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Abstract. The risk of water erosion in mainland China is intensifying due to climate change. A high-precision rainfall10
erosivity dataset is crucial for understanding the spatiotemporal patterns of rainfall erosivity and identifying key areas of

water erosion. However, due to the limited spatiotemporal resolution of historical precipitation data, there are significant

biases in the estimation of rainfall erosivity in China, particularly in regions with complex terrain and climatic conditions.

Over the past decade, the China Meteorological Administration has continuously strengthened its ground-based

meteorological observation capabilities, establishing a dense network of observation stations. These high-precision15
precipitation data provide a reliable basis for quantifying rainfall erosivity pattern in China. In this study, rigorous quality

control was performed on the 1-minute ground observation precipitation data from nearly 70,000 stations nationwide

between 2014 and 2022, ultimately selecting data from 60,129 stations. Using the data from these stations, event rainfall

erosivity was calculated, producing a national dataset of mean annual rainfall erosivity with a spatial resolution of 0.25° .

This dataset shows that the mean annual rainfall erosivity in mainland China is approximately 1241 MJ·mm·ha−1·h−1·yr−1,20
with values exceeding 4000 MJ·mm·ha−1·h−1·yr−1 primarily concentrated in southern China and the southern Tibetan Plateau.

The mean annual rainfall erosivity in mainland China derived from previously released datasets was found to be 31% to 65%

higher than the value calculated in this study, and basin-level discrepancies between our findings and other studies also

varies significantly. In summary, the release of this dataset enables a more accurate assessment of the current intensity of

water erosion in China. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center25
(https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).

1 Introduction

Rainfall-induced soil erosion is a primary contributor to global soil loss, as highlighted by the Intergovernmental Panel on

Climate Change (IPCC, 2019), posing a significant threat to soil functionality. This phenomenon jeopardizes various crucial

aspects, including food security, water quality, and climate change mitigation (FAO and IPTS, 2015; Panagos et al. 2020).30
Precipitation is the principal driver of erosion processes, influencing soil particle detachment, aggregate breakdown, and

particle transport via runoff (Wischmeier and Smith, 1965, 1978). In this context, the rainfall erosivity index was introduced

to quantify the potential of rainfall to cause soil loss. In the widely used Universal Soil Loss Equation (USLE) and its

updated versions, the multi-year mean annual rainfall erosivity is referred to as R factor, which links rainfall characteristics

to soil loss based on extensive data collected from thousands of plot-years of natural rainfall and runoff (Nearing et al., 2017).35
In recent years, rainfall erosivity has also been widely used in assessing ecosystem service functions, post-fire debris flows,

and other environmental hazards (Diodato et al., 2020; McGuire et al., 2024; Wu et al., 2024).

Rainfall erosivity is commonly assessed by multiplying the accumulated kinetic energy (E) by the maximum 30-minute

rainfall intensity (I30) of a rainfall event. From a dynamic perspective, this index encapsulates the comprehensive effects of

soil particle detachment and transport processes. The E of a rainfall event can be quantified using the raindrop physical40
parameters such as raindrop size and falling velocity measured using distrometers. However, it is challenge to obtain these
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parameters on a large spatial scale due to the high cost of maintaining a dense observational network of distrometers. To

simplify the calculation, empirical models relating E to rainfall intensity (I) (hereafter referred to as the E-I relation) are

developed based on observed raindrop fall velocity and size to estimate the E of rainfall events. The common used forms of

E-I relation models include polynomial (Carter et al., 1974; Tilg et al., 2020), exponential (Kinnell, 1980; Brown and Foster,45
1987; Renard et al., 1997; Mineo et al., 2019), logarithmic (Wischmeier and Smith, 1958, 1978; Davison et al., 2005), and

power-law (Laws, 1941; Laws and Parsons, 1943; Uijlenhoet and Stricker, 1999; Lim et al., 2015) equations, etc. It is

important to note that the accuracy of E depends not only on the models used but also on the temporal resolution of the in-

situ precipitation observations, considering the non-linear E-I relationship. For example, for logarithmic and exponential E-I

relation models, like those used in the USLE and Revised Universal Soil Loss Equation (RUSLE), studies have shown that E50
values derived from 1-hour in-situ precipitation data are about 10% lower than those derived from 1-minute data (Agnese et

al., 2006; Yin et al., 2007). In 2023, Dai et al. (2023) introduced the first global rainfall microphysics-based E values

retrieved from radar reflectivity at different frequencies, showing that microphysics-based E estimates outperform those

derived from commonly used empirical KE-I relations, validated using ground disdrometers. Specifically, the mean annual

rainfall kinetic energy calculating using the E-I method was found to be 6.17% to 12.5% lower than the radar remote55
sensing-based E values across distinct regions worldwide.

