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Abstract. The risk of water erosion in mainland China is intensifying due to climate change. A high-precision rainfall

erosivity dataset is crucial for understanding the spatiotemporal patterns of rainfall erosivity and identifying key areas of

water erosion. However, due to the limited spatiotemporal resolution of historical precipitation data, there are significant10
biases in the estimation of rainfall erosivity in China, particularly in regions with complex terrain and climatic conditions.

Over the past decade, the China Meteorological Administration has continuously strengthened its ground-based

meteorological observation capabilities, establishing a dense network of observation stations. These high-precision

precipitation data provide a reliable basis for quantifying rainfall erosivity pattern in China. In this study, rigorous quality

control was performed on the 1-minute ground observation precipitation data from nearly 70,000 stations nationwide15
between 2014 and 2022, ultimately selecting data from 60,129 stations. Using the data from these stations, event rainfall

erosivity was calculated, producing a national dataset of mean annual rainfall erosivity with a spatial resolution of 0.25° .

This dataset shows that the mean annual rainfall erosivity in mainland China is approximately 1241 MJ·mm·ha−1·h−1·yr−1,

with values exceeding 4000 MJ·mm·ha−1·h−1·yr−1 primarily concentrated in southern China and the southern Tibetan Plateau.

The mean annual rainfall erosivity in mainland China derived from previously released datasets was found to be 31% to 65%20
higher than the value calculated in this study, and basin-level discrepancies between our findings and other studies also

varies significantly. In summary, the release of this dataset enables a more accurate assessment of the current intensity of

water erosion in China. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center

(https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).

1 Introduction25

Rainfall-induced soil erosion is a primary contributor to global soil loss, as highlighted by the Intergovernmental Panel on

Climate Change (IPCC, 2019), posing a significant threat to soil functionality. This phenomenon jeopardizes various crucial

aspects, including food security, water quality, and climate change mitigation (FAO and IPTS, 2015; Panagos et al. 2020).

Precipitation is the principal driver of erosion processes, influencing soil particle detachment, aggregate breakdown, and

particle transport via runoff (Wischmeier and Smith, 1965, 1978). In this context, the rainfall erosivity index was introduced30
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to quantify the potential of rainfall to cause soil loss, particularly using the Universal Soil Loss Equation (USLE), which

links rainfall characteristics to soil loss based on extensive data from thousands of plot-years of natural rainfall and runoff

(Nearing et al., 2017). In recent years, rainfall erosivity has also been widely used in assessing ecosystem service functions,

post-fire debris flows, and other environmental hazards (Diodato et al., 2020; McGuire et al., 2024; Wu et al., 2024).

Rainfall erosivity is commonly assessed by multiplying the accumulated kinetic energy (E) by the maximum 30-minute35
rainfall intensity (I30) of a rainfall event. From a dynamic perspective, this index encapsulates the comprehensive effects of

soil particle detachment and transport processes. The E of a rainfall event can be quantified using the raindrop physical

parameters such as raindrop size and falling velocity measured using distrometers. However, it is challenge to obtain these

parameters on a large spatial scale due to the high cost of maintaining a dense observational network of distrometers. To

simplify the calculation, empirical models relating E to rainfall intensity (I) (hereafter referred to as the E-I relation) are40
developed based on observed raindrop fall velocity and size to estimate the E of rainfall events. The common used forms of

E-I relation models include polynomial (Carter et al., 1974; Tilg et al., 2020), exponential (Kinnell, 1980; Brown and Foster,

1987; Renard et al., 1997; Mineo et al., 2019), logarithmic (Wischmeier and Smith, 1958, 1978; Davison et al., 2005), and

power-law (Laws, 1941; Laws and Parsons, 1943; Uijlenhoet and Stricker, 1999; Lim et al., 2015) equations, etc. It is

important to note that the accuracy of E depends not only on the models used but also on the temporal resolution of the in-45
situ precipitation observations, considering the non-linear E-I relationship. For example, for logarithmic and exponential E-I

relation models, like those used in the USLE and Revised Universal Soil Loss Equation (RUSLE), studies have shown that E

values derived from 1-hour in-situ precipitation data are about 10% lower than those derived from 1-minute data (Agnese et

al., 2006; Yin et al., 2007). In 2023, Dai et al. (2023) introduced the first global rainfall microphysics-based E values

retrieved from radar reflectivity at different frequencies, showing that microphysics-based E estimates outperform those50
derived from commonly used empirical KE-I relations, validated using ground disdrometers. Specifically, the mean annual

rainfall kinetic energy calculating using the E-I method was found to be 6.17% to 12.5% lower than the radar remote

sensing-based E values across distinct regions worldwide.

