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Figure 4. (a) Spatial distribution of mean annual precipitation in
China. Grids without crossed diagonal lines indicate areas without
station records. The dashed black line marks the Dawang–Chayu re-
gion. (b) Spatial distribution of mean annual rainfall erosivity across
mainland China.

3.2 Comparison with previous studies

The newly generated mean annual rainfall erosivity map for
mainland China is compared with the widely used maps from
Panagos et al. (2017) and Yue et al. (2022). Compared to the
map developed by Panagos et al. (2017), there is a good cor-5

relation in regions with mean annual rainfall erosivity below
10 000 MJ mm ha−1 h−1 yr−1. However, in areas with annual
rainfall erosivity exceeding 10 000 MJ mm ha−1 h−1 yr−1,
our estimates are significantly higher (Fig. 5a). When com-
pared with the map by Yue et al. (2022), the overall cor-10

relation is good with annual rainfall erosivity less than
10 000 MJ mm ha−1 h−1 yr−1. In regions with mean annual
rainfall erosivity exceeding 10 000 MJ mm ha−1 h−1 yr−1,
the differences are larger, but no clear pattern is observed
(Fig. 5b). In summary, our results correlate well with exist-15

ing studies in areas with lower mean annual rainfall erosivity
but show significant differences in high-erosivity areas.

A further comparison was conducted across the nine river
basins in China (Fig. 6). The Hai and Huai river basins show

the largest differences in mean and median mean annual rain- 20

fall erosivity values among the three datasets. Although some
differences in performance are observed between basins, no
consistent pattern emerges. These discrepancies primarily
stem from variations in spatial and temporal resolution of
the precipitation data and the algorithms used (Table 1). The 25

algorithms in these studies are based on recommendations
from RUSLE and RUSLE2. The E calculations of RUSLE
are approximately 12 % lower than those from RUSLE2 for
precipitation intensities below 35 mm h−1 but 2 % higher for
intensities above 100 mm h−1 (Nearing et al., 2017). Regard- 30

ing I30, 1 h precipitation data cannot accurately capture this
value. Unlike other studies, this research utilized the largest
set of in situ precipitation records but over a shorter time cov-
erage. Since the R factor typically describes the potential of
precipitation to cause erosion over a long-term climate scale, 35

ideally spanning 20 years (Renard et al., 1997), using short-
term data may introduce bias. Ayat et al. (2022) reported an
increasing trend of extreme subhourly rainfall near Sydney,
Australia, over the last 2 decades, though no similar evidence
exists for hourly or daily scales. However, trends in extreme 40

subhourly rainfall over mainland China remain unclear. This
study provides the mean annual rainfall erosivity map for the
past decade, acknowledging potential biases, particularly in
the context of climate change.

4 Impacts of precipitation data and algorithms on 45

estimating rainfall erosivity

Variations in rainfall erosivity data and algorithms are the
primary reasons for discrepancies in rainfall erosivity esti-
mation. In this section, E values for erosive precipitation
events are calculated using the kinetic energy methods from 50

RUSLE and RUSLE2, evaluating how different kinetic en-
ergy algorithms affect rainfall erosivity estimation. To assess
the impact of temporal resolution of precipitation data on the
accuracy of I30, I30 values for erosive rainfall events were
calculated using precipitation data at different temporal res- 55

olutions (1 min vs. 1 h). A total of 300 stations across China
were randomly selected, using minute-level and hour-level
precipitation data from 2020–2022 for comparison.

Figure 7a and b show the mean E and I30 for erosive rain-
fall events across mainland China during 2020–2022. The 60

mean event E value is 6.2 MJ ha−1, ranging from 1.8 to
12.5TS2 MJ ha−1, and shows a decreasing trend from south-
east to northwest. The mean event I30 value is 18.9 mm h−1,
ranging from 3.0 to 34.9 mm h−1, with two notable centers
in the southern and central parts of China (Beijing–Tianjin– 65

Hebei region; Shanxi, Henan, and Shandong provinces).
Next, the differences between E computation using RUSLE
and RUSLE2 were analyzed. For minute-level data, the ratio
of the average event kinetic energy computed using RUSLE2
to RUSLE is approximately 1.09, while it is 1.15 for hourly 70

data (Fig. 7c and d).CE1 The analysis was further extended to
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Figure 5. Comparisons between the newly developed mean annual rainfall erosivity map and existing maps (Panagos et al., 2017; Yue et al.,
2022) (unit: MJ mm ha−1 h−1 yr−1).

