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Abstract. The Qinghai Tibet Plateau (QTP), known as the "Third Pole of the Earth" and the "Water Tower of Asia", plays a 

crucial role in global climate regulation, biodiversity conservation, and regional socio-economic development. Continuous 

annual vegetation types and their geographical distribution data are essential for studying the response and adaptation of 10 

vegetation to climate change. However, there is very limited data on vegetation types and their geographical distributions on 

the QTP due to harsh natural environment. Currently, land cover and surface vegetation data are typically obtained using 

traditional classification methods for each period's product, based on remote sensing information. These approaches do not 

consider the temporal continuity of vegetation presence, leading to a gradual increase in misclassified pixels and uncertainty 

in their locations, consequently decreasing the interpretability of the long-time series remote sensing products. To address this 15 

issue, this study developed a new method for long-time continuous annual vegetation mapping based on reference vegetation 

maps and annual updates, and mapped the vegetation of the QTP from 2000 to 2022 at a 500 m spatial resolution through the 

MOD09A1 product. The overall accuracy of continuous annual QTP vegetation mapping from 2000 to 2022 reached 83.27%, 

with the reference annual 2020 reaching an accuracy of 83.32% and a Kappa coefficient of 0.82. This study supports the use 

of remote sensing data for long-term continuous annual vegetation mapping. The 500 m annual vegetation maps are available 20 

at https://doi.org/10.11888/Terre.tpdc.301205 (Zhou et al., 2024). 

1 Introduction 

Vegetation, an integral component of Earth's ecosystems, plays an irreplaceable role in maintaining climate stability, 

preserving biodiversity, and supplying vital resources for humans. Vegetation maps not only facilitate a visual comprehension 

of vegetation types and their geographic distribution, but also provide essential data for natural resource management and 25 

environmental protection (Immerzeel et al., 2010). Particularly, long-time series of geographical distribution data on vegetation 

types are crucial for revealing the impacts of climate change and human activities on vegetation, elucidating the succession 

processes of vegetation, and scientifically managing vegetation ecosystems. 
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The availability of large-scale, long-term, and free remote sensing imagery has significantly advanced the development of 

land cover and surface vegetation data. Notable international products include the European Space Agency (ESA)'s 30 

GlobCover_2005 and GlobCover_2009 (300 m) (Bontemps et al., 2010), as well as the ESA Climate Change Initiative (ESA-

CCI) land cover dataset, which offers improved temporal continuity at a 300 m spatial resolution (Defourny et al., 2017). 

Additionally, the National Aeronautics and Space Administration (NASA)'s annual MCD12Q1 product since 2001 (500 m) 

(Friedl et al., 2010; Sulla-Menashe et al., 2019) is widely used. In China, representative products include GlobeLand30 by 

Chen et al. (2015), Finer Resolution Observation and Monitoring of Global Land Cover (FROM_GLC)10 and FROM_GLC30 35 

by Tsinghua University (Gong et al., 2013; Gong et al., 2019), Global 30m Land-cover Classification with a Fine Classification 

System (GLC_FCS30) and Global 30m Land-cover Dynamics Monitoring Dataset (GLC_FCS30D) by the Chinese Academy 

of Sciences (Zhang et al., 2019c; Zhang et al., 2021b; Zhang et al., 2024b), and China Land Cover Dataset (CLCD) by Wuhan 

University (Yang and Huang, 2021). Leveraging the intelligent remote sensing mapping (iMap) concept and framework, there 

has been rapid progress in developing global-scale seamless daily data cubes and in creating annual and seasonal land surface 40 

maps (Feng and Li, 2020; Liu et al., 2021a). 

Traditional long-time series land cover and surface vegetation datasets are often generated by independently classifying 

each period’s product. However, significant spatial distribution differences between products from different periods hinder 

their direct comparability (Liu et al., 2021b). For instance, NASA’s MCD12Q1.v5 product, produced using MODIS data and 

a decision tree classifier (Friedl et al., 2010), exhibited substantial instability, with an annual land cover label change rate of 45 

approximately 11.4% between 2001 and 2013. Similarly, GlobCover_2009 and GlobCover_2005 show notable spatial 

distribution differences, making them unsuitable for change detection studies (Bontemps et al., 2010). To address this issue, 

post-processing methods have been developed and have demonstrated remarkable effectiveness. For example, the Hidden 

Markov Model method (Sulla-Menashe et al., 2019), applied to the MCD12Q1.v6 product, reduced the instability of land 

cover label changes to 1.6%, compared to MCD12Q1.v5. Another study, using spatial-temporal consistency methods (Yang 50 

and Huang, 2021), further improved the mapping accuracy of land cover time series datasets. However, these post-processing 

methods rely on the establishment of numerous subjective rules, leading to complexity and limitations in their application 

(Zhang et al., 2024b). In recent years, research on continuous and dense change detection methods has made rapid progress, 

particularly with the Continuous Change Detection and Classification (CCDC) algorithm (Zhu and Woodcock, 2014; Zhu et 

al., 2019). This technique leverages all available remote sensing data to conduct continuous land cover change detection, 55 

providing a new approach to address the aforementioned issues. For instance, Xian et al. (2022) used the CCDC method to 

produce annual land cover products for the United States from 1985 to 2017, while Zhang et al. (2024b) applied it to generate 

the global GLC-FCS30D product, which demonstrates greater temporal stability compared to GLC-FCS30. Therefore, there 

is an urgent need to develop long-time series mapping methods based on change detection to overcome the limitations of 

traditional classification and post-processing approaches. 60 

The QTP, known as the "Roof of the World" and the "Water Tower of Asia," is critical for global climate regulation and 

regional socio-economic development (Yao et al., 2012). In the 1970s, China carried out the first extensive scientific survey 



3 

 

of the QTP. Currently, the second QTP scientific expedition is underway, with vegetation survey being one of the major 

components (Zhou et al., 2023). Understanding the evolution of vegetation types on the QTP is important for revealing the 

effects of climate change on vegetation structure and function. Additionally, such insights are essential for elucidating the 65 

carbon and water cycles of the QTP and for formulating high-quality, sustainable development strategies for the region amidst 

global warming (Wang et al., 2022; Wang et al., 2023; Zhang et al., 2024a). 

