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Abstract. The Qinghai Tibet Plateau (QTP), known as the "Third Pole" of the Earth" and the "Water Tower of Asia," plays a 

crucial role in global climate regulation, biodiversity conservation, and regional socio-economic development. Continuous 

annual vegetation types and their geographical distribution data are essential for studying the response and adaptation of 10 

vegetation to climate change. However, there is very limited data on vegetation types and their geographical distributions on 

the QTP due to harsh natural environment. Currently, land cover/surface vegetation (LCSV) data are typically obtained using 

independent classification methods for each period's product, based on remote sensing information. These approaches do not 

consider the time continuity of vegetation to presence, and leads to a gradual increase in the number of misclassified pixels 

and the uncertainty of their locations, consequently decreasing the interpretability of the long-time series remote sensing 15 

products. To address this issue, this study developed a new approach to long-time continuous annual vegetation mapping from 

remote sensing imagery, and mapped the vegetation of the QTP from 2000 to 2022 at a 500 m spatial resolution through the 

MOD09A1 product. The overall accuracy of continuous annual QTP vegetation mapping from 2000 to 2022 reached 80.9% 

based on 733 samples from literature, with the reference annual 2020 reaching an accuracy of 86.5% and a Kappa coefficient 

of 0.85. The study supports the use of remote sensing data to mapping a long-term continuous annual vegetation. 20 

1 Introduction 

Vegetation, an integral component of Earth's ecosystems, plays an irreplaceable role in maintaining climate stability, 

preserving biodiversity, and supplying vital human resources. Vegetation maps not only facilitate a visual comprehension of 

vegetation types and their geographic distribution, but also provide essential data for natural resource management and 

environmental protection (Immerzeel et al., 2010). Particularly, long-time series of geographical distribution data on vegetation 25 

types are crucial for revealing the impacts of climate change and human activities on vegetation, elucidating the succession 

processes of vegetation, and scientifically managing vegetation ecosystems. 

The availability of large-scale, long-term, and free remote sensing imagery has significantly advanced the development of 

land cover and surface vegetation (LCSV) data. Notable international products include the European Space Agency (ESA)'s 
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GlobCover_2005 and GlobCover_2009 (300 m) (Bontemps et al., 2010), and NASA's annual MCD12Q1 product since 2000 30 

(500 m) (Friedl et al., 2010; Sulla-Menashe et al., 2019). In China, representative products include GlobeLand30 by Chen et 

al. (2015), FROM_GLC10 and FROM_GLC30 by Tsinghua University (Gong et al., 2013; Gong et al., 2019), GLC_FCS30 

by the Chinese Academy of Sciences (Zhang et al., 2019), and CLCD by Wuhan University (Yang and Huang, 2021). Building 

on the intelligent remote sensing mapping (iMap) concept and framework, there has been rapid progress in developing global-

scale seamless daily data cubes and in creating annual and seasonal land surface maps (Feng and Li, 2020; Liu et al., 2021). 35 

At present, the preparation of long-time series LUSV dataset typically adopts independent classification methods for each 

period's products, such as the CLCD (Yang and Huang, 2021) and the GlobeLand30 (Chen et al., 2015). These methods often 

lead to misclassified pixels and the uncertainty of their locations in each period's land cover and vegetation types, because they 

do not consider the time continuity of vegetation presence. Over time, the trend of increasing misclassified pixels and their 

positional uncertainties ultimately reduces the reliability of remote sensing interpretation for LCSV types. Therefore, 40 

improving the precision of remote sensing mapping for long-time series of LUSV types is a pressing issue that needs to be 

addressed. 

The QTP, known as the "Roof of the World" and the "Water Tower of Asia," plays a crucial role in global climate regulation 

and regional socio-economic development. In the 1970s, China carried out the first extensive scientific survey of the QTP. 

Currently, the second QTP scientific expedition is underway, and vegetation survey is one of the major components. 45 

Understanding the evolution of vegetation types on the QTP is important for revealing the effects of climate change on 

vegetation structure and function. Additionally, such insights are essential for elucidating the carbon and water cycles of the 

QTP and for formulating high-quality, sustainable development strategies for the region amidst global warming. 

As the "Third Pole" of the Earth, the QTP has very limited data on vegetation types and geographical distribution with its 

harsh natural environment. Currently, the primary vegetation data for the QTP include the "Vegetation map of Qinghai Tibet 50 

Plateau in 2020 with 10 m spatial resolution" (Zhou et al., 2023), the " A new vegetation map for Qinghai-Tibet Plateau by 

integrated classification from multi-source data products (2020)" (Zhang et al., 2022), and the " Vegetation map of Qinghai 