The I30 value of a rainfall event is derived from precipitation process data, including both in-situ and gridded precipitation

data. In-situ precipitation data with 1-minute temporal resolution are the best suitable data for deriving I30 of a rain event.55
Precipitation data with a temporal resolution greater than 15-minute may fail to capture the accurate sub-hourly rainfall

process, resulting in underestimated I30 values (Angulo-Martínez and Beguería, 2009). For example, the I30 value derived

from 1-minute data is found to be approximately1.668 times higher than that derived from hourly records in mainland China

(Yin et al., 2007). As remote sensing technology and weather forecasting models advance, the temporal resolution of gridded

precipitation data has greatly improved, allowing their use to derive I30 values. However, caution is needed, as I30 values may60
be underestimated when using gridded precipitation data. For example, the European Center for Medium-Range Weather

Forecasts Reanalysis 5 (ERA5) reanalysis precipitation data underestimates I30 values by over 80% in the Tibetan Plateau

(Chen et al., 2022). Satellite-based products, such as the Integrated Multi-satellitE Retrievals for the Global Precipitation

Measurement (GPM, IMERG) dataset, also show significant underestimations in precipitation intensity, posing challenges in
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accurately identifying I30 (Freitas et al., 2020).65
Based on the analysis, the variation among different E estimates derived from different data sources and methods is around

10%. In contrast, the bias in I30 estimates from precipitation data with varying temporal resolutions exceeds 60%. The bias in

I30 for individual rainfall event is significantly great than that for E. Therefore, the I30 estimation bias is the crucial source of

inaccuracies in determining rainfall erosivity. The most reliable approach for obtaining I30 and corresponding rainfall

erosivity values is to use in-situ observations from densely spaced weather station networks.70
Due to the limited availability of high temporal-spatial resolution precipitation data, rainfall erosivity in China has

traditionally been estimated using coarser resolution precipitation data (limited in-situ records and gridded data), such as

hourly, daily, monthly, or yearly scales (Yin et al., 2015; Panagos et al., 2017; Liu et al., 2020; Yue et al., 2022; Chen et al.,

2022, 2023). Consequently, existing maps of mean annual rainfall erosivity (hereafter referred to as the R factor) may

contain significant uncertainties, particularly in regions with complex terrain and climate conditions (Chen et al., 2022).75
Since 2012, the China Meteorological Administration (CMA) has developed a dense network of automatic weather stations,

providing 1-minute in-situ precipitation records nationwide. This development offers an opportunity to better identify sub-

hourly rainfall characteristics. By leveraging this dataset, accurate I30 values, event rainfall erosivity, and mean annual

rainfall erosivity for the recent decade in mainland China can be obtained. This study aims to: 1) determine R factor values at

approximately 70,000 weather stations using the standard method; 2) develop an R factor map for mainland China by80
integrating values based on 1-minute in-situ data with those derived from hourly ERA5 reanalysis precipitation data; 3)

identify the sources of uncertainties in estimating the R factor.

2 Data and methods

2.1 Data

2.1.1 Precipitation data85

Over the past decade, approximately 70,000 weather stations have been established by the CMA, maintaining nearly 10

years of precipitation observations at 1-minute intervals. To ensure the accuracy of these in-situ data, the quality of records

was evaluated using a data integrity index, defined as the ratio of available records to the total number of minutes in a year

for each station. Records with an integrity level above 90% for a given year were deemed suitable for calculating annual

rainfall erosivity at the respective stations. Ultimately, data from 60,129 stations across the mainland China spanning 2014-90
2022 were used in this study.