As the "Third Pole" of the Earth, the QTP has very limited data on vegetation types and geographical distribution due to its 

harsh natural environment. Currently, the primary vegetation data for the QTP include the "Vegetation map of Qinghai Tibet 

Plateau in 2020 with 10 m spatial resolution" (Zhou et al., 2022a), the "A new vegetation map for Qinghai-Tibet Plateau by 70 

integrated classification from multi-source data products (2020)" (Zhang et al., 2021a), the "Vegetation map of Qinghai Tibet 

Plateau in 1980s" (Zhou et al., 2022b), and the "Vegetation map of Qinghai-Tibet Plateau permafrost zone" (Wang et al., 2016). 

These vegetation distribution products are single-period maps, which are insufficient to depict dynamic changes in vegetation, 

thus limiting the understanding of vegetation evolution trends and mechanisms on the QTP. In addition, Wang et al. (2022) 

described the distribution of alpine meadows and alpine steppes on the QTP and predicted the distribution trends of these 75 

vegetation types over the next century using precipitation data. Wang et al. (2023) analyzed the characteristics of grassland 

changes on the QTP over the past 40 years from the perspective of plant community structure. Other studies have focused on 

wetlands, water bodies, glaciers, and other aspects of the QTP (Zhang et al., 2019a; Hu et al., 2023; Li et al., 2023).  However, 

these long-time series products, created with traditional classification methods, are primarily focused on specific types, 

overlooking the need to identify temporal changes across different types, which limits the accuracy of the products. Therefore, 80 

in order to provide continuous data support for research on the interaction between vegetation and climate change, there is an 

urgent need for long-time series vegetation mapping. 

This study aims to develop a new approach to long-time series vegetation mapping using remote sensing imagery, and to 

map vegetation of the entire QTP at 500 m from 2000 to 2022, using the MOD09A1 remote sensing data. 

2 Materials and Methods 85 

2.1 Study Area 

The QTP, situated between 25°59′30″N and 40°1′0″N, 67°40′37″E  and 104°40′57″E, has an average elevation 

of about 4320 m and a total area of 3.08 million km² (Zhang et al., 2021c). This study covers the entire QTP, spanning six 

provinces and regions within China - Tibet, Qinghai, Gansu, Sichuan, Yunnan, and Xinjiang - as well as areas in India, Pakistan, 

Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. In particular, the area of the QTP within China is about 90 

2.58 million km² (approximately 83.7% of the QTP) with an average elevation of about 4400 m (Yu et al., 2014; Zhang, 2019; 

Zhang et al., 2021d; Zhang et al., 2021e). The QTP slopes downward from the high northwest to the lower southeast, with a 

humid and rainy climate in the southeast and arid conditions in the northwest. The vegetation distribution across the QTP is 

influenced by topography and climatic conditions, revealing a clear horizontal zonation ranging from forests, shrubs, and 
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meadows in the southeast to grasslands and deserts in the northwest. Additionally, as temperatures decrease with increasing 95 

altitude, there is a distinct vertical stratification in vegetation, ranging from forests at lower elevations to alpine meadows and 

alpine vegetation at higher elevations. 

2.2 Data Sources 

2.2.1 Training Sample Data for Vegetation Type  

The vegetation of the QTP is primarily categorized into 15 types (Editorial Board of the Vegetation Map of China, Chinese 100 

Academy of Sciences, 2007; Zhou et al., 2023). Given the significance of glaciers and snow cover, this study expanded the 

vegetation classification to 16 types for the 500 m spatial resolution mapping (Table 1), including evergreen broad-leaved 

forest (EBF), evergreen coniferous forest (ECF), coniferous and broad-leaved mixed forest (CBMF), deciduous broad-leaved 

forest (DBF), deciduous coniferous forest (DCF), scrub (SC), alpine scrub meadow (ASM), alpine meadow (AM), alpine 

grassland (AG), alpine vegetation (AV), alpine desert (AD), cultivated vegetation (CV), wetland (WE), water (WA), non-105 

vegetated area (NVA), and glacier and snow (GS). 

Table 1. Vegetation classification system and training and validation sample counts on the QTP. 

Types Definitions 
Training 

Samples 

Validation 

Samples 

Evergreen broad-leaved 

forest (EBF) 

Forest communities composed of evergreen broad-leaved tree 

species 
936 76 

Evergreen coniferous 

forest (ECF) 
Forest communities composed of evergreen coniferous tree species 768 102 

Coniferous and broad-

leaved mixed forest 

(CBMF) 

Forest communities composed of both coniferous and broad-leaved 

tree species 
475 25 

Deciduous broad-leaved 

forest (DBF) 

Forest communities composed of broad-leaved tree species that 

shed leaves in winter and grow in summer 
570 62 

Deciduous coniferous 

forest (DCF) 

Forest communities composed of coniferous tree species that shed 

leaves in winter and grow in summer 
370 91 

Scrub (SC) Vegetation communities dominated by shrubs 397 79 

Alpine scrub meadow 

(ASM) 

Vegetation communities composed of alpine shrubs and alpine 

meadows, adapted to cold, windy, dry, and alpine climates 
213 49 

Alpine meadow (AM) 
Vegetation communities primarily consisting of herbaceous plants 

suited to cold climates 
1375 310 

Alpine grassland (AG) 
Vegetation communities composed of alpine grasslands with low 

biomass and a short growing season 
872 217 

Alpine vegetation (AV) 

Vegetation communities occurring above the treeline or shrub belt 

and below the permanent snowline, dominated by ice- and cold-

tolerant plants 

503 97 

Alpine desert (AD) Deserts composed of cold- and drought-tolerant cushion subshrubs 499 325 
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Cultivated vegetation 

(CV) 
Vegetation communities formed through human cultivation 469 109 

Wetland (WE) 
Vegetation communities composed of water, bare soil, and 

herbaceous or woody plants 
246 81 

Water (WA) Areas covered by water year-round 377 91 

Non-vegetated area 

(NVA) 
Areas composed of natural soil, sand, or rock 204 36 

Glacier and snow (GS) Areas covered by ice and snow year-round 663 439 

The training vegetation samples for the QTP within China were obtained from the “Vegetation map of Qinghai Tibet Plateau 

in 2020 with 10 m spatial resolution” (Zhou et al., 2022a). This product was created using a regional vegetation mapping 

method based on terrain-climate-remote sensing information, with a spatial resolution of 10 m and an overall accuracy of 110 

89.5%. Its classification system is consistent with that of this study, except for the exclusion of GS, and was therefore used to 

generate the vegetation type training sample data for this research (Zhou et al., 2023). The vegetation map was resampled to 

500 m. Subsequently, the dominant vegetation type and its proportional area, derived from the corresponding 50×50 pixels at 

10 m spatial resolution, were determined as the vegetation type categorization and pixel purity (reflected as the percentage of 

the dominant vegetation type within these 50×50 pixels) for the 500 m spatial resolution map. Concurrently, different purity 115 

levels and their area proportions were calculated (Table 2). Random sampling was then conducted in areas with purity levels 

exceeding 70%, representing approximately 62.34% of the QTP. For the QTP regions outside China, vegetation type sample 

data were obtained from high-resolution Google Earth imagery from 2020. By visually interpreting these images, samples 

were selected from areas with consistent vegetation types within a 500 m range. Using these methods, a total of 8,937 training 

samples were collected to train the 2020 vegetation classification model (Table 1). 120 

Table 2. Purity and area proportion of 500 m resolution pixel samples of vegetation types on the QTP within China. 