Tibet Plateau in 1980s" (Zhou et al., 2022). These vegetation distribution products are single-period maps, which are 

insufficient to depict dynamic changes in vegetation, thus limiting the understanding of vegetation evolution trends and 

mechanisms on the QTP. Therefore, many scholars have conducted thematic mapping studies on long-time series of LUSV 55 

data of the QTP, such as wetland, water, and glacier (Li et al., 2023; Zhang et al., 2019; Hu et al., 2022). However, these long-

time series products, created with independent classification methods, are primarily focused on specific LUSV types, 

overlooking the need to identify temporal changes in different types, which limits the accuracy of the products. Therefore, in 

order to provide continuous data support for research on the interaction between vegetation and climate change, there is an 

urgent need for long-time series vegetation mapping. 60 

This study aims to develop a new approach to long-time series vegetation mapping from remote sense imagery, and to map 

vegetation of the entire QTP at 500 m from 2000 to 2022, using the MOD09A1 remote sensing data. 
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2 Materials and Methods 

2.1 Study Area 

The QTP, situated between 25°59′30″N and 40°1′0″N, 67°40′37″E  and 104°40′57″E, has an average elevation 65 

of about 4320m and a total area of 3.08 million km² (Zhang et al., 2021). This study covers the entire QTP, involving six 

provinces and regions within China - Tibet, Qinghai, Gansu, Sichuan, Yunnan, and Xinjiang - as well as areas in India, Pakistan, 

Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. In particular, the area of the QTP within China is about 

2.58 million km² (approximately 83.7% of the QTP) with an average elevation of about 4400 m (Zhang et al., 2021). The QTP 

slopes downward from the high northwest to the lower southeast, with a humid and rainy climate in the southeast and arid 70 

conditions in the northwest. The vegetation distribution across the QTP is influenced by topography and climatic conditions, 

revealing a clear horizontal zonation that ranges from forests, shrubs, and meadows in the southeast to grasslands and deserts 

in the northwest. Additionally, as altitude increases and temperatures decrease, there is a distinct vertical stratification in 

vegetation, ranging from forests at lower elevations to permanent glaciers, snow cover, and permafrost at higher altitudes. 

2.2 Data Sources 75 

2.2.1 Vegetation Type Sample Data  

The vegetation of the QTP is primarily categorized into 15 types (Zhou et al., 2023). Due to the significance of glaciers and 

snow cover, this study expanded the vegetation classification to 16 types for the 500 m spatial resolution mapping, including 

evergreen broad-leaved forest (EBF), evergreen coniferous forest (ECF), coniferous and broad-leaved mixed forest (CBMF), 

deciduous broad-leaved forest (DBF), deciduous coniferous forest (DCF), scrub (SC), alpine scrub meadow (ASM), alpine 80 

meadow (AM), alpine grassland (AG), alpine vegetation (AV), alpine desert (AD), cultivated vegetation (CV), wetland (WE), 

water (WA), non-vegetated area (NVA), and glacier and snow (GS). 

The vegetation type sample data for the QTP within China were obtained from the “Vegetation map of Qinghai Tibet Plateau 

in 2020 with 10 m spatial resolution” (Zhou et al., 2022). The vegetation map was resampled to 500 m. Subsequently, the 

dominant vegetation type and its proportional area, derived from the corresponding 50×50 pixels at 10 m spatial resolution, 85 

were determined as the vegetation type categorization and pixel purity (reflected as the percentage of the dominant vegetation 

type within these 50×50 pixels) for the 500 m spatial resolution map. Concurrently, different purity levels and their area 

proportions were calculated (Table 1). Following these rules, random sampling was carried out in areas where purity exceeded 

70%, representing approximately 62.34% of the QTP. The vegetation type sample data for the QTP outside of China's borders 

were derived from high-resolution Google online imagery from the year 2020. By visually interpreting these images, areas 90 

within a 500 m range where the vegetation type was consistent were selected as samples for vegetation types. A total of 9,920 

pixels from both within and outside the QTP were obtained, of which 90% (8,937 points) were used as training samples, while 
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the remaining 10% (983 points) were reserved for validation (Fig. 1). Furthermore, all pixel data (Table 2), encompassing all 

vegetation types, were evenly distributed across the study area. 

Table 1. Purity and Area Proportion of 500 m Resolution Pixel Samples of Vegetation Types on the QTP within China. 95 

Purity (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

Area 

Proportion (%) 
0.02 0.04 1.01 4.20 8.28 12.55 11.56 11.40 12.55 38.39 

 

 

Figure 1. Spatial distribution of training and validation samples for vegetation mapping at 500 m resolution on the QTP in 2020. 

Table 2. Training and Validation Sample Counts for Vegetation Mapping on the QTP. 