Mainland China was divided into 16,167 grids with a spatial resolution of 0.25°. Based on this division, we analyzed the

density of weather stations and the length of available data coverage at the grid scale (Figure 1). Results indicated that the

density of stations and coverage time length were significantly higher in the southeastern regions of China compared to the

northwest. On a national scale, approximately 57% of all grids had in-situ precipitation observation, with an average of 6.795
stations per grid and data coverage of 5.2 years.
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Figure 1: (a) Number of available weather stations and (b) averaged coverage time length of in-situ precipitation records in each
0.25° grid across mainland China.100

A monthly gridded precipitation dataset, released by the National Meteorological Information Center (NMIC) of the CMA,

was also employed to analyze the spatial characteristics of precipitation across China (hereafter referred to as the CMA

gridded precipitation data). This dataset was particularly valuable for regions with insufficient station data, such as

northwestern China. The gridded precipitation dataset is based on national weather station data and interpolated into 0.5°105
grids using the Thin Plate Spline method. This study used data from 2014 to 2022 to detect the spatial characteristics of

multi-year averaged annual precipitation across China.

The hourly 0.25° ERA5 reanalysis precipitation dataset was employed to calculate rainfall erosivity in the Dawang-Chayu
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area, located in the southern part of the Tibetan Plateau, which receives more than 1,000 mm of annual precipitation but

lacks 1-minute precipitation records. ERA5 precipitation data include large-scale and convective precipitation consisting of110
rain and snow, produced by the European Center for Medium-Range Weather Forecasts Integrated Forecasting System. This

dataset, representing the latest generation of global atmospheric reanalysis, provides a higher spatial resolution compared to

ERA-Interim (Hersbach et al., 2019).

2.1.2 Rainfall erosivity maps in previous studies

The newly developed R factor map for mainland China, presented in the results section, is compared with previous studies.115
Two widely used R factor maps from Panogos et al. (2017) and Yue et al. (2022) were selected for comparison. Panogos et

al. (2017) developed the first global-scale rainfall erosivity database using hourly in-situ precipitation records from 3,625

stations spread across 63 countries (https://esdac.jrc.ec.europa.eu/themes/global-rainfall-erosivity). The distribution of

stations varies by continent, with Asia and the Middle East accounting for 1,220 stations (34% of the total) across 10

countries, including parts of Russia, China, India, and Japan. Yue et al. (2022) used hourly rainfall data from 2,381 stations120
between 1951 and 2018 to generate an R factor map for mainland China. This study demonstrated satisfactory performance

by comparing derived values against true rainfall erosivity values calculated from 1-minute rainfall data collected from 62

stations across China. In this study, the overall performance of different R factor maps is first compared using grid-to-grid

approach. Secondly, performance by basin is also assessed. Mainland China is divided into nine basin: the Songhua and

Liaohe River Basin, Haihe River Basin, Huaihe River Basin, Yellow River Basin, Yangtze River Basin, Pearl River Basin,125
Southeast Basin, Southwest Basin, and Continental Basin (Figure 5a, https://www.resdc.cn/data.aspx?DATAID=141, last

access 16 October 2024).

2.2 Method for calculating rainfall erosivity

Not all rainfall processes lead to soil erosion, and it is generally believed that rainfall must exceed a certain magnitude to130
cause soil erosion. According to Wischmeier and Smith (1978), a continuous six-hour dry period without any rainfall is used

to delineate individual rainfall events. If rainfall is interrupted for more than six hours, subsequent rainfall is considered a

separate event. Erosive rainfall events are defined as those with precipitation exceeding 12 mm (Xie et al., 2000). The

rainfall erosivity (EI30) of an erosive rainfall event is calculated according to the method proposed by Brown and Foster

(1987), as recommended in RUSEL:135

�� = 0.29[1 − 0.72exp ( − 0.05��)](1)

� = �=1
� (�� ∙ ��)� (2)

������ = � ∙ �30 (3)

where E (MJ·ha−1) is the total energy of the erosive event, and revent (MJ·mm·ha−1·h−1) is the event rainfall erosivity. For 1-
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minute in-situ precipitation data, ir (mm/h) is the rainfall intensity for the rth minute, er (MJ·ha−1·mm−1) is the unit energy for140
the rth minute, Pr (mm) is the rainfall amount for the rth minute, n is the rainfall duration in minutes, and I30 (mm/h) is the

maximum contiguous 30-minute peak intensity.