Purity (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

Area 

Proportion (%) 
0.02 0.04 1.01 4.20 8.28 12.55 11.56 11.40 12.55 38.39 
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Figure 1. Spatial distribution of training (2020) and validation (2000-2022) samples for vegetation mapping at 500 m resolution on 

the QTP. 

2.2.2 Validation Sample Data for Vegetation Type  125 

As the "Third Pole of the Earth ", the QTP has high altitudes and sparse human activity, making it difficult to obtain validation 

samples. The validation samples in this study consist of three parts: field measurements, visual interpretation, and third-party 

samples.  

The field measurement samples include 173 samples collected during field expeditions on the QTP in 2019, 2020, and 2021. 

These samples were collected during the vegetation growing season on the QTP, with neighboring samples spaced 130 

approximately 50 km apart. Each sample is ensured to have uniform and consistent vegetation distribution within a 1 km×1 

km area.  

The visual interpretation samples (1002 in total) were obtained from previous work by Wu et al. (2024) using Google Earth 

and Google Earth Engine (GEE). The selected samples are from areas with consistent vegetation distribution from 1990 to 

2020, and each sample covers an area greater than 500 m. Each sample was independently interpreted by three interpreters 135 

using long-time series Landsat remote sensing images. Conflicting results were resolved through a second interpretation, and 

inconsistent samples were removed.  

The third-party samples include the First All-season Sample Set (Li et al., 2017), the Global Land Cover Validation Samples 

(Zhang et al., 2021b), and validation samples gathered through literature search. The First All-season Sample Set consists of 

approximately 140,000 validation samples worldwide, obtained using Landsat 8 data from 2013-2015. The second set includes 140 

44,043 validation samples, primarily from around 2015, and was published as a validation dataset for the GLC-FCS30-2015 

product. The literature search samples were obtained from the China National Knowledge Infrastructure (https://www.cnki.net/) 
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and Web of Science (https://www.webofscience.com/) databases using keywords such as "Qinghai-Tibet Plateau," 

"vegetation", and "vegetation cover" to collect published validation samples from 2000 to 2022. 

The third-party validation samples in this study carry certain uncertainties, such as spatial range and homogeneity. 145 

According to Li et al. (2017), the First All-season Sample Set includes samples with varying unit sizes (30 m, 100 m, 250 m, 

500 m, and 1000 m), with those larger than 500 m being rare (only 10.6%). Samples smaller than 500 m are not suitable for 

validating 500 m vegetation maps. Additionally, the Global Land Cover Validation Samples from Zhang et al. (2021b) and 

those from literature searches only guarantee accuracy in sampling time and type, but not spatial extent. To address these 

issues, this study applied the method of Feng et al. (2012) to extract spatially homogeneous regions from MOD09A1 data by 150 

analyzing the range of values in a 3×3 grid of 500 m pixels. Thresholds for homogeneity were set for each band: 0.03 for blue, 

green, and red; 0.06 for near-infrared; and 0.03 for both shortwave infrared 1 and 2. If the range of values across all bands fell 

within these thresholds, the area was considered homogeneous. GS on the QTP are mostly classified as heterogeneous areas. 

Therefore, the samples labeled as GS in the third-party samples are visually interpreted to remove unreasonable ones. After 

applying this quality control, 1,014 third-party validation samples were obtained, including 327 from the global all-season 155 

sample library, 499 from the GLC-FCS30-2015 global validation set, and 188 from literature searches. 

The validation sample dataset for this product contains 2,189 samples from field measurements, visual interpretation, and 

third-party samples (Table 1). Among them, 173 field measurement samples are available for validating the 2020 product 

There are 1,002 samples from visual interpretation, characterized by stable attributes over multiple years, making them suitable 

for validating annual products from 2000 to 2020. Furthermore, 1,014 third-party validation samples can be used to validate 160 

annual products from 2000 to 2019. 

2.2.3 Remote Sensing Data  

Remote sensing data in this study were sourced from the Moderate Resolution Imaging Spectroradiometer (MODIS) series 

satellite imagery provided by NASA. As one of the longest-operating Earth observation instruments currently in orbit, MODIS 

is a multi-spectral observation sensor launched in May 1999, enabling efficient and comprehensive observation of the Earth. 165 

The MOD09A1 surface reflectance dataset, obtained through the GEE platform (Gorelick et al., 2017), is a Level 3 product 

generated from daily surface reflectance observations using an 8-day compositing algorithm. This algorithm selects the best 

observation during the 8-day period based on criteria such as minimal cloud cover and highest observation quality (Vermote 

et al., 2015). The dataset has undergone standardized preprocessing provided by NASA, including radiometric calibration, 

atmospheric correction, and cloud masking based on quality assurance (QA) flags (Vermote et al., 2015; Vermote, 2021). To 170 

ensure the data were suitable for this study, additional processing steps were applied. The original sinusoidal projection of 

MOD09A1 was converted to the WGS84 geographic coordinate grid to maintain spatial consistency with other datasets, and 

the data were spatially subsetted to the QTP region to match the study area. The MOD09A1 dataset provides surface reflectance 

in seven spectral bands (Table 2) with a spatial resolution of 500 m, and 1,051 MOD09A1 images from January 1, 2000, to 
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December 31, 2022, were used to generate annual vegetation maps at a 500 m resolution for the QTP. These preprocessing 175 

steps ensure the reliability and quality of the data for vegetation classification and long-term analysis. 