The I30 value of a rainfall event is derived from precipitation process data, including both in-situ and gridded precipitation

data. In-situ precipitation data with 1-minute temporal resolution are the best suitable data for deriving I30 of a rain event.

Precipitation data with a temporal resolution greater than 15-minute may fail to capture the accurate sub-hourly rainfall

process, resulting in underestimated I30 values (Angulo-Martínez and Beguería, 2009). For example, the I30 value derived60
from 1-minute data is found to be approximately1.668 times higher than that derived from hourly records in mainland China

(Yin et al., 2007). As remote sensing technology and weather forecasting models advance, the temporal resolution of gridded

precipitation data has greatly improved, allowing their use to derive I30 values. However, caution is needed, as I30 values may

be underestimated when using gridded precipitation data. For example, the European Center for Medium-Range Weather

Forecasts Reanalysis 5 (ERA5) reanalysis precipitation data underestimates I30 values by over 80% in the Tibetan Plateau65
(Chen et al., 2022). Satellite-based products, such as the Integrated Multi-satellitE Retrievals for the Global Precipitation

Measurement (GPM, IMERG) dataset, also show significant underestimations in precipitation intensity, posing challenges in

accurately identifying I30 (Freitas et al., 2020).

Based on the analysis, the variation among different E estimates derived from different data sources and methods is around

10%. In contrast, the bias in I30 estimates from precipitation data with varying temporal resolutions exceeds 60%. The bias in70
I30 for individual rainfall event is significantly great than that for E. Therefore, the I30 estimation bias is the crucial source of

inaccuracies in determining rainfall erosivity. The most reliable approach for obtaining I30 and corresponding rainfall

erosivity values is to use in-situ observations from densely spaced weather station networks.

Due to the limited availability of high temporal-spatial resolution precipitation data, rainfall erosivity in China has

traditionally been estimated using coarser resolution precipitation data (limited in-situ records and gridded data), such as75
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hourly, daily, monthly, or yearly scales (Yin et al., 2015; Panagos et al., 2017; Liu et al., 2020; Yue et al., 2022; Chen et al.,

2022, 2023). Consequently, existing maps of mean annual rainfall erosivity may contain significant uncertainties,

particularly in regions with complex terrain and climate conditions (Chen et al., 2022). Since 2012, the China Meteorological

Administration (CMA) has developed a dense network of automatic weather stations, providing 1-minute in-situ

precipitation records nationwide. This development offers an opportunity to better identify sub-hourly rainfall characteristics.80
By leveraging this dataset, accurate I30 values, event rainfall erosivity, and mean annual rainfall erosivity for the recent

decade in mainland China can be obtained. This study aims to: 1) determine mean annual rainfall erosivity values at

approximately 70,000 weather stations using the standard method; 2) develop an mean annual rainfall erosivity map for

mainland China by integrating values based on 1-minute in-situ data with values derived from hourly ERA5 reanalysis

precipitation data; 3) identify the sources of uncertainties in estimating the rainfall erosivity.85

2 Data and methods

2.1 Data

2.1.1 Precipitation data

Over the past decade, approximately 70,000 weather stations have been established by the CMA, maintaining nearly 10

years of precipitation observations at 1-minute intervals. To ensure the accuracy of these in-situ data, the quality of records90
was evaluated using a data integrity index, defined as the ratio of available records to the total number of minutes in a year

for each station. Records with an integrity level above 90% for a given year were deemed suitable for calculating annual

rainfall erosivity at the respective stations. Ultimately, data from 60,129 stations across the mainland China spanning 2014-

2022 were used in this study.