To address occasional observation errors, particularly in low-temperature environments, a quality check was conducted on

the calculated event rainfall erosivity. For each station, the nearest 100 stations were selected, and the recorded events at

these 101 stations were categorized into two classifications: those occurring during the warm season (April to October) and145
those during the cold season (including months from January to March and November to December). The median and

standard deviation of event rainfall erosivity were computed separately for both seasons. The threshold value for each station

was defined as the median plus three times the standard deviation. Any event rainfall erosivity exceeding the threshold for

the respective season was considered an outlier and excluded from the annual rainfall erosivity calculation. Ultimately,

annual rainfall erosivity at each station was aggregated using quality-checked event rainfall erosivity values, with the R150
factor representing the mean annual rainfall erosivity. The R factor for a grid represents the multi-station averaged value. The

overall algorithm for mapping R factor in mainland China is shown in Figure 2.

Figure 2. The algorithm for mapping R factor in mainland China155

3 Results

3.1 Rainfall erosivity map

Using the methodology described in Section 2.2, the rainfall erosivity of erosive rainfall events was calculated for 60,129



7

stations across mainland China from 2014 to 2022. The R factor for each station was subsequently obtained, and gridded R

factor values were determined at a spatial resolution of 0.25°, representing the average R factor values of the stations within160
corresponding grids (Figure 3). The averaged R factor across grids with in-situ observations in mainland China is 1,917

MJ·mm·ha−1·h−1·yr−1. Overall, the southern region of China exhibits the highest mean annual rainfall erosivity, followed by

the northern region. The R factor is lowest in the arid and semi-arid areas of the northwest, as well as in the Tibetan Plateau.

In the southern region, the R factor generally exceeds 2,200 MJ·mm·ha−1·h−1·yr−1, with the highest values observed along the

southeast coast, reaching over 10,000 MJ·mm·ha−1·h−1·yr−1. In contrast, the R factor in the northwest and Tibetan Plateau165
regions is mainly below 500 MJ·mm·ha−1·h−1·yr−1.

Figure 3: Mean annual rainfall erosivity (R factor) map

170
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A spatial distribution map of the R factor across mainland China, with a spatial resolution of 0.25°, was generated using the

Kriging method. Notably, large areas in the northwest and Tibetan Plateau lack ground observations, necessitating an

assessment of the impact of spatial interpolation method on the accuracy of the R factor map in these regions. Given the

strong positive correlation between the R factor and annual precipitation (Richardson et al., 1983; Renard & Freimund, 1994;175
Yu et al., 1996; Xie et al., 2016; Chen et al., 2024), mean annual precipitation data were used to identify regions with high

precipitation but no 1-minute records. Figure 4a shows the spatial distribution of mean annual precipitation deriving from

CMA gridded precipitation data. Most observation gaps in the northwest and Tibetan Plateau have relatively low annual

precipitation, with minimal differences compared to surrounding areas with observations. However, the Dawang-Chayu area,

located in the southern part of the Tibetan Plateau near the Yarlung Zangbo River Grand Canyon, is an exception.180
Precipitation in this region is primarily influenced by the southwest monsoon, which brings warm and humid airflow to the

Tibetan Plateau (Chen et al., 2023). The observed mean annual precipitation here exceeds 1,800 mm, significantly higher

than that in surrounding areas. Therefore, extrapolating rainfall erosivity from surrounding stations for this area is not

reasonable.