Vegetation types Training samples Validation samples Total 

EBF 936 106 1042 

ECF 768 96 864 

CBMF 475 61 536 

DBF 570 71 641 

DCF 370 41 411 

SC 397 36 433 

ASM 213 21 234 

AM 1375 148 1523 

AG 872 86 958 
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AV 503 59 562 

AD 499 51 550 

CV 469 65 534 

WE 246 24 270 

WA 377 31 408 

NVA 204 24 228 

GS 663 63 726 

Total 8937 983 9920 

2.2.2 Remote Sensing Data  100 

Remote sensing data in this study were sourced from the MODIS series satellite imagery provided by NASA. As one of the 

longest-operating Earth observation instruments currently in orbit, MODIS is a multi-spectral observation sensor launched in 

May 1999, enabling efficient and comprehensive observation of the Earth. The MOD09A1 surface reflectance dataset was 

obtained through the Google Earth Engine (GEE) platform, having undergone atmospheric and topographic corrections. The 

MOD09A1 dataset, which provides surface reflectance in seven spectral bands including Red, Blue, Green, NIR, MIR, SWIR 105 

1, and SWIR 2 at 500 m spatial resolution, with all cloud-contaminated pixels removed. There were 1051 MOD09A1 remote 

sensing images from January 1, 2000, to December 31, 2022, selected for this study, which were converted to the WGS84 

geographic coordinate grid from original sinusoidal projection for the preparation of annual vegetation maps at 500 m of the 

QTP from 2000 to 2022. 

2.2.3 Climate and Terrain Data 110 

 The Digital Elevation Model (DEM) and derived features are crucial for vegetation mapping. Additionally, the distribution of 

vegetation on the QTP demonstrates distinct vertical zonation, greatly influenced by climate and topography (Zhou et al., 

2023). This study utilized climate data which included annual precipitation (AP) and annual average temperature (AT) across 

the entire QTP from 2000 to 2022. For the QTP within China, climate data at 1,000 m was obtained from the National Tibetan 

Plateau Data Center. In contrast, climate data for areas of the QTP outside China was derived from the CRU high-resolution 115 

gridded dataset, featuring a spatial resolution of approximately 50,000 m. The terrain data employed comes from the SRTM 

by the USGS (Farr et al., 2007), with a spatial resolution of 30 m. At last, this study applied the mean sampling method in 

GEE to resample data on AP, AT, elevation, slope, and aspect variables derived from SRTM data to a 500 m spatial resolution 

for integration into vegetation mapping. 
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2.3 Vegetation Mapping of the QTP at 500 m Resolution in 2020 120 

2.3.1 Classification Platform and Algorithm 

The GEE cloud platform (Gorelick et al., 2017) offers a variety of machine learning models, such as SVM and RF, the latter 

of which was utilized in this study for vegetation mapping. The RF model (Breiman, 2001) is an ensemble learning-based 

machine learning algorithm that mitigates the overfitting risk inherent in single decision trees by constructing and integrating 

multiple decision trees. This approach not only enhances the accuracy and stability of predictions but has also been widely 125 

applied in the vegetation mapping. 

2.3.2 Construction of Vegetation Mapping Features 

The features used in vegetation mapping are divided into four categories (Table 3): terrain (elevation, slope, aspect), climate 

(AT and AP), surface reflectance (R, N, B, G, M, S1, S2), and 14 index features, which are constructed from the single-band 

surface reflectance (Table 3). These features were derived from the MOD09A1 remote sensing imagery data spanning from 130 

January 1, 2020, to December 31, 2020. Additionally, 6 percentiles: 5%, 30%, 45%, 60%, 75%, and 90%, were calculated for 

the 7 reflectance bands and the 14 indices, representing the time series characteristics of each pixel. A total of 131 features 

were formulated from these 4 categories for vegetation mapping on the QTP. 

Table 3. Vegetation Mapping Features at 500 m Resolution on the QTP. 

Category Features Description 

Terrain  

Elevation  

Slope  

Aspect  

Climate  
AT Annual average temperature 

AP Annual precipitation 

Surface reflectance 

R Red 

N NIR 

B Blue 

G Green 

M MIR 

S1 Swir1 

S2 Swir2 

Vegetation Index 

NDVI 
N − R

N + R
 

EVI 2.5
N − R

N + 6R − 7.5B + 1
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RVI 
N

R
 

DVI N − R 

SAVI 
(N − R) ∗ 1.5

N + R + 0.5
 

GCVI 
N

G
− 1 

NIRV 
(N −  R) ∗ N

N + R
 

Urban Index 

NDBI 
S1 − N

S1 + N
 

IBI 
NDBI − (SAVI + (G − S1)/(G + S1))/2

NDBI + (SAVI + (G − S1)/(G + S1))/2
 

Water Index 

NDWI 
G − N

G + N
 

LSWI 
N − S1

N + S1
 

Snow Index 

NDSI 
G − S1

G + S1
 

NDGlaI 
G − R

G + R
 

Soil Index BI 
(S1 + R) − (N + B)

(S1 + R) + (N + B)
 

2.3.3 Feature Importance Evaluation and Feature Selection 135 

Among the 131 features used for vegetation mapping, 126 optical remote sensing features (excluding topography and climate) 

were constructed based on surface reflectance. These features may suffer from severe collinearity issues, which can lead to 

model overfitting, increased computational costs, and diminished interpretability. To mitigate the issue of high collinearity 

among these features, the Variance Inflation Factor (VIF) (James et al., 2013) was employed, providing the ratio of variance 

in a model with multicollinearity among features to the variance in a model where multicollinearity is absent:  140 