Mainland China was divided into 16,167 grids with a spatial resolution of 0.25°. Based on this division, we analyzed the95
density of weather stations and the length of available data coverage at the grid scale (Figure 1). Results indicated that the

density of stations and coverage time length were significantly higher in the southeastern regions of China compared to the

northwest. On a national scale, approximately 57% of all grids had in-situ precipitation observation, with an average of 6.7

stations per grid and data coverage of 5.2 years.

100
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Figure 1: (a) Number of available weather stations and (b) averaged coverage time length of in-situ precipitation records in each
0.25° grid across mainland China.

A monthly gridded precipitation dataset, released by the National Meteorological Information Center (NMIC) of the CMA,105
was also employed to analyze the spatial characteristics of precipitation across China (hereafter referred to as the CMA

gridded precipitation data). This dataset was particularly valuable for regions with insufficient station data, such as

northwestern China. The gridded precipitation dataset is based on national weather station data and interpolated into 0.5°

grids using the Thin Plate Spline method. This study used data from 2014 to 2022 to detect the spatial characteristics of

multi-year mean annual precipitation across China.110
The hourly 0.25° ERA5 reanalysis precipitation dataset was employed to calculate rainfall erosivity in the Dawang-Chayu

area, located in the southern part of the Tibetan Plateau, which receives more than 1,000 mm of annual precipitation but
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lacks 1-minute precipitation records. ERA5 precipitation data include large-scale and convective precipitation consisting of

rain and snow, produced by the European Center for Medium-Range Weather Forecasts Integrated Forecasting System. This

dataset, representing the latest generation of global atmospheric reanalysis, provides a higher spatial resolution compared to115
ERA-Interim (Hersbach et al., 2019).

2.1.2 Rainfall erosivity maps in previous studies

The newly developed mean annual map for mainland China, presented in the results section, is compared with previous

studies. Two widely used rainfall erosivity maps from Panogos et al. (2017) and Yue et al. (2022) were selected for

comparison. Panogos et al. (2017) developed the first global-scale rainfall erosivity database using hourly in-situ120
precipitation records from 3,625 stations spread across 63 countries (https://esdac.jrc.ec.europa.eu/themes/global-rainfall-

erosivity). The distribution of stations varies by continent, with Asia and the Middle East accounting for 1,220 stations (34%

of the total) across 10 countries, including parts of Russia, China, India, and Japan. Yue et al. (2022) used hourly rainfall

data from 2,381 stations between 1951 and 2018 to generate a mean annual rainfall erosivity map for mainland China. This

study demonstrated satisfactory performance by comparing derived values against true rainfall erosivity values calculated125
from 1-minute rainfall data collected from 62 stations across China. In this study, the overall performance of different mean

annual rainfall erosivity maps is first compared using grid-to-grid approach. Secondly, performance by basin is also assessed.

Mainland China is divided into nine basin: the Songhua and Liaohe River Basin, Haihe River Basin, Huaihe River Basin,

Yellow River Basin, Yangtze River Basin, Pearl River Basin, Southeast Basin, Southwest Basin, and Continental Basin

(Figure 5a, https://www.resdc.cn/data.aspx?DATAID=141, last access 16 October 2024).130

Table 1 Comparison of data and methods used to generate mean annual rainfall erosivity maps

R factor

map

Temporal resolution

of precipitation data

Number of

stations

Time

coverage
E algorithm

I30 (EI30)

algorithm

Spatial

interpolation

method

Panagos et

al. (2017)
1-hour 387 14 years

RUSLE (Renard et al.,

1997)

Conversion factor

for rainfall erosivity

Gaussian Process

Regression

Yue et al.

(2022)
1-hour 2381

18 to 54

years

RUSLE2 (USDA-

Agricultural Research

Service, 2013)

Conversion factor

for rainfall erosivity
Kriging

This study 1-minute 60129 9 years
RUSLE (Renard et al.,

1997)
No conversion Kriging

2.2 Method for calculating rainfall erosivity

Not all rainfall processes lead to soil erosion, and it is generally believed that rainfall must exceed a certain magnitude to135
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cause soil erosion. According to Wischmeier and Smith (1978), a continuous six-hour dry period without any rainfall is used

to delineate individual rainfall events. If rainfall is interrupted for more than six hours, subsequent rainfall is considered a

separate event. Erosive rainfall events are defined as those with precipitation exceeding 12 mm (Xie et al., 2000). The

rainfall erosivity (EI30) of an erosive rainfall event is calculated according to the method proposed by Brown and Foster