To address this, hourly ERA5 reanalysis precipitation data, combined with in-situ precipitation records, were used to185
generate a gridded dataset of annual rainfall erosivity for the Tibetan Plateau from 1950 to 2020 (Chen et al., 2022). The

mean annual rainfall erosivity for the Dawang-Chayu area from 2014 to 2022 was obtained form this dataset instead of

relying on direct interpolation. Figure 4b shows the integrated R factor map for mainland China. Generally, the R factor in

mainland China exhibits a decreasing trend from southeast to northwest, with an overall average value of 1,241

MJ·mm·ha−1·h−1·yr−1.190
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Figure 4: (a) Spatial distribution of mean annual precipitation in China. Grids without crossed diagonal lines indicates areas
without station records. The black dashed line marks the Dawang-Chayu region. (b) Spatial distribution of R factor across
mainland China.
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3.2 Comparison with previous studies

The newly generated R factor map for mainland China is compared with the widely used maps from Panagos et al. (2017)

and Yue et al. (2022) . Compared to the map developed by Panagos et al. (2017), there is a good correlation in regions with

mean annual rainfall erosivity below 10,000 MJ·mm·ha−1·h−1·yr−1. However, in areas with annual rainfall erosivity

exceeding 10,000 MJ·mm·ha−1·h−1·yr−1, our estimates are significantly higher (Figure 5a). When compared with the map by200
Yue et al. (2022), the overall correlation is good with annual rainfall erosivity less than 10,000 MJ·mm·ha−1·h−1·yr−1. In

regions with mean annual rainfall erosivity exceeds 10,000 MJ·mm·ha−1·h−1·yr−1, the differences are larger, but no clear

pattern is observed (Figure 5b). In summary, our results correlate well with existing studies in areas with lower mean annual

rainfall erosivity but show significant differences in high-erosivity areas.

205
Figure 5: Comparisons between the newly developed R factor map and existing maps (Panagos et al., 2017; Yue et al., 2022).

A further comparison was conducted across the nine river basins in China (Figure 6). The Haihe and Huaihe River Basins

show the largest differences in mean and median R factor values among the three datasets. Although some differences in

performance are observed between basins, no consistent pattern emerge. These discrepancies primarily stem from variations210
in spatial and temporal resolution of the precipitation data and the algorithms used (Table 1). The algorithms in these studies

are based on recommendations from RUSLE and RUSLE2. The E calculations of RUSLE are approximately 12% lower than

those from RUSLE2 for precipitation intensities below 35 mm/hr, but 2% higher for intensities above 100 mm/hr (Nearing et

al., 2017). Regarding I30, 1-hour precipitation data cannot accurately capture this value. Unlike other studies, this research

utilized the largest set of in-situ precipitation records but over a shorter time coverage. Since the R factor typically describes215
the potential of precipitation to cause erosion over a long-term climate scale, ideally spanning 20 years (Renard et al., 1997),

using short-term data may introduce bias. Ayat et al. (2022) reported an increasing trend of extreme sub-hourly rainfall near
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Sydney, Australia, over the last two decades, though no similar evidence exists for hourly or daily scales. However, trends in

extreme sub-hourly rainfall over mainland China remain unclear. This study provides the R factor map for the past decade,

acknowledging potential biases, particularly in the context of climate change.220

Figure 6: (a) The nine basins in China; (b) Box-plots of R factor across basins. Grey, red, and blue boxes represent different R
factor maps from this study, Panagos et al. (2017), and Yue et al. (2022), respectively.225
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Table 1 Comparison of data and methods used to generate R factor maps

R factor

map

Temporal resolution

of precipitation data

Number of

stations

Time

coverage
E algorithm

I30 (EI30)

algorithm

Spatial

interpolation

method

Panagos et

al. (2017)
1-hour 387 14 years

RUSLE (Renard et al.,

1997)

Conversion factor

for R factor

Gaussian Process

Regression

Yue et al.

(2022)
1-hour 2381

18 to 54

years

RUSLE2 (USDA-

Agricultural Research

Service, 2013)

Conversion factor

for R factor
Kriging

This study 1-minute 60129 9 years
RUSLE (Renard et al.,

1997)
No conversion Kriging

230

4. Impacts of precipitation data and algorithms on estimating rainfall erosivity

Variations in rainfall erosivity data and algorithms are the primary reasons for discrepancies in rainfall erosivity estimation.