 
VIFj=

1

1-Rj
2 (1) 

where VIFj is the VIF for feature j, and Rj
2 is the squared multiple correlation coefficient obtained from the regression of feature 

j with all other features. A higher VIF value indicates more severe collinearity, with a VIFj  greater than 30 suggesting 

significant collinearity in feature j. This study utilized the RF classifier to determine the best feature combination for vegetation 

classification. The importance of terrain, climate, and optical remote sensing features was assessed through RF classifier and 

filtered using the VIF method (Ramosaj and Pauly, 2019). The features were then ranked according to the calculated 145 

importance, and the top-ranking feature, along with combinations such as the top two, top three, etc., were used to construct 
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various RF models for all possible feature combinations. The feature set with the smallest out-of-bag error was chosen as the 

best feature set for vegetation mapping on the QTP. 

2.3.4 Evaluation of Mapping Accuracy 

An optimal combination of terrain, climate, and optical remote sensing data in 2020 was integrated to achieve vegetation 150 

mapping of the QTP based on RF model in this study. The mapping accuracy was evaluated using the confusion matrix method, 

which involved calculating the OA (Eq. 2), Kappa (Eq. 3), MA (Eq. 4), and UA (Eq. 5). 

 OA =
∑ mi

n
i=1

N
 (2) 

 Kappa =
N × ∑ mi

n
i=1 − ∑ (Gi × Ci)

n
i=1

N2 − ∑ (Gi × Ci)
n
i=1

 (3) 

 PA =
mi

Gi

 (4) 

 UA =
mi

Ci

 (5) 

where mi is the count of correctly classified pixels for category i; n is the count of categories; N is the overall quantity of 

classified pixels; Ci and Gi are the total counts of pixels classified as and actually in category i, respectively; OA is the overall 

accuracy; Kappa is the Kappa coefficient; PA is the mapping accuracy; and UA is the user accuracy. 155 

2.4 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022 

Utilizing the 2020 vegetation map at a 500 m spatial resolution as the reference, this study dynamically updated the 2019 

vegetation map of the QTP with various algorithms: time series fitting (Eq. 6), breakpoint detection (Eq. 7), potential vegetation 

change area identification (Eq. 8), and actual vegetation type identification (Eq. 9-10). The process was then repeated, taking 

the newly updated 2019 map as the reference to dynamically update the 2018 vegetation map. This method was consistently 160 

applied, enabling the dynamic updating of annual vegetation maps for the years 2000 to 2019, as well as for 2021 and 2022. 
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Figure 2. Vegetation mapping technology route at 500 m resolution on the QTP from 2000 to 2022 (dynamically updating the 2019 

vegetation map with the 2020 vegetation map as a reference). 

2.4.1 Time Series Fitting Algorithm 165 

The Continuous Change Detection and Classification (CCDC) model (Eq. 6) was employed to analyze three MODIS surface 

reflectance bands – Red, NIR, and SWIR 1 – for the period from 2000 to 2022 (Zhu and Woodcock, 2014). Each band is 

associated with specific vegetation characteristics: the red band correlates with chlorophyll content, the NIR band with leaf 

structure, and the SWIR 1 band with water content. The CCDC model effectively characterizes seasonal patterns, trends, and 

abrupt changes in vegetation, estimating model coefficients through the least squares method from actual observations. 170 

 
�̂�(𝑖, 𝑡) = 𝑐0𝑖 + ∑ (𝑎𝑛𝑖 𝑐𝑜𝑠

2𝜋𝑛

𝑇
𝑡 + 𝑏𝑛𝑖 𝑠𝑖𝑛

2𝜋𝑛

𝑇
𝑡)

3

𝑛=1
+ 𝑐1𝑖𝑡 (6) 
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where ρ̂(i, t) is the predicted value of the ith band on Julian day t; T is the average number of days in a year; 𝑎𝑛𝑖 and 𝑏𝑛𝑖 are 

the harmonic coefficients of nth order for the ith band i; 𝑐0𝑖 and 𝑐1𝑖 are the intercept and slope coefficients, respectively. 

2.4.2 Breakpoint Detection Algorithm 

The CCDC model (Zhu and Woodcock, 2014) predicts values for each pixel across all time points, from which it then calculates 

the average value, standard deviation, and residuals for each pixel. A pixel's vegetation type is considered unchanged if the 175 

residual value at a time point is less than three times the standard deviation of the current model. Changes in vegetation type 

are determined when residual values at three consecutive time points each exceed three times the model's RMSE (Eq. 7), a 

criterion reflecting the gradual nature of such changes. The Red, NIR, and SWIR 1 bands are treated as individual time series, 

where the residual values and averages are calculated for three consecutive time points per band. The period is identified as a 

breakpoint in the time series (Fig. 2a) when the average residual value across the three bands at consecutive time points exceeds 180 

a specific threshold, indicating potential changes in vegetation type. Employing this approach, this study calculated annual 

breakpoint areas for the QTP from 2000 to 2022, ensuring that the vegetation type sample data for 2020 did not include any 

breakpoints. 