2.2.4 Climate and Terrain Data 

Temperature and precipitation are key driving factors for the distribution and dynamic changes of vegetation types on the QTP, 

and the incorporation of climate data significantly enhances the understanding of vegetation distribution on the QTP (Wang et 

al., 2022; Zhou et al., 2023; Zhang et al., 2024a). This study utilized climate data which included annual precipitation (AP) 180 

and annual average temperature (AT) across the entire QTP from 2000 to 2022. For the QTP within China, climate data at 

1,000 m were obtained from the National Tibetan Plateau Data Center, specifically the "1-km monthly precipitation dataset 

for China (1901-2023)" and the "1-km monthly mean temperature dataset for China (1901-2023)" (Peng et al., 2017a; Peng et 

al., 2017b; Peng, 2019; Peng et al., 2019; Ding and Peng, 2020; Peng, 2020). To derive the precipitation and temperature 

features required for this study, the monthly precipitation data were summed to calculate annual totals, while the monthly mean 185 

temperature data were averaged over the year. In contrast, climate data for areas of the QTP outside China were derived from 

the Climatic Research Unit (CRU) high-resolution gridded dataset, featuring a spatial resolution of approximately 50,000 m. 

The Digital Elevation Model (DEM) and derived features are crucial for vegetation mapping. The terrain data was from the 

Shuttle Radar Topography Mission (SRTM) by the United States Geological Survey (USGS) (Farr et al., 2007), with a spatial 

resolution of 30 m. At last, this study applied the mean sampling method in GEE to resample data on AP, AT, elevation, slope, 190 

and aspect variables derived from SRTM data to a 500 m spatial resolution for integration into vegetation mapping. 

2.3 Vegetation Mapping of the QTP at 500 m Resolution in 2020 

2.3.1 Classification Platform and Algorithm 

The GEE cloud platform offers a variety of machine learning models, such as Support Vector Machine (SVM) and Random 

Forest (RF), the latter of which was utilized in this study for vegetation mapping (Gorelick et al., 2017; Zhang et al., 2023). 195 

The RF model is an ensemble learning-based machine learning algorithm that mitigates the overfitting risk inherent in single 

decision trees by constructing and integrating multiple decision trees (Breiman, 2001). This approach not only enhances the 

accuracy and stability of predictions but has also been widely applied in the vegetation mapping. 

2.3.2 Construction of Vegetation Mapping Features 

The features used in vegetation mapping are divided into four categories (Table 3): terrain (elevation, slope, aspect), climate 200 

(AT and AP), surface reflectance (R, N, B, G, M, S1, S2), and 14 index features, which are constructed from the single-band 

surface reflectance. These features were derived from the MOD09A1 remote sensing imagery data spanning from January 1, 

2020, to December 31, 2020. Additionally, six percentiles—15%, 30%, 45%, 60%, 75%, and 90%—were calculated for the 7 

reflectance bands and the 14 indices, representing the time series characteristics of each pixel. The 15% and 90% percentiles 
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were used as substitutes for the minimum and maximum values of the time series observations, effectively mitigating the 205 

influence of extreme values in time-series data (Zhang et al., 2021b). The 30%, 45%, 60%, and 75% percentile features were 

selected to capture temporal trends uniformly while avoiding feature redundancy (Sulla-Menashe et al., 2019; Zhang et al., 

2024b). A total of 131 features were formulated from these 4 categories for vegetation mapping on the QTP. 

Table 3. Vegetation mapping features at 500 m resolution on the QTP. 

Category Features Formula Description 

Terrain  

Elevation  The height of the terrain above sea level (m) 

Slope  The steepness of the terrain (°) 

Aspect  The direction the terrain slope faces (°) 

Climate  
AT  Annual average temperature 

AP  Annual precipitation 

Surface 

reflectance 

R Red 620–670 nm 

N Near-infrared 841–876 nm 

B Blue 459–479 nm 

G Green 545–565 nm 

M Mid-infrared 1230–1250 nm 

S1 Shortwave Infrared 1 1628–1652 nm 

S2 Shortwave Infrared 2 2105–2155 nm 

Vegetation 

Index 

NDVI 
N − R

N + R
 

Normalized Difference Vegetation Index 

(Tucker, 1979) 

EVI 2.5
N − R

N + 6R − 7.5B + 1
 

Enhanced Vegetation Index (Huete et al., 

1999) 

RVI 
N

R
 Ratio Vegetation Index (Crippen, 1990) 

DVI N − R 
Difference Vegetation Index (Roujean and 

Breon, 1995) 

SAVI 
(N − R) ∗ 1.5

N + R + 0.5
 

Soil Adjusted Vegetation Index (Huete, 

1988) 

GCVI 
N

G
− 1 

Green Chlorophyll Vegetation Index (Lobell 

et al., 2015) 

NIRV 
(N −  R) ∗ N

N + R
 

Near-Infrared Reflectance of Vegetation 

(Badgley et al., 2017) 

Urban Index 

NDBI 
S1 − N

S1 + N
 

Normalized Difference Built-up Index (Zha 

et al., 2003) 

IBI 
NDBI − (SAVI + (G − S1)/(G + S1))/2

NDBI + (SAVI + (G − S1)/(G + S1))/2
 Index-based Built-up Index (Xu, 2008) 

Water Index NDWI 
G − N

G + N
 

Normalized Difference Water Index 

(McFeeters, 1996) 
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LSWI 
N − S1

N + S1
 Land Surface Water Index (Xiao et al., 2004) 

Snow Index 

NDSI 
G − S1

G + S1
 

Normalized Difference Snow Index (Hall et 

al., 1995) 

NDGlaI 
G − R

G + R
 

Normalized Difference Glacier Index 

(Keshri et al., 2009) 

Soil Index BI 
(S1 + R) − (N + B)

(S1 + R) + (N + B)
 Bare Soil Index (Chen et al., 2004) 

2.3.3 Feature Importance Evaluation and Feature Selection 210 

Among the 131 features used for vegetation mapping, 126 optical remote sensing features (excluding topography and climate) 

were constructed based on surface reflectance. These features are prone to severe collinearity issues, which can lead to model 

overfitting, increased computational costs, and diminished interpretability. To mitigate the issue of high collinearity among 

these features, the Variance Inflation Factor (VIF) was employed, providing the ratio of variance in a model with 

multicollinearity among features to the variance in a model where multicollinearity is absent (James et al., 2013; Ngabire et 215 

al., 2022):  

 
VIFj=

1

1-Rj
2 (1) 

where VIFj is the VIF for feature j, and Rj
2 is the squared multiple correlation coefficient obtained from the regression of feature 

j with all other features. A higher VIF value indicates more severe collinearity, with a VIFj  greater than 30 suggesting 

significant collinearity in feature j. This study utilized the RF classifier to determine the optimal feature combination for 

vegetation classification. The importance of terrain, climate, and optical remote sensing features was assessed through RF 220 

classifier and filtered using the VIF method (Ramosaj and Pauly, 2019, Zhang et al., 2019b). The features were then ranked 

according to the calculated importance, and the top-ranking feature, along with combinations such as the top two, top three, 

etc., were used to construct various RF models for all possible feature combinations. The feature set with the smallest out-of-

bag error was chosen as the best feature set for vegetation mapping on the QTP. 