Figure 6. (a) The nine basins in China and (b) boxplots of mean an-
nual rainfall erosivity across basins (unit: MJ mm ha−1 h−1 yr−1).
Grey, red, and blue boxes represent different mean annual rainfall
erosivity maps from this study, Panagos et al. (2017), and Yue et
al. (2022), respectively.TS1

assess the impact of temporal resolution on E and I30 calcu-
lations. Based on RUSLE’s kinetic energy algorithm, results
show that values computed from minute-level data are 1.21
times higher than those from hourly data, with more signif-
icant differences in the northwest (Fig. 7e). The impact on 5

I30 is even more pronounced, with minute-level data yield-
ing values 1.72 times higher than those from hourly data
(Fig. 7f). This analysis highlights that I30 values exceed E

at a national scale and are more sensitive to both temporal
resolution of precipitation data and algorithm selection. Ac- 10

curate computation of I30 is therefore essential for reliable
rainfall erosivity estimation, underscoring the importance of
high-temporal-resolution data in achieving precise rainfall
erosivity estimates.

5 Data availability 15

The dataset is available from the National Tibetan
Plateau/Third Pole Environment Data Center (https://doi.org/
10.11888/Terre.tpdc.301206; Chen, 2024).

6 Conclusions

The rainfall erosivity of individual rainfall events is de- 20

termined by two parameters: the E and I30. High-
spatiotemporal-resolution ground precipitation data provide
the most accurate calculations for both E and I30, resulting
in the most reliable rainfall erosivity estimates. Accordingly,
this study used nearly 10 years of 1 min in situ precipitation 25

data from 60 129 stations to estimate the mean annual rain-
fall erosivity across mainland China. The main findings are
as follows:

1. The mean annual rainfall erosivity across main-
land China shows significant spatial variabil- 30

ity, with a regional average of approximately
1241 MJ mm ha−1 h−1 yr−1.

https://doi.org/10.11888/Terre.tpdc.301206
https://doi.org/10.11888/Terre.tpdc.301206
https://doi.org/10.11888/Terre.tpdc.301206
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Figure 7. Spatial distribution of (a) mean kinetic energy (E) and (b) maximum 30 min rainfall intensity (I30) of erosive rainfall events
during 2020–2022. (c) Ratio of E calculated using RUSLE and RUSLE2 methods based on 1 min precipitation data. (d) Same as (c) but for
1 h data. (e) Ratio of E calculated using the RUSLE method for 1 min vs. 1 h data. (f) I30 calculated using 1 min vs. 1 h data. The subscript
“min” indicates results based on 1 min data, while “hour” refers to 1 h data. Subscripts “RUSLE” and “RUSLE2” indicate the methods used
to estimate E.

2. Compared to previous studies, this newly released
dataset presents lower mean annual rainfall erosivity
values across mainland China by 31 %–65 %, with sig-
nificant differences across various river basins.

3. With current technology, the accuracy of determining5

I30 during erosive rainfall events is much lower than that
of E. The main source of deviation in rainfall erosivity
estimation is the uncertainty in I30.

This newly developed dataset, based on high-resolution
ground precipitation observations from the recent decade,10

can enhance the accuracy of soil erosion forecasting when
combined with other factors in RUSLE or RUSLE2, such as
newly released K factor maps (Gupta et al., 2024) and cover-
management factors. Furthermore, rainfall erosivity can be
viewed as a characteristic of rainfall events, offering spatial 15

insights into precipitation-induced disasters in China.

Supplement. The supplement related to this article is available
online at [the link will be implemented upon publication].
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