 1

3
Σi=1

3
|ρ(i, t) − ρ̂(i, t)|

3 × RMSEi

> 1 (7) 

where i is the ith spectral band; t is the Julian day; RMSEi is the root mean square error for the ith band; ρ(i, x) and ρ̂(i, x) are 

the observed and predicted values of the ith band on Julian day t, respectively. 185 

2.4.3 Potential Vegetation Change Area Identification Algorithm 

Identifying potential change areas annually is essential for achieving vegetation mapping each year. For example, in 

dynamically updating the 2019 vegetation map based on the 2020 vegetation map (Fig. 2b), the study area was divided into 4 

types: areas without breakpoints in both 2019 and 2020 (unchanged areas), areas with breakpoints in both 2019 and 2020 

(potential change area 1), areas with breakpoints in 2019 but not in 2020 (potential change area 2), and areas without 190 

breakpoints in 2019 but with breakpoints in 2020 (potential change area 3). The three types of areas with breakpoints were 

combined as potential areas for vegetation type changes in 2019, while other areas remained the same as the vegetation types 

in 2020. 

 ST−1 = (BT−1 ∩ BT) ∪ (BT−1 ∩ BT
̅̅̅̅ ) ∪ (BT−1

̅̅ ̅̅ ̅̅ ∩ BT) (8) 

where ST−1 is the potential vegetation change area for year T-1, BT−1 is the breakpoint area for year T-1, BT is the breakpoint 

area for year T, BT−1
̅̅ ̅̅ ̅̅  is the non-breakpoint area for year T-1, and BT

̅̅̅̅  is the non-breakpoint area for year T. 195 
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2.4.4 Actual Vegetation Type Identification Algorithm 

The potential vegetation change areas merely indicate that the vegetation types in these areas might change, thus necessitating 

further identification of the actual vegetation change areas. Based on the RF model constructed in 2020, and combining the 

terrain, climate, remote sensing data, and potential vegetation change areas of 2019, the actual vegetation types in the potential 

change areas for 2019 can be determined. Subsequently, the 2019 vegetation map was obtained by overlaying and analyzing 200 

this data with the 2020 vegetation map (Fig. 2c). 

 RT−1
′ = M2020(FT−1, ST−1) (9) 

 RT−1 = {
RT−1

′ ,     ST−1 and RT−1
′ ≠ RT

RT,         otherwise                   
 (10) 

where M2020 is the RF model for the year 2020, FT−1 is the vegetation mapping features for the year T-1, ST−1 is the potential 

vegetation change area for the year T-1, RT−1
′  is the vegetation classification result for the potential change area of the year T-

1, RT is the vegetation classification result for the year T, and RT−1 is the vegetation classification result for the year T-1. 

2.4.5 Spatial-temporal Consistency 205 

In this study, RF model is used to generate annual vegetation maps. Although RF handles complex data structures efficiently, 

its pixel-by-pixel classification method can produce salt-and-pepper noise. To mitigate this issue, we employ a spatial-temporal 

constraint method, which assesses the consistency of each pixel's label within a 3×3×3 cube across both spatial and temporal 

dimensions (Fig. 2d). The consistency, Cx,y,t , is calculated by averaging the agreement of the central pixel's label with the 

labels of 27 surrounding pixels (Xu et al., 2021; Li et al., 2015): 210 

 Cx,y,t =
1

27
∑ ∑ ∑ I(Labelx,y,t = Labeli,j,k)

t+1

k=t−1

y+1

j=y−1

x+1

i=x−1
 (11) 

where I is an indicator function returning 1 if the labels match, otherwise 0. 

If Cx,y,t < 0.5 and t > 2000, the pixel is deemed misclassified, and its label is corrected to match the previous year's central 

label. For the year 2000, where previous year data is unavailable, the label is adjusted to the most frequent label in the spatial 

3×3 area. This approach assumes that significant, inconsistent changes are unlikely both spatially and temporally, thereby 

enhancing the accuracy of the classification. 215 

2.5 Evaluation of Annual Vegetation Mapping Accuracy at 500 m Resolution 

To evaluate the accuracy of the annual vegetation maps of the QTP at 500 m from 2000 to 2022, this study performed a 

literature review using the CNKI (https://www.cnki.net/) and Web of Science (https://www.webofscience.com/) databases 

with keywords including 'Qinghai-Tibet Plateau,' 'vegetation,' and 'vegetation cover.' This search identified 116 papers, 

providing a total of 733 vegetation type sample points across various years. Among these, the samples were predominantly 220 

composed of AM (504 points), followed by AG (72 points), and AD (39 points). The dataset also included ECF (27 points), 
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CBMF (7 points), DCF (7 points), SC (45 points), ASM (18 points), CV (8 points), and WE (6 points). Sample points were 

distributed throughout the years, excluding 2000, 2021, and 2022, with notable concentrations in 2014 (122 points), 2015 (95 

points), and 64 points each in 2006 and 2009. 

