurs some gridded precipitation

datasets with high temporal resolution. However, it should be caution when the gridded data are directly used to calculate I30,

because large underestimation in I30 has been widely reported. For example, ERA5, the state-of-the-art reanalysis

precipitation data has the underestimation of I30 by over 80% in the Tibetan Plateau (Chen et al., 2022). Satellite-based

products, such as the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM, IMERG) dataset,55
have also shown significant underestimations in precipitation intensity, suggesting potential challenges in accurately

identifying I30 (Freitas et al., 2020).

Based on the analysis presented, the following conclusion can be drawn: The bias in estimating the I30 of individual rainfall

events is significantly larger than that for estimating E under the latest available datasets. The estimation error of I30 is the

most crucial source of inaccuracies in determining rainfall erosivity. Strategies to achieve accurate I30 values may include60
advancements in satellite remote sensing technologies to identify sub-daily rainfall events and their properties, coupled with

leveraging in-situ observations from densely spaced weather station networks.

Due to the limited availability of high temporal-spatial resolution precipitation data, rainfall erosivity in China has

historically been estimated using precipitation data with coarser temporal resolutions, such as hourly, daily, monthly, and
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yearly scales from limited in-situ records and gridded precipitation data (Yin et al., 2015; Panagos et al., 2017; Liu et al.,65
2020; Yue et al., 2022; Chen et al., 2022, 2023). Consequently, the existing maps of the multi-year averaged annual rainfall

erosivity (hereafter named R factor) may contain uncertainties, particularly in regions with complex terrain and climate

conditions (Chen et al., 2022). Since 2012, the China Meteorological Administration (CMA) has been developing a dense

network of automatic weather stations, providing 1-minute in-situ precipitation records nationwide. This development

presents opportunities to identify sub-daily rainfall events and their characteristics. By leveraging this dataset, we can derive70
accurate I30 values and corresponding event rainfall erosivity for different precipitation events. Thus, this study aims to

develop a high-quality R factor map to enhance our understanding of water erosion across mainland China using the latest 1-

minute in-situ precipitation dataset.

2 Data and methods

2.1 Data75

2.1.1 Precipitation data

Over the past decade, approximately 70,000 weather stations have been gradually established by the CMA. These stations

have maintained nearly 10 years of 1-minute interval precipitation observation records. Each station's data integrity was

assessed using quality control codes at 1-minute intervals annually. Records with an integrity level exceeding 90% for a

given year were deemed suitable for calculating annual rainfall at the respective station. Ultimately, data in 2014-2022 from80
60,129 stations across the mainland China were utilized in this study.

The entirety of mainland China was divided into 16,167 grids with a spatial resolution of 0.25°. Based on this grid division,

we analyzed the density of weather stations and the coverage time length of available data at the grid scale (Figure 1). It was

evident that the density of stations and coverage time length in the southeastern regions of China significantly exceeded

those in the northwest. On a national scale, approximately 57% of all grids in mainland China had in-situ precipitation85
observations. Among these observed grids, there were an average of 6.7 stations per grid, with a data coverage spanning 5.2

years.
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90
Figure 1: (a) Numbers of available weather station, and (b) averaged coverage time length of in-situ precipitation records in each
0.25° grid across mainland China.

A monthly gridded precipitation dataset, released by the National Meteorological Information Center (NMIC) of the CMA,

was also employed to analyze the spatial characteristics of precipitation across China (hereafter named CMA gridded95
precipitation data). This dataset was particularly valuable for regions like northwestern China and areas with complex terrain,

where in-situ observations from weather stations was insufficient. The gridded precipitation dataset is based on precipitation

data from national weather stations, and then interpolated spatially into 0.5° grids by using the Thin Plate Spline method.

This study made use of data spanning from 2014 to 2022 to detect the spatial characteristics of multi-year averaged annual

precipitation across China.100
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2.1.2 Rainfall erosivity maps in previous studies

In the results section, the newly developed R factor map for mainland China in this study is compared with two existing

maps from Panogos et al. (2017) and Yue et al. (2022). The former map is the first global-scale erosivity database

(https://esdac.jrc.ec.europa.eu/themes/global-rainfall-erosivity). It is built upon sub-hourly in-situ precipitation records

gathered from 3,625 stations spread across 63 countries worldwide. Notably, the distribution of stations varies across105
continents, with Asia and the Middle East boasting 1,220 stations (34% of the total) distributed among 10 countries,

including the Siberian part of the Russian Federation, China, India, and Japan.

The latter map, released by Yue et al. (2022), employed hourly and daily rainfall data from 2381 stations spanning the period

1951-2018 to generate the R factor map across mainland China. This study demonstrated satisfactory performance by

comparing the derived values against true rainfall erosivity values calculated using 1-minute rainfall data collected from 62110
stations across China.