2.3.4 Evaluation of Mapping Accuracy 225 

An optimal combination of terrain, climate, and optical remote sensing data in 2020 was integrated to achieve vegetation 

mapping of the QTP based on RF model in this study. The mapping accuracy was evaluated using the confusion matrix method, 

which involved calculating the Overall Accuracy (OA, Eq. 2), Kappa Coefficient (Kappa, Eq. 3), Producer’s Accuracy (PA, 

Eq. 4), and User’s Accuracy (UA, Eq. 5). 

 OA =
∑ mi

n
i=1

N
 (2) 

 Kappa =
N × ∑ mi

n
i=1 − ∑ (Gi × Ci)

n
i=1

N2 − ∑ (Gi × Ci)
n
i=1

 (3) 
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 PA =
mi

Gi

 (4) 

 UA =
mi

Ci

 (5) 

where mi is the count of correctly classified pixels for category i; n is the count of categories; N is the overall quantity of 230 

classified pixels; Ci and Gi are the total counts of pixels classified as and actually in category i, respectively; OA is the overall 

accuracy; Kappa is the Kappa coefficient; PA is the mapping accuracy; and UA is the user accuracy. 

2.4 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022 

The workflow represents the process for generating annual vegetation maps in QTP from 2000 to 2022 (Fig. 2). It begins with 

breakpoint detection, where the Continuous Change Detection (CCD) algorithm (Eq. 6) is applied to the Red, Near-infrared, 235 

and Shortwave Infrared 1 bands of MOD09A1 data, identifying breakpoint regions for the QTP (Sect. 2.4.1). These breakpoint 

regions are then used in the potential vegetation change area identification algorithm to determine potential change areas for 

2000–2019 and 2021–2022 (Sect. 2.4.2). Subsequently, the actual vegetation type identification algorithm is applied to these 

potential change areas, producing preliminary annual vegetation maps for the corresponding years (Sect. 2.4.3). Finally, the 

spatial-temporal consistency method is used to refine these preliminary maps, generating the annual vegetation maps of the 240 

QTP from 2000 to 2022 (Sect. 2.4.4).  
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Figure 2. Workflow for 500 m resolution vegetation mapping on the QTP from 2000 to 2022. 

2.4.1 Continuous Change Detection Algorithm 

The Continuous Change Detection and Classification (CCDC) algorithm integrates time series and spectral characteristics to 245 

detect temporal "breakpoints" and classify land cover changes. Originally developed for Landsat data (Zhu and Woodcock, 

2014; Zhu et al., 2019), it has been extended to MODIS and Sentinel datasets (Shimizu et al., 2019; Tang et al., 2019; Xian et 

al., 2022). In this study, CCDC was applied to long-term vegetation mapping on the QTP, leveraging its ability to dynamically 

detect changes and update classifications to improve temporal consistency (Zhang et al., 2024). 

The CCDC algorithm comprises two components: "Continuous Change Detection (CCD)" and "Classification (C)". The 250 

CCD component uses a time series fitting model (Eq. 6) with harmonic and slope terms to analyze remote sensing data, 

capturing seasonal variations and the inter-annual changes. When residuals exceed a specified threshold, the corresponding 
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time period is flagged as a "break." The CCD segments the entire observation sequence into several subsequences, each 

separated by "breaks." Each subsequence is then modeled independently using specific fitting coefficients (Fig. 2). The second 

part of the CCDC, the "C," uses the RF method to classify each subsequence based on its fitting coefficients (Zhu and 255 

Woodcock, 2014). Considering the influence of terrain and climate on vegetation distribution in the QTP (Zhou et al., 2023), 

this study employed a pre-established 2020 classification model (Sect. 2.3), which incorporates terrain, climate, and remote 

sensing data to identify potential change areas. 

 
ρ̂(i, t) = c0i + ∑ (ani cos

2πn

T
t + bni sin

2πn

T
t)

N

n=1
+ c1it (6) 

where ρ̂(i, t) is the predicted value of the ith band on Julian day t; T is the average number of days in a year; 𝑎𝑛𝑖 and 𝑏𝑛𝑖 are 

the harmonic coefficients of nth order for the ith band i; 𝑐0𝑖 and 𝑐1𝑖 are the intercept and slope coefficients, respectively; and N 260 

represents the highest order of harmonics, which is set to 3 in this study. 

The CCDC algorithm was initially developed in MATLAB (Zhu and Woodcock, 2014) and later in Python (Brown et al., 

2020). To address its high computational demands for long-term, large-scale monitoring, this study utilized the GEE platform, 

which provides the CCDC algorithm as a time segmentation tool (“ee.Algorithms.TemporalSegmentation.Ccdc”) (Arévalo et 

al., 2020; Pasquarella et al., 2022). This study primarily used GEE's default parameters, modifying only “breakpointBands” 265 

and “dateFormat.” The “breakpointBands” parameter was set to include the Red (R), Near-Infrared (N), and Shortwave 

Infrared 1 (S1) bands, which correspond to chlorophyll content, leaf structure, and water content, respectively (Tucker, 1979; 

Curran, 1989; Gao, 1996). The “dateFormat” parameter was set to 2, indicating that all breakpoint times are represented as 

Unix timestamps. Finally, using the MOD09A1 remote sensing imagery from 2000 to 2022 and the CCD algorithm, breakpoint 

regions on the QTP during 2000–2022 were identified. 270 

2.4.2 Potential Vegetation Change Area Identification Algorithm 

The annual mapping method in this study involves the baseline year T and the updated year T-1. Therefore, the potential 

change area for year T-1 (ST−1) depends on the breakpoint regions of T (BT) and T-1 (BT−1). The detailed algorithm process 

is illustrated in Fig. 2. In general, at the same spatial location, if there is at least one breakpoint region in both year T and T-1 

(gray areas), the corresponding location is marked as a potential change area for year T-1 (green areas). This can be expressed 275 

as: 