3 Results 225 

3.1 Vegetation Mapping of the QTP at 500 m Resolution in 2020 

Due to the significant collinearity among the 126 features in MODIS data, this study focused on 13 features with VIF below 

30, including various band reflectance features and vegetation indices such as NDGlaI 15%, NDGlaI 90%, IBI 30%, NDBI 

90%, IBI 15%, IBI 90%, EVI 90%, NDVI 90%, IBI 75%, IBI 60%, LSWI 90%, sur_refl_b05 90%, and IBI 45%. These were 

combined with two climate factors (AT and AP) and three terrain features (elevation, slope, and aspect) to create an 18-feature 230 

set for out-of-bag error analysis. This analysis indicated that the out-of-bag accuracy improved with an increasing number of 

features, reaching a peak accuracy of 0.86 with 11 features, beyond which there was a slight decrease. Accordingly, the study 

selected these top 11 features for the RF model: AP, elevation, NDVI 90%, annual average temperature, slope, sur_refl_b05 

90%, EVI 90%, NDBI 90%, NDGlaI 90%, NDGlaI 15%, and IBI 75%, which were then used on the GEE platform to produce 

the 2020 vegetation map of the QTP at a 500 m spatial resolution (Fig. 3). 235 

Table 4. Confusion Matrix, MA, and UA of Vegetation Mapping at 500 m Resolution on the QTP in 2020 

 EBF ECF CBMF DBF DCF SC ASM AM AG AV AD CV WE WA NVA GS Total  MA 

EBF 88 4 6 8 0 0 0 0 0 0 0 0 0 0 0 0 106 83.0% 

ECF 3 83 6 2 0 1 0 1 0 0 0 0 0 0 0 0 96 86.5% 

CBMF 12 12 36 1 0 0 0 0 0 0 0 0 0 0 0 0 61 59.0% 

DBF 3 0 0 66 0 0 0 0 0 0 0 1 1 0 0 0 71 93.0% 

DCF 0 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 41 100.0% 

SC 1 1 0 4 0 28 0 2 0 0 0 0 0 0 0 0 36 77.8% 

ASM 1 1 0 0 0 0 15 4 0 0 0 0 0 0 0 0 21 71.4% 

AM 0 0 0 0 0 0 1 142 3 1 1 0 0 0 0 0 148 95.9% 

AG 0 1 0 0 0 0 0 2 80 1 1 1 0 0 0 0 86 93.0% 

AV 0 0 0 0 1 0 0 5 1 47 5 0 0 0 0 0 59 79.7% 

AD 0 0 0 0 0 0 0 0 2 8 41 0 0 0 0 0 51 80.4% 

CV 0 0 0 5 0 1 0 2 0 0 0 51 0 0 6 0 65 78.5% 

WE 0 0 0 0 0 0 0 2 1 0 1 0 20 0 0 0 24 83.3% 

WA 0 0 0 0 0 0 0 0 1 0 0 0 0 29 1 0 31 93.5% 

NVA 0 0 0 0 0 0 0 0 1 0 0 2 0 0 21 0 24 87.5% 

GS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 62 63 98.4% 

Total 108 102 48 86 42 30 16 161 89 57 49 55 21 29 28 62 983  

UA 81.5% 81.4% 75.0% 76.7% 97.6% 93.3% 93.8% 88.2% 89.9% 82.5% 83.7% 92.7% 95.2% 100.0% 75.0% 100.0%   

 

With an OA of 86.5% and a Kappa coefficient of 0.85, the 2020 vegetation map of the QTP at a 500 m spatial resolution 

was suitable as the reference vegetation map. The details are presented in Table 4, which includes the confusion matrix, MA, 

and UA. The MA for CBMF, SC, ASM, AV, and CV was all below 80%. Specifically, the MA for CBMF and ASM were 240 
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59.0% and 71.4%, respectively. According to the confusion matrix, the CBMF was often misclassified as EBF and ECF, while 

ASM was misclassified as AM. The UA shows that CBMF, DBF, and NVA all have UAs below 80%. Among these, CBMF 

and NVA have a UA of 75.0%, and DBF has a UA of 76.7%. According to the confusion matrix, there is noticeable confusion 

between EBF and ECF, as well as between CBMF. A similar issue of misclassification is observed between ASM and AM. 

The root cause of this confusion lies in the significant overlap in characteristics such as canopy shape, tree height, growth 245 

environment, and vegetation composition, especially since CBMF are inherently a combination of both tree types. In parallel, 

ASM and AM share many attributes, including their vegetation structure, physical features, and spectral reflectance, leading 

to these classification challenges. 