(1987), as recommended in RUSEL:140

�� = 0.29[1 − 0.72exp ( − 0.05��)](1)

� = �=1
� (�� ∙ ��)� (2)

������ = � ∙ �30 (3)

where E (MJ·ha−1) is the total energy of the erosive event, and revent (MJ·mm·ha−1·h−1) is the event rainfall erosivity. For 1-

minute in-situ precipitation data, ir (mm/h) is the rainfall intensity for the rth minute, er (MJ·ha−1·mm−1) is the unit energy for145
the rth minute, Pr (mm) is the rainfall amount for the rth minute, n is the rainfall duration in minutes, and I30 (mm/h) is the

maximum contiguous 30-minute peak intensity.

To address occasional observation errors, particularly in low-temperature environments, a quality check was conducted on

the calculated event rainfall erosivity. For each station, the nearest 100 stations were selected, and the recorded events at

these 101 stations were categorized into two classifications: those occurring during the warm season (April to October) and150
those during the cold season (including months from January to March and November to December). The median and

standard deviation of event rainfall erosivity were computed separately for both seasons. The threshold value for each station

was defined as the median plus three times the standard deviation. Any event rainfall erosivity exceeding the threshold for

the respective season was considered an outlier and excluded from the annual rainfall erosivity calculation. Ultimately,

annual mean rainfall erosivity at each station was aggregated using quality-checked event rainfall erosivity values. The mean155
annual rainfall erosivity for a grid represents the multi-station averaged value. The overall algorithm for mapping mean

annual rainfall erosivity in mainland China is shown in Figure 2.
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Figure 2. The algorithm for mapping mean annual rainfall erosivity in mainland China160

3 Results

3.1 Rainfall erosivity map

Using the methodology described in Section 2.2, the rainfall erosivity of erosive rainfall events was calculated for 60,129

stations across mainland China from 2014 to 2022 (Chen, 2024). The mean annual rainfall erosivity for each station was

subsequently obtained, and gridded mean annual rainfall erosivity values were determined at a spatial resolution of 0.25°,165
representing the average mean annual rainfall erosivity values of the stations within corresponding grids (Figure 3). The

mean annual rainfall erosivity across grids with in-situ observations in mainland China is 1,917 MJ·mm·ha−1·h−1·yr−1.

Overall, the southern region of China exhibits the highest mean annual rainfall erosivity, followed by the northern region.

The mean annual rainfall erosivity is lowest in the arid and semi-arid areas of the northwest, as well as in the Tibetan Plateau.

In the southern region, the mean annual rainfall erosivity generally exceeds 2,200 MJ·mm·ha−1·h−1·yr−1, with the highest170
values observed along the southeast coast, reaching over 10,000 MJ·mm·ha−1·h−1·yr−1. In contrast, the mean annual rainfall

erosivity in the northwest and Tibetan Plateau regions is mainly below 500 MJ·mm·ha−1·h−1·yr−1.
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Figure 3: Mean annual rainfall erosivity map in mainland China.175

A spatial distribution map of the mean annual rainfall erosivity across mainland China, with a spatial resolution of 0.25°, was

generated using the Kriging method. Notably, large areas in the northwest and Tibetan Plateau lack ground observations,

necessitating an assessment of the impact of spatial interpolation method on the accuracy of the mean annual rainfall

erosivity map in these regions. Given the strong positive correlation between the annual rainfall erosivity and precipitation180
(Richardson et al., 1983; Renard & Freimund, 1994; Yu et al., 1996; Xie et al., 2016; Chen et al., 2024), mean gridded

annual precipitation data were used to identify regions with high precipitation but no 1-minute records. Figure 4a shows the

spatial distribution of mean annual precipitation deriving from CMA gridded precipitation data. Most observation gaps in the

northwest and Tibetan Plateau have relatively low annual precipitation, with minimal differences compared to surrounding

areas with observations. However, the Dawang-Chayu area, located in the southern part of the Tibetan Plateau near the185
Yarlung Zangbo River Grand Canyon, is an exception. Precipitation in this region is primarily influenced by the southwest

monsoon, which brings warm and humid airflow to the Tibetan Plateau (Chen et al., 2023). The observed mean annual

precipitation here exceeds 1,800 mm, significantly higher than that in surrounding areas. Therefore, extrapolating rainfall

erosivity from surrounding stations for this area is not reasonable.