2.2 Method for calculating rainfall erosivity

Not all rainfall processes lead to soil erosion. It is generally believed that a rainfall event must exceed a certain threshold in

precipitation magnitude to cause soil erosion. According to Wischmeier and Smith (1978), a continuous six-hour dry period,

without any rainfall, is used to delineate individual rainfall events. This means that if there is an interruption of more than six115
hours, subsequent rainfall is considered a separate event. Erosive rainfall events are defined as those where the precipitation

exceeds 12 mm (Xie et al., 2000). The rainfall erosivity (EI30) of an erosive rainfall event is calculated as follows (Brown

and Foster, 1987):

�� = 0.29[1 − 0.72exp ( − 0.05��)](1)

� = �=1
� (�� ∙ ��)� (2)120

������ = � ∙ �30 (3)

where E (MJ·ha−1) is the total energy of the erosive event, and revent (MJ·mm·ha−1·h−1) is the event rainfall erosivity. For the

1-minute in-situ precipitation data, ir (mm/h) is the rainfall intensity for the rth minute, er (MJ·ha−1·mm−1) is the unit energy

for the rth minute, Pr (mm) is the rainfall amount for the rth minute, n is the rainfall duration, and I30 (mm/h) is the maximum

contiguous 30-min peak intensity.125

Due to occasional observation errors, particularly in low-temperature environments, we conducted a quality check on the

calculated erosive event rainfall erosivity. Initially, for each station, we selected the nearest 100 stations and categorized the

recorded events at these 101 stations into two distinct classifications: those occurring during the warm season (April to

October) and those during the cold season (January to March, November to December). Subsequently, the median and130
standard deviation of event rainfall erosivity are computed for the warm and cold seasons, respectively. The threshold value

for each station was then defined as the sum of the median and three times the standard deviation for different seasons. It is
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assumed that any event rainfall erosivity surpassing the threshold within the season is considered an outlier and therefore

excluded from the annual rainfall erosivity calculation. Ultimately, the annual rainfall erosivity at each station was

aggregated using the quality-checked event rainfall erosivity values, with the R factor representing the mean annual rainfall135
erosivity. The R factor at one grid is the multi-station averaged value.

3 Results

3.1 Rainfall erosivity map

Based on the methodology described in Section 2.2, the erosive event rainfall erosivity of 60,129 stations across mainland

China from 2014 to 2022 was calculated. Subsequently, the station-scale R factor was obtained. The gridded R factor values,140
with a spatial resolution of 0.25°, represent the average R factor values of the stations within corresponding grids (Figure 2).

The averaged R factor in the grids with in-situ observations across mainland China is calculated to be 1917

MJ·mm·ha−1·h−1·yr−1. Overall, the southern region of China exhibits the highest mean annual rainfall erosivity, followed by

the northern region. The R factor is minimal in the northwest arid and semi-arid areas, as well as in the Tibetan Plateau. The

R factor in the southern region generally exceeds 2000 MJ·mm·ha−1·h−1·yr−1, with the highest values observed along the145
southeast coast, reaching over 10000 MJ·mm·ha−1·h−1·yr−1. In contrast, the R factor in the northwest arid and semi-arid areas

and the Tibetan Plateau region mainly ranges below 500 MJ·mm·ha−1·h−1·yr−1.

Figure 2: Averaged annual rainfall erosivity map150
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On a national scale, this study employs the Kriging method to generate the spatial distribution of the R factor map with a

spatial resolution of 0.25° across mainland China. Notably, there are extensive areas of ground observation gaps in the

northwest and Tibetan Plateau. It is essential to identify the impacts of the spatial interpolation method on the accuracy of155
the R factor map in these regions. Due to the significant positive correlation between precipitation and rainfall erosivity

(Richardson et al., 1983; Renard & Freimund, 1994; Yu et al., 1996; Xie et al., 2016; Chen et al., 2024), the spatial

distribution of mean annual precipitation can help assess the potential bias in interpolated rainfall erosivity in observation

gap areas. Here, the CMA gridded precipitation data is utilized to detect the spatial characteristics of mean annual

precipitation. As shown in Figure 3a, most of the observation gaps in the northwest and Tibetan Plateau have relatively low160
annual precipitation, with minimal differences compared to annual precipitation in surrounding areas with observations.

However, the Dawang-Chayu area in the southern part of the Tibetan Plateau, where famous Yarlung Zangbo River Grand

Canyon is located, is an exception. Precipitation in this region is primarily affected by the southwest monsoon, which brings

warm and humid airflow to the hinterland of the Tibetan Plateau along the Yarlung Zangbo River Grand Canyon (Chen et al.,

2023). The observed mean annual precipitation (exceeding 1800 mm) in this region is much larger than that in its165
surrounding areas. Thus, using the R factor calculated from surrounding stations to extrapolate rainfall erosivity for this area

is unreasonable.