 ST−1 = (BT−1 ∩ BT) ∪ (BT−1 ∩ BT
̅̅̅̅ ) ∪ (BT−1

̅̅ ̅̅ ̅̅ ∩ BT) (7) 

where ST−1 is the potential vegetation change area for year T-1, BT−1  and BT are the breakpoint regions for year T-1 and T, 

and BT−1
̅̅ ̅̅ ̅̅   and BT

̅̅̅̅  are the non-breakpoint regions for year T-1 and T, respectively. Finally, using the potential vegetation 

change area identification algorithm and the breakpoint regions on the QTP during 2000–2022 (Sect. 2.4.1), potential 

vegetation change areas were identified for 2000–2019 and 2021–2022. The year 2020 was used as the baseline year in this 280 

study and did not require updating. 
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2.4.3 Actual Vegetation Type Identification Algorithm 

The potential vegetation change areas merely indicate regions where vegetation types might change, thus necessitating further 

identification of the actual vegetation change areas (Fig. 2). Based on the RF model constructed in 2020 (M2020), and 

combining the terrain, climate, remote sensing data, and ST−1, the actual vegetation types in the potential change areas for T-285 

1 (RT−1
′ ) can be determined (Eq. 8). Subsequently, the T-1 vegetation map (RT−1) was obtained by overlaying and analyzing 

RT−1
′  and RT (Eq. 9). 

 RT−1
′ = M2020(FT−1, ST−1) (8) 

 RT−1 = {
RT−1

′ ,     ST−1 and RT−1
′ ≠ RT

RT,         otherwise                   
 (9) 

where M2020 is the RF model for the year 2020, FT−1 is the vegetation mapping features for the year T-1, ST−1 is the potential 

vegetation change area for the year T-1, RT−1
′  is the vegetation classification result for the potential change area of the year T-

1, RT and RT−1 is the vegetation classification result for the year T and T-1, respectively. Finally, by integrating the actual 290 

vegetation type identification algorithm with the potential vegetation change areas (Sect. 2.4.2), preliminary annual vegetation 

maps for 2000–2019 and 2021–2022 were generated.  

2.4.4 Spatial-temporal Consistency 

The RF model used in this study, although exhibiting strong classification accuracy and robustness, employs a per-pixel 

classification strategy, which can result in salt-and-pepper noise (Yang and Huang, 2021). To mitigate this issue, this study 295 

employs a spatial-temporal constraint method, which assesses the consistency of each pixel's label within a 3×3×3 cube across 

both spatial and temporal dimensions (Fig. 2). The consistency, Cx,y,t , is calculated by averaging the agreement of the central 

pixel's label with the labels of 27 surrounding pixels (Yang and Huang, 2021; Li et al., 2015): 

 Cx,y,t =
1

27
∑ ∑ ∑ I(Labelx,y,t = Labeli,j,k)

t+1

k=t−1

y+1

j=y−1

x+1

i=x−1
 (10) 

where I is an indicator function returning 1 if the labels match, otherwise 0. If Cx,y,t < 0.5 and t > 2000, the pixel is deemed 

misclassified, and its label is corrected to match the previous year's central label. For the year 2000, where previous year data 300 

is unavailable, the label is adjusted to the most frequent label in the spatial 3×3 area. This approach assumes that significant, 

inconsistent changes are unlikely both spatially and temporally, thereby enhancing the accuracy of the classification. Based on 

the preliminary annual vegetation maps (Sect. 2.4.3) and the spatial-temporal constraint method, the final product of this study, 

the annual vegetation maps of the QTP from 2000 to 2022, was produced. 
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3 Results 305 

3.1 Vegetation Mapping of the QTP at 500 m Resolution in 2020 

Due to the significant collinearity among the 126 features in MODIS data, this study focused on 13 features with VIF below 

30, including various band reflectance features and vegetation indices such as NDGlaI 15%, NDGlaI 90%, IBI 30%, NDBI 

90%, IBI 15%, IBI 90%, EVI 90%, NDVI 90%, IBI 75%, IBI 60%, LSWI 90%, M 90%, and IBI 45%. Combined with two 

climate factors (AT and AP) and three terrain features (Elevation, Slope, and Aspect), an 18-feature set was created for Out-310 

of-Bag (OOB) error analysis. The results indicated that the OOB error decreased as the number of features increased, reaching 

a minimum of 0.135 with 11 features, beyond which there was a slight increase (Fig. 3a). Subsequently, the top 11 features 

were selected to construct the RF model: AP, Elevation, NDVI 90%, AT, Slope, M 90%, EVI 90%, NDBI 90%, NDGlaI 90%, 

NDGlaI 15%, and IBI 75%. Among them, AP, Elevation, AT, and Slope ranked 1st, 2nd, 4th, and 5th in importance score, 

respectively. Therefore, climate and terrain are significant factors influencing vegetation distribution on the QTP (Fig. 3b). 315 

Finally, the 2020 vegetation map of the QTP was generated on the GEE platform at a 500 m spatial resolution (Fig. 4) based 

on the developed RF model. 

 

Figure 3. Evaluation of the 2020 vegetation classification model on the QTP. 

The 2020 vegetation map of the QTP includes 16 types (Fig. 4). Among these, four types cover areas larger than 400,000 320 

km²: AM, AG, AD, and AV. The AM covers the largest area, approximately 798,000 km², mainly in the eastern and southern 

regions of Gansu and Qinghai provinces. The AG covers around 578,000 km², predominantly in the central part of the plateau, 

with a distinct transitional zone adjoining the AM. The AD, covering about 562,000 km², is primarily located in the Xinjiang 

region. The AV covers approximately 474,000 km² and is widely distributed from above the treeline or shrub zone to the lower 

limit of the perennial snow line on the QTP. Among the five forest types in the QTP, ECF cover the largest area, about 154,000 325 
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km², mainly distributed in the Hengduan Mountains in the southeast of the QTP and near the Indus River in the west. DCF 

cover the smallest area, approximately 12,000 km², primarily located along the northwestern border of the QTP. 

 

Figure 4. Vegetation types and spatial distribution at 500 m resolution on the QTP in 2020. 

3.2 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022 330 

This study used the CCD algorithm to detect "breaks" in the dense time series MODIS data of the QTP from 2000 to 2022, 

defining these breaks as potential changes (PC) (Fig. 5a). Subsequently, an RF model incorporating terrain, climate, and remote 

sensing data was applied to annually update and generate vegetation maps of the QTP, identifying changes between adjacent 

years as real changes (RC) (Fig. 5b).  

Approximately 31.8% of the QTP is classified as PC areas. Regions with one or two instances of PC account for 18.2% and 335 

7.12% of the area, respectively (Fig. 5g), primarily located at the junctions of AM, AG, and AD in the central part of the 

plateau (Fig. 5a). Notably, areas near Hala Lake in the northeast (ROI1) and Mapam Yumco in the southwest Ali region (ROI2) 

experienced more than five instances of change, covering approximately 0.82% of the total area of the QTP (Fig. 5c-d). 