To address this, hourly ERA5 reanalysis precipitation data, combined with in-situ precipitation records, were used to190
generate a gridded dataset of annual rainfall erosivity for the Tibetan Plateau from 1950 to 2020 (Chen et al., 2022). The

mean annual rainfall erosivity for the Dawang-Chayu area from 2014 to 2022 was obtained form this dataset instead of

relying on direct interpolation. Figure 4b shows the integrated mean annual rainfall erosivity map for mainland China.

Generally, the mean rainfall erosivity in mainland China exhibits a decreasing trend from southeast to northwest, with an

overall average value of 1,241 MJ·mm·ha−1·h−1·yr−1.195
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Figure 4: (a) Spatial distribution of mean annual precipitation in China. Grids without crossed diagonal lines indicates areas
without station records. The black dashed line marks the Dawang-Chayu region. (b) Spatial distribution of mean annual rainfall
erosivity across mainland China.
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3.2 Comparison with previous studies

The newly generated mean annual rainfall erosivity map for mainland China is compared with the widely used maps from

Panagos et al. (2017) and Yue et al. (2022) . Compared to the map developed by Panagos et al. (2017), there is a good

correlation in regions with mean annual rainfall erosivity below 10,000 MJ·mm·ha−1·h−1·yr−1. However, in areas with annual

rainfall erosivity exceeding 10,000 MJ·mm·ha−1·h−1·yr−1, our estimates are significantly higher (Figure 5a). When compared205
with the map by Yue et al. (2022), the overall correlation is good with annual rainfall erosivity less than 10,000

MJ·mm·ha−1·h−1·yr−1. In regions with mean annual rainfall erosivity exceeds 10,000 MJ·mm·ha−1·h−1·yr−1, the differences

are larger, but no clear pattern is observed (Figure 5b). In summary, our results correlate well with existing studies in areas

with lower mean annual rainfall erosivity but show significant differences in high-erosivity areas.

210

Figure 5: Comparisons between the newly developed mean annual rainfall erosivity map and existing maps (Panagos et al., 2017;
Yue et al., 2022) (Unit: MJ·mm·ha−1·h−1·yr−1).

A further comparison was conducted across the nine river basins in China (Figure 6). The Haihe and Huaihe River Basins215
show the largest differences in mean and median mean annual rainfall erosivity values among the three datasets. Although

some differences in performance are observed between basins, no consistent pattern emerge. These discrepancies primarily

stem from variations in spatial and temporal resolution of the precipitation data and the algorithms used (Table 1). The

algorithms in these studies are based on recommendations from RUSLE and RUSLE2. The E calculations of RUSLE are

approximately 12% lower than those from RUSLE2 for precipitation intensities below 35 mm/hr, but 2% higher for220
intensities above 100 mm/hr (Nearing et al., 2017). Regarding I30, 1-hour precipitation data cannot accurately capture this

value. Unlike other studies, this research utilized the largest set of in-situ precipitation records but over a shorter time
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coverage. Since the R factor typically describes the potential of precipitation to cause erosion over a long-term climate scale,

ideally spanning 20 years (Renard et al., 1997), using short-term data may introduce bias. Ayat et al. (2022) reported an

increasing trend of extreme sub-hourly rainfall near Sydney, Australia, over the last two decades, though no similar evidence225
exists for hourly or daily scales. However, trends in extreme sub-hourly rainfall over mainland China remain unclear. This

study provides the mean annual rainfall erosivity map for the past decade, acknowledging potential biases, particularly in the

context of climate change.

230

Figure 6: (a) The nine basins in China; (b) Box-plots of mean annual rainfall erosivity across basins (Unit: MJ·mm·ha−1·h−1·yr−1).
Grey, red, and blue boxes represent different mean annual rainfall erosivity maps from this study, Panagos et al. (2017), and Yue
et al. (2022), respectively.

235
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4. Impacts of precipitation data and algorithms on estimating rainfall erosivity

Variations in rainfall erosivity data and algorithms are the primary reasons for discrepancies in rainfall erosivity estimation.