In 2022, we utilized hourly reanalysis precipitation data from the fifth European Centre for Medium-Range Weather

Forecasts reanalysis (ERA5) precipitation data, combined with in-situ precipitation records, to generate a gridded dataset of

annual rainfall erosivity for the Tibetan Plateau from 1950 to 2020 (Chen et al., 2022). This study used this released gridded170
dataset to calculate the mean annual rainfall erosivity from 2014 to 2020 for the Dawang-Chayu area, instead of relying on

direct spatial interpolation values. Figure 3b illustrates the integrated R factor map across mainland China. Generally, the R

factor in mainland China exhibits a decreasing trend from southeast to northwest, with an overall average value of 1241

MJ·mm·ha−1·h−1·yr−1.
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175
Figure 3: (a) The spatial distribution of mean annual precipitation in China. Grids without crossed diagonal lines indicates areas
without station records. The area marked using black dashed line is the Dawang-Chayu region. (b) The spatial distribution of R
factor across mainland China.
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3.2 Comparison with previous studies

The newly generated R factor map over mainland China is compared with the existing maps. Compared to the map180
developed by Panagos et al. (2017), there is a good correlation in regions where the mean annual rainfall erosivity is less

than 10,000 MJ·mm·ha−1·h−1·yr−1. However, in areas where the mean annual rainfall erosivity exceeds 10,000

MJ·mm·ha−1·h−1·yr−1, our estimates are significantly higher than those of Panagos et al. (2017) (Figure 4a). When compared

with the map developed by Yue et al. (2022), the correlation is good overall, but our calculated values are significantly lower

than those of Yue et al. (2022). In regions where the mean annual rainfall erosivity exceeds 10,000 MJ·mm·ha−1·h−1·yr−1, the185
differences are larger, but no clear pattern is observed. In summary, our results show high correlation with existing studies in

areas with lower mean annual rainfall erosivity, but significant differences in areas with higher rainfall erosivity.

Figure 4: The comparisons between the newly developed R factor map and existing maps (Panagos et al., 2017; Yue et al., 2022)
190

The performance of these three datasets are further compared across different watersheds in China. Mainland China has been

divided into nine watersheds, including the Songhua and Liaohe River Basin, Haihe River Basin, Yellow River Basin,

Continental Basin, Huaihe River Basin, Southwest Basin, Yangtze River Basin, Southeast Basin, and Pearl River Basin

(Figure 5a). From the perspective of mean and median values, the Haihe River Basin and Huaihe River Basin show the

largest differences among the three datasets. Overall, while there are some differences in the performance of these three195
maps across different watersheds, there is no consistent pattern (Figure 5b).
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Figure 5: The box-plots of R factor in various watersheds of mainland China. Grey, red, and blue boxes represent different R
factor maps released by this study, Panagos et al. (2017), and Yue et al. (2022), respectively. The lower and upper of the boxes were200
defined as the 25th percentile of R factor (Q1) and the 75th percentile (Q2). The difference (Q2−Q1) is called the interquartile
range (IQR). The lower and upper bounds are calculated using (Q1−3IQR) and (Q2 + 3IQR). Th plot and line in the box are the
average and median values, respectively.

4 Data availability

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center205
(https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).
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5 Conclusions

The rainfall erosivity of individual rainfall events is determined by the product of two parameters: the kinetic energy of the

event (E) and the maximum 30-minute rainfall intensity (I30). With current technological conditions, the accuracy of

obtaining I30 during individual rainfall events is far lower than that of event rainfall E. In other words, the deviation in210
estimated rainfall erosivity primarily stems from the deviation in the maximum 30-minute rainfall intensity. At present, using

high spatiotemporal resolution ground precipitation observation data yields the highest accuracy in calculating the I30 for

rainfall events, making the resulting rainfall erosivity estimates the most reliable. Therefore, this study utilized nearly ten

years of 1-minute in-situ precipitation data from 60,129 stations to estimate the R factor in mainland China. The main results

are as follows:215
(1) The R factor across the mainland China shows significant spatial variability, with the regional average being

approximately 1241 MJ·mm·ha−1·h−1·yr−1.

(2) Compared to our study, previously released datasets overestimate China's mean annual rainfall erosivity by 31%~65%,

and there are significant differences in performance across different river basins.

This newly developed dataset for the average annual rainfall erosivity in mainland China is based on ground precipitation220
observation data offering the highest spatiotemporal resolution from the recent decade. On one hand, this data provides a

foundation for the detailed assessment of current water erosion intensity in China. On the other hand, rainfall erosivity can

also be seen as a characteristic of rainfall events, which has certain spatial indications for precipitation-induced disasters in

China.
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