 

Figure 3. Vegetation types and spatial distribution at 500 m resolution on the QTP in 2020. 250 

3.2 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022 

By integrating the CCDC model, breakpoint detection, and identifying potential change areas, this study identified the annual 

potential vegetation changes on the QTP from 2000 to 2022. These changes were identified at 500 m using three reflective 

bands from the MOD09A1 data: Red, NIR, and SWIR 1. Building on this data, annual vegetation mapping of the QTP was 

conducted at the same resolution. The 2020 vegetation map served as a reference, and the RF classification model was 255 

employed to support this process (Fig. 4). 
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Figure 4. Vegetation types and spatial distribution at 500 m resolution on the QTP from 2000 to 2022.  
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3.3 Accuracy Validation 

The validation of vegetation types using 733 samples from literature indicated an overall accuracy of 80.9%, with 593 samples 260 

correctly classified. On the QTP, of the 504 AM samples, 462 were accurately classified (91.7% accuracy), and 56 of 72 AG 

samples were correctly identified, resulting in a 77.8% accuracy rate. Excluding the years 2000, 2021, and 2022, which had 

insufficient validation samples, the accuracy for other years remained above 70%. The validation accuracy based on samples 

collected from literature was 5.6% lower compared to the 2020 vegetation map of the QTP. This discrepancy may due to the 

fact that the validation samples for the 2020 map primarily came from areas with pixel purity above 70%, while the 733 sample 265 

pixels from the literature had lower purity and were affected by mixed pixel issues. AM and AG, with the wide distribution 

across the QTP, tend to have higher pixel purity at a 500 m spatial resolution, contributing to higher validation accuracy. 

Conversely, smaller, patchily distributed types like SC and ASM have lower pixel purity, potentially blending various 

vegetation types and thus resulting in lower validation accuracy. 

4 Discussion 270 

4.1 Evaluating the Efficacy of the CCDC Algorithm in Annual Vegetation Mapping from 2000 to 2022 

This study proposed a method for long-time continuous annual vegetation mapping. Specifically, the CCDC algorithm was 

applied to MODIS data from 2000 to 2022 to detect breakpoints. Subsequent processes involved identifying potential change 

areas, recognizing true vegetation types, and spatial-temporal consistency. This enabled consistent mapping of vegetation on 

the QTP annually from 2000 to 2022. The CCDC algorithm in this study used harmonic functions to fit long-term remote 275 

sensing images, thereby identifying breakpoints and precisely determining the timing of these breakpoints. 

For instance, in Fig. 5, the CCDC algorithm was applied to detect changes in the RED, NIR, and SWIR bands of the sampling 

site from 2000 to 2022. The results indicated that there was a breakpoint in 2011 (highlighted in yellow), where the period 

from 2000 to 2011 was categorized as Fit1, and from 2011 to 2022 as Fit2. The annual amplitude of the three bands in Fit1 

was relatively small, with stable interannual fluctuations. In contrast, the amplitude of the RED and NIR bands in Fit2 far 280 

exceeded that of Fit1, showing significant differences in seasonal patterns within the year. Additionally, for the SWIR band, 

the overall reflectance in Fit2 was substantially lower than in Fit1, with noticeable differences in seasonal fluctuations within 

the year. Based on the annual Landsat images from 2009 to 2013, there was a noticeable expansion of WA in the selected area. 

The region transitioned from AD before 2011 to WA afterwards. Fortunately, our annual vegetation map also reflected this 

characteristic. The area was represented as brown-yellow (AD) before and up to 2010, and as deep blue (WA) from 2011 285 

onward. This change aligned with both the CCDC fitting results and the visual interpretation of Landsat images. 
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Figure 5. Validation of vegetation mapping: consistent change detection in WA sample [82.9294E, 35.2425N] by CCDC, Landsat, 

and annual vegetation maps. 

In Fig. 6, the CCDC algorithm indicated that there were no breakpoints from 2000 to 2022. The annual and interannual 290 

variations in the RED, NIR, and SWIR bands were stable over the years. Combined with the Landsat images, it was evident 
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that the selected area had consistently been EBF without any change. Our long-time annual vegetation maps also reflected this 

characteristic. 

 

Figure 6. Validation of vegetation mapping: consistency of no change detection in forest sample [95.2794E, 28.7617N] across CCDC, 295 
Landsat, and annual vegetation maps. 
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However, abrupt changes detected by the CCDC algorithm do not always accurately reflect real changes on the ground (Zhu 

and Woodcock, 2014; Du et al., 2023). In Fig. 7, we checked an area of CV on the QTP. The CCDC results indicate a breakpoint 

in 2018, with the data from 2000 to 2018 categorized as Fit1, and post-2018 as Fit2. Although Fit2 shows greater amplitude 

in the RED, NIR, and SWIR bands compared to Fit1, the waveform remains similar. Despite this detected breakpoint, Landsat 300 

images from 2016 to 2020 confirms that the area consistently featured CV. The detected changes were likely caused by 

variations in cultivation practices in 2018 or similar factors, rather than true changes in vegetation. Notably, our annual 

vegetation maps did not reflect this erroneous detection by the CCDC in 2018. 