In this section, E values for erosive precipitation events are calculated using the kinetic energy methods from RUSLE and

RUSLE2, evaluating how different kinetic energy algorithms affect rainfall erosivity estimation. To assess the impact of

temporal resolution of precipitation data on the accuracy of I30, I30 values for erosive rainfall events were calculated using235
precipitation data at different temporal resolutions (1-minute vs. 1-hour). A total of 300 stations across China were randomly

selected, using minute-level and hour-level precipitation data from 2020-2022 for comparison.

Figure 7 (a) and (b) show the mean E and I30 for erosive rainfall events across mainland China during 2020-2022. The mean

event E value is 6.2 MJ/ha, ranging from 1.8 to 12.5 MJ/ha, and shows a decreasing trend from southeast to northwest. The

mean event I30 value is 18.9 mm/h, ranging from 3.0 to 34.9 mm/h, with two notable centers in the southern and central parts240
of China (Beijing-Tianjin-Hebei region, Shanxi, Henan, and Shandong provinces). Next, the differences between E

computation using RUSLE and RUSLE2 were analyzed. For minute-level data, the ratio of the average event kinetic energy

computed using RUSLE2 to RUSLE is approximately 1.09, while it is 1.15 for hourly data (Figures 7c and 7d). Next, the

differences between energy computations using RUSLE and RUSLE2 were analyzed. For minute-level data, the ratio of the

average kinetic energy computed using RUSLE2 to RUSLE is approximately 1.09, while it is 1.15 for hourly data (Figures245
7c and 7d). The analysis was further extended to assess the impact of temporal resolution on E and I30 calculations. Based on

RUSLE’s kinetic energy algorithm, results show that values computed from minute-level data are 1.21 times higher than

those from hourly data, with more significant differences in the northwest (Figure 7e). The impact on I30 is even more

pronounced, with minute-level data yielding values 1.72 times higher than those from hourly data (Figure 7f). This analysis

highlights that I30 values exceed E at a national scale and are more sensitive to both temporal resolution of precipitation data250
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and algorithm selection. Accurate computation of I30 is therefore essential for reliable rainfall erosivity estimation,

underscoring the importance of high temporal resolution data in achieving precise rainfall erosivity estimates.

Figure 7: Spatial distribution of (a) mean kinetic energy (E) and (b) maximum 30-minute rainfall intensity (I30) of erosive rainfall255
events during 2020-2022; (c) Ratio of E calculated using RUSLE and RUSLE2 methods based on 1-minute precipitation data; (d)
Same as (c), but for 1-hour data; (e) Ratio of E calculated using the RUSEL method for 1-minute vs. 1-hour data; (f) I30 calculated
using 1-minute vs. 1-hour data. The subscript “min” indicates results based on 1-minute data, while “hour” refers to 1-hour data.
Subscripts “RUSEL” and “RUSLE2” indicate the methods used to estimate E.
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5. Data availability260

The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center

(https://doi.org/10.11888/Terre.tpdc.301206; Chen, 2024).

6. Conclusions

The rainfall erosivity of individual rainfall events is determined by two parameters: the E and I30. High spatiotemporal

resolution ground precipitation data provides the most accuracy calculations for both E and I30, resulting in the most reliable265
rainfall erosivity estimates. Accordingly, this study used nearly ten years of 1-minute in-situ precipitation data from 60,129

stations to estimate the R factor across mainland China. The main findings are as follows:

(1) The R factor across mainland China shows significant spatial variability, with a regional average of approximately 1241

MJ·mm·ha−1·h−1·yr−1.

(2) Compared to previous studies, this newly released datasets presents lower mean annual rainfall erosivity values across270
mainland China by 31%~65%, with significant differences across various river basins.

(3) With current technology, the accuracy of determining I30 during erosive rainfall events is much lower that that of E. The

main source of deviation in rainfall erosivity estimation is the uncertainty in I30.

This newly developed dataset, based on high-resolution ground precipitation observations from the recent decade, can

enhance the accuracy of soil erosion forecasting when combined with other factors in RUSLE/RUSLE2, such as newly275
released K factor maps (Gupta et al., 2024) and Cover-Management factor. Furthermore, rainfall erosivity can be viewed as a

characteristic of rainfall events, offering spatial insights into precipitation-induced disasters in China.
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