Compared to the PC areas, the RC areas from the annual vegetation maps of the QTP are significantly smaller (Fig. 5b), 

encompassing only 3.17% of the total area. As shown in Fig. 5g, regions with one or two instances of RC account for 2.75% 340 

and 0.34% of the QTP, respectively. Areas with three or more instances of RC make up only 0.08%, with no regions 

experiencing five or more instances of change. In all categories of change frequency, the area of RC is consistently smaller 

than that of PC. In the RC regions of ROI1 and ROI2, only a few areas show one or two instances of change. Notably, in ROI2, 

no areas with five instances of PC (red) appear in the corresponding RC regions; only a small portion shows a single instance 

of RC change. 345 
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Although the CCD model, which relies on dense spectral data, often detects many false changes—meaning that many 

"breaks" detected by CCD do not necessarily represent land type transformations (Zhu et al., 2019)—the RF model based on 

climate, terrain, and remote sensing data produces annual vegetation maps that effectively reduce these false changes. The 

frequency and area of detected change regions are significantly smaller compared to the CCD model results. 

 350 

Figure 5. Overview of potential change (PC) and real change areas (RC) on the QTP from 2000 to 2022. (a-b) Distribution of PC 

and RC on the QTP; (c-f) PC and RC areas in ROI1 and ROI2; (g) Area statistics of PC and RC on the QTP. 
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Figure 6. Annual area changes for 16 vegetation types on the QTP from 2000 to 2022. 

Fig. 6 illustrates the area changes of 16 vegetation types on the QTP from 2000 to 2022. All forest types remained relatively 355 

stable, with changes within 0.3%. Among the five forest types, ECF showed a small decrease, reducing by approximately 400 

km² (0.28%), while DCF had a small increase by about 14 km² (0.12%). Except for DBF, SC and ASM have limited 

distributions on the plateau. ASM decreased by about 300 km² (1.02%), primarily before 2005. AM, AG, AV, and AD are the 

four most widespread types on the plateau. AM and AV showed significant increases, with AM rising by about 8,800 km² 

(1.11%) and AV by about 12,600 km² (2.73%). In contrast, AD significantly decreased by about 21,500 km² (3.69%). AG 360 

fluctuated but notably declined by about 3,100 km² (0.54%) after 2016. CV increased by approximately 500 km² (1.32%), 

mainly after 2018. WA showed the most significant change, increasing by about 4,300 km² (8.40%) between 2000 and 2022. 

GS decreased by approximately 200 km² (0.17%), primarily after 2010. Both WE and NVA showed a decreasing trend, with 

reductions of about 600 km² and 100 km², respectively, from 2000 to 2022. 
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 365 

Figure 7. Annual vegetation cover changes in Area 1 [88.6985E, 31.5002N]. (a, c): Remote sensing images from 2000 and 2022, 

respectively. (b): Distribution and frequency of RC. (d-i): Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k): 

Area proportions of major vegetation types in 2000 and 2022, respectively. 

As shown in Fig. 7, most RC occurred only once, predominantly in the northern, eastern, and southwestern parts of Selin 

Co. In 2000, these areas were classified as WE, AD, and AG, respectively. From 2000 to 2022, these regions gradually 370 

transformed into WA, as evident in the remote sensing images. Specifically, the northern WE transitioned to WA between 

2000 and 2015, the eastern AD between 2000 and 2010, and the southern AG between 2000 and 2005. The WA in this region 

increased from approximately 43.43% in 2000 to 48.73% in 2022, marking a 5.3% rise. Simultaneously, AG, AD, and WE 
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decreased by 1.09%, 2.56%, and 1.65%, respectively. The eastern AD was the most significant contributor to the expansion 

of Selin Co's water. 375 

 

Figure 8. Annual vegetation cover changes in Area 2 [95.8644E, 37.6311N]. (a, c): Remote sensing images from 2000 and 2022, 

respectively. (b): Distribution and frequency of RC. (d-i): Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k): 

Area proportions of major vegetation types in 2000 and 2022, respectively. 

In the northeastern part of Hala Lake, close to ROI1, the area primarily consists of AG, AV, AF, and GS. Fig. 8b shows that 380 

most changes in this region from 2000 to 2022 occurred once or twice. The area of GA changed very little over the past 23 

years, increasing slightly from 6.32% to 6.34%. In contrast, AG expanded significantly, from 41.67% to 53.49%, an increase 

of about 11.82%. Meanwhile, the areas of AD and AV decreased by 9.51% and 2.33%, respectively. These changes mainly 



21 

 

occurred in transition zones, particularly between AG and AD, where most conversion from AD to AG happened between 

2000 and 2010. The shift from AV to AG mostly occurred between 2000 and 2005. Notably, some areas in Fig. 8b experienced 385 

two changes. These changes mainly reflect fluctuations between AD and AG (Fig. 8c-d), likely due to similar climate and 

spectral characteristics in the transition zones, causing some pixels to switch between the two types multiple times. 

3.3 Accuracy Validation 

The annual vegetation map of the QTP is dynamically updated using 2020 as the reference year, making its accuracy crucial 

for long-term product reliability. Due to minimal differences in vegetation distribution between adjacent years, samples from 390 

2019, 2020, and 2021 were used to validate the reference map. This validation set included 1,175 samples. The results showed 

an OA of 83.32% for 2020, with a Kappa coefficient of 0.82 (Table 4). For most vegetation types, the UA for DCF, AM, AV, 

AD, and WA exceeded 90%, and the PA for DCF, WE, WA, and GS was also above 90%. However, the UA and PA for 

CBMF were only 57.14% and 48.00%, respectively. This lower accuracy is likely because CBMF, as a mix of coniferous and 

broadleaf forests, is often misclassified by the RF model as EBF, ECF, or DBF due to spatial similarities. Overall, the 2020 395 

vegetation map, validated with 1,175 samples, achieved sufficient accuracy to be used as the reference for dynamic updates. 