Therefore, the CCDC algorithm effectively identifies the regions and timings of breakpoints in long-time remote sensing 

imagery. Choosing the CCDC algorithm as the foundational method for identifying potential change areas in our long-time 305 

vegetation mapping approach is both reasonable and appropriate. Although the CCDC algorithm is susceptible to false 

positives due to factors such as changes in cultivated species (Fig. 7), the subsequent methods employed in this study, including 

potential area identification, true vegetation type recognition, and spatial-temporal constraints, effectively reduce these false 

positive errors (Fig. 7). 
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 310 

 

Figure 7. Validation of vegetation mapping: CV sample [100.8570E, 35.2474N] changes detected by CCDC not reflected in Landsat 

and annual vegetation maps. 
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4.2 Quantitative Assessment of Vegetation Changes on the QTP from 2000 to 2022 

This study quantified both potential and actual vegetation changes on the QTP from 2000 to 2022 in terms of area and 315 

percentage. Areas where changes were detected by the CCDC algorithm were categorized as potential vegetation changes (Fig. 

8). The findings reveal that from 2000 to 2022, the areas without potential unchanged were predominantly found in the forested 

regions of the southern and southeastern parts of the QTP, comprised approximately 68.21% of the total area (Table 5). 

Vegetation changes, occurring mostly 1 to 5 times and accounting for about 30.97% of the total area, were more frequent at 

the junctions of AM, AG, and AD in the central area of QTP. Notably, in the southwestern Ali region's Mapam Yumco area 320 

and the northeastern part near Hala Lake, more than 5 changes were detected, making up about 0.82% of the QTP's total area 

(Table 5). 

 

Figure 8. Potential vegetation change areas and number of changes on the QTP from 2000 to 2022. 

Based on the annual vegetation maps of the QTP from 2000 to 2022, this study calculated the changes in vegetation types 325 

between consecutive years, thereby determining the actual changes in area and the frequency of these changes across the QTP 

during this period (Fig. 9). Compared to potential unchanged areas, the actual unchanged vegetation areas on the QTP making 

up about 96.82% of the total area, while the area with real changes (once or more) significantly decreased (Table 5). The 

majority of actual vegetation changes from 2000 to 2022 occurred 1-2 times, while regions with 3 or more changes accounted 

for just 0.08% of the QTP's area. These changes primarily involved a reduction in AD and GS areas, and an increase in WA 330 

and AM (Table 5). 
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Figure 9. Actual vegetation change areas and number of changes on the QTP from 2000 to 2022. 

Table 5. Area Proportion of Potential and Actual Vegetation Change Frequency on the QTP from 2000 to 2022. 

Number of Changes 0 1 2 3 4 5 >5 

Area Proportion of Potential 

Vegetation Change Regions (%) 
68.21 18.20 7.12 3.28 1.60 0.78 0.82 

Area Proportion of Actual 

Vegetation Change Regions (%) 
96.82 2.75 0.34 0.07 0.01 0.00 0.00 

 335 

In summary, only 3.18% of the QTP experienced changes between 2000 and 2022, a figure substantially lower than what 

was detected by the CCDC algorithm alone. Therefore, the long-time annual vegetation mapping method developed in this 

study enhances the temporal consistency of the results, effectively meeting the demands for long-term vegetation change 

detection. 

5 Data availability 340 

The 500 m annual vegetation maps of QTP from 2000 to 2022 are available at https://data.tpdc.ac.cn/en/disallow/6304c1a4-

efc0-4766-bae3-4148bdf7bcfd (Zhou et al., 2024). The vegetation maps are stored in TIFF format, with the file name 

"QTP_Vegetation_Map_XXXX.tif," where XXXX represents the year. All files can be opened and reprocessed using software 

such as ArcGIS, QGIS, and ENVI. Each TIFF dataset contains values from 0 to 16, where 0 represents invalid values, and 1 

to 16 correspond to the 16 vegetation types listed in Table 2. The MOD09A1 and SRTM data used in this study were obtained 345 
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from GEE (http://code.earthengine.google.com, last access: 14 May 2024). The annual precipitation dataset, annual average 

temperature dataset, and QTP boundary dataset were provided by the National Tibetan Plateau / Third Pole Environment Data 

Center (https://data.tpdc.ac.cn, last access: 14 May 2024).  

6 Conclusions 

Long-time series of annual regional vegetation types and geographic distribution data are vital for examining the impact of 350 

climate change on vegetation and its evolutionary trends. In this study, annual vegetation of the QTP from 2000 to 2022 at a 

500 m spatial resolution was mapped through the MOD09A1 product, together with a reference year vegetation classification 

map and a breakpoint detection algorithm. The overall accuracy of 80.9% for continuous annual vegetation mapping at a 500 

m resolution from 2000 to 2022. The study supports the use of remote sensing data to mapping a long-term continuous annual 

vegetation. Furthermore, it facilitates the elucidation of the spatial and temporal evolution of regional and global vegetation 355 

under the background of global warming. 
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