In this section, E values for erosive precipitation events are calculated using the kinetic energy methods from RUSLE and

RUSLE2, evaluating how different kinetic energy algorithms affect rainfall erosivity estimation. To assess the impact of

temporal resolution of precipitation data on the accuracy of I30, I30 values for erosive rainfall events were calculated using240
precipitation data at different temporal resolutions (1-minute vs. 1-hour). A total of 300 stations across China were randomly

selected, using minute-level and hour-level precipitation data from 2020-2022 for comparison.

Figure 7 (a) and (b) show the mean E and I30 for erosive rainfall events across mainland China during 2020-2022. The mean

event E value is 6.2 MJ/ha, ranging from 1.8 to 12.5 MJ/ha, and shows a decreasing trend from southeast to northwest. The

mean event I30 value is 18.9 mm/h, ranging from 3.0 to 34.9 mm/h, with two notable centers in the southern and central parts245
of China (Beijing-Tianjin-Hebei region, Shanxi, Henan, and Shandong provinces). Next, the differences between E

computation using RUSLE and RUSLE2 were analyzed. For minute-level data, the ratio of the average event kinetic energy

computed using RUSLE2 to RUSLE is approximately 1.09, while it is 1.15 for hourly data (Figures 7c and 7d). Next, the

differences between energy computations using RUSLE and RUSLE2 were analyzed. For minute-level data, the ratio of the

average kinetic energy computed using RUSLE2 to RUSLE is approximately 1.09, while it is 1.15 for hourly data (Figures250
7c and 7d). The analysis was further extended to assess the impact of temporal resolution on E and I30 calculations. Based on

RUSLE’s kinetic energy algorithm, results show that values computed from minute-level data are 1.21 times higher than

those from hourly data, with more significant differences in the northwest (Figure 7e). The impact on I30 is even more

pronounced, with minute-level data yielding values 1.72 times higher than those from hourly data (Figure 7f). This analysis

highlights that I30 values exceed E at a national scale and are more sensitive to both temporal resolution of precipitation data255
and algorithm selection. Accurate computation of I30 is therefore essential for reliable rainfall erosivity estimation,

underscoring the importance of high temporal resolution data in achieving precise rainfall erosivity estimates.
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Figure 7: Spatial distribution of (a) mean kinetic energy (E) and (b) maximum 30-minute rainfall intensity (I30) of erosive rainfall260
events during 2020-2022; (c) Ratio of E calculated using RUSLE and RUSLE2 methods based on 1-minute precipitation data; (d)
Same as (c), but for 1-hour data; (e) Ratio of E calculated using the RUSEL method for 1-minute vs. 1-hour data; (f) I30 calculated
using 1-minute vs. 1-hour data. The subscript “min” indicates results based on 1-minute data, while “hour” refers to 1-hour data.
Subscripts “RUSEL” and “RUSLE2” indicate the methods used to estimate E.

5. Data availability265

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center

(https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).
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6. Conclusions

The rainfall erosivity of individual rainfall events is determined by two parameters: the E and I30. High spatiotemporal

resolution ground precipitation data provides the most accuracy calculations for both E and I30, resulting in the most reliable270
rainfall erosivity estimates. Accordingly, this study used nearly ten years of 1-minute in-situ precipitation data from 60,129

stations to estimate the mean annual rainfall erosivity across mainland China. The main findings are as follows:

(1) The mean annual rainfall erosivity across mainland China shows significant spatial variability, with a regional average of

approximately 1241 MJ·mm·ha−1·h−1·yr−1.

(2) Compared to previous studies, this newly released datasets presents lower mean annual rainfall erosivity values across275
mainland China by 31%~65%, with significant differences across various river basins.

(3) With current technology, the accuracy of determining I30 during erosive rainfall events is much lower that that of E. The

main source of deviation in rainfall erosivity estimation is the uncertainty in I30.

This newly developed dataset, based on high-resolution ground precipitation observations from the recent decade, can

enhance the accuracy of soil erosion forecasting when combined with other factors in RUSLE/RUSLE2, such as newly280
released K factor maps (Gupta et al., 2024) and Cover-Management factor. Furthermore, rainfall erosivity can be viewed as a

characteristic of rainfall events, offering spatial insights into precipitation-induced disasters in China.
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