Table 4. Confusion matrix, PA, and UA of vegetation mapping at 500 m resolution on the QTP in 2020 

 EBF ECF CBMF DBF DCF SC ASM AM AG AV AD CV WE WA NVA GS Total  UA (%) 

EBF 56 11 8 1 0 0 0 0 0 0 0 0 0 0 0 0 76 73.68  

ECF 2 74 3 2 1 1 0 3 0 0 0 0 0 0 0 0 86 86.05  

CBMF 0 4 12 4 0 0 0 0 0 0 0 1 0 0 0 0 21 57.14  

DBF 5 4 2 51 0 0 0 0 0 0 0 0 0 0 0 0 62 82.26  

DCF 0 0 0 0 87 0 0 0 2 0 2 0 0 0 0 0 91 95.60  

SC 0 0 0 0 0 46 2 6 1 0 1 2 0 0 0 0 58 79.31  

ASM 5 0 0 0 0 8 29 4 1 0 0 1 0 0 0 0 48 60.42  

AM 0 0 0 0 0 0 1 54 2 0 0 0 0 0 0 0 57 94.74  

AG 0 1 0 0 0 4 0 8 61 0 7 2 0 0 0 0 83 73.49  

AV 0 0 0 0 0 0 1 2 5 89 0 0 0 0 0 0 97 91.75  

AD 0 0 0 0 5 1 0 1 1 0 85 0 0 0 0 0 93 91.40  

CV 0 1 0 1 0 1 0 6 0 0 2 87 0 0 7 0 105 82.86  

WE 0 0 0 0 2 0 0 6 1 0 4 3 60 0 0 0 76 78.95  

WA 0 0 0 0 0 1 0 3 0 0 0 0 0 83 0 0 87 95.40  

NVA 0 2 0 0 0 1 0 2 0 0 0 9 0 0 22 0 36 61.11  

GS 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 83 99 83.84  

Total 68 97 25 59 95 63 33 95 74 105 101 105 60 83 29 83 1175  

PA (%) 82.35  76.29  48.00  86.44  91.58  73.02  87.88  56.84  82.43  84.76  84.16  82.86  100.00  100.00  75.86  100.00   83.32 

 

The third-party samples (1,014 samples) and visual interpretation samples (1,002 samples) were used to validate the 

accuracy of annual vegetation maps. The third-party samples mainly include grasslands, AD, and GS. Because the First All-400 

season Sample Set and the Global Land Cover Validation Samples did not differentiate between AM and AG, these two types 

were combined under the grasslands category during the validation process. The third-party samples mainly originate from 
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2014 (190 samples) and 2015 (666 samples), with smaller numbers from other years. The visual interpretation samples exhibit 

stable characteristics across multiple years, making them suitable for validating annual vegetation maps from 2000 to 2019. 

Validation results indicated that accuracy from 2000 to 2019 remained above 80%, with the lowest being 82.07% in 2015 405 

(Fig. 9). Upon inspection, most of the misclassified samples were located in the Barren land (vegetation cover <10%) category 

in the First All-season Sample Set, which corresponds to AD in the vegetation maps. However, some samples of this category 

were classified as AG in the vegetation map. There are definitional differences between Barren land and AD. Additionally, 

AD and AG represent two largest vegetation types on the QTP, and there are significant transitional zones between these two 

types (Fig. 4). As a result, the accuracy in 2015, when a large number of third-party samples were used, was slightly lower 410 

than in other years. Moreover, because there were insufficient validation samples for 2021 and 2022, and 2020 has already 

been validated as the reference year, the overall accuracy of the annual vegetation maps is estimated to be 83.27%, based on 

the average accuracy from 2000 to 2019. 

 

Figure 9. Annual overall accuracy of vegetation maps from 2000 to 2019. 415 

4 Discussion 

4.1 Evaluating the Efficacy of the CCD Algorithm in Annual Vegetation Mapping from 2000 to 2022 

This study proposed a method for long-time continuous annual vegetation mapping. Specifically, the CCD algorithm was 

applied to MODIS data from 2000 to 2022 to detect breakpoints. Subsequent processes involved identifying potential change 

areas, recognizing true vegetation types, and spatial-temporal consistency. This enabled consistent mapping of vegetation on 420 

the QTP annually from 2000 to 2022. The CCD algorithm in this study used harmonic functions to fit long-term remote sensing 

images, thereby identifying breakpoints and determining the timing of these breakpoints. To ensure the algorithm effectively 

captures vegetation dynamics, we selected the R (Red), N (Near-infrared), and S1(Shortwave Infrared 1) bands for breakpoint 

detection. The R band is related to chlorophyll content, the N band to canopy structure, and the S1 band to vegetation water 
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content (Tucker, 1979; Curran, 1989; Gao, 1996). Combining these complementary bands enables the CCD algorithm to 425 

effectively detect breakpoints in vegetation dynamics on the QTP. 

For instance, in Fig. 10, the CCD algorithm was applied to detect changes in the R, N, and S1 bands of the sampling site 

from 2000 to 2022. The results indicated that there was a breakpoint in 2011 (highlighted in yellow), dividing the period into 

Fit1 (from 2000 to 2011) and Fit2 (from 2011 to 2022). The annual amplitude of the three bands exhibited small fluctuations 

with stable interannual patterns. In contrast, the amplitude of the R and N bands in Fit2 far exceeded that of Fit1, showing 430 

significant differences in seasonal patterns within the year. Additionally, for the S1 band, the overall reflectance in Fit2 was 

substantially lower than in Fit1, reflecting distinct seasonal fluctuations within the year. Based on the annual Landsat images 

from 2009 to 2013, there was a noticeable expansion of WA in the selected area, marking a transition from AD prior to 2011 

to WA thereafter. The annual vegetation maps accurately captured this transition, with the area represented as brown-yellow 

(AD) before and up to 2010, and shifting to deep blue (WA) from 2011 onward. This change was further corroborated by the 435 

CCD fitting results and visual interpretation of the Landsat images. 
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Figure 10. Validation of vegetation mapping: consistent change detection in WA sample [82.9294E, 35.2425N] by CCD, Landsat, 

and annual vegetation maps. 

In Fig. 11, the CCD algorithm indicated that there were no breakpoints from 2000 to 2022. The annual and interannual 440 

variations in the R, N, and S1 bands were stable over the years. Combined with the Landsat images, the selected area was 
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consistently classified as EBF without any detected changes. The long-time annual vegetation maps consistently reflected this 

characteristic. 

 

Figure 11. Validation of vegetation mapping: consistency of no change detection in forest sample [95.2794E, 28.7617N] by CCD, 445 
Landsat, and annual vegetation maps. 
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However, abrupt changes detected by the CCD algorithm may not always accurately reflect real changes on the ground (Zhu 

and Woodcock, 2014; Du et al., 2023). In Fig. 12, an area of CV on the QTP was examined. The CCD results indicated a 

breakpoint in 2018, with data from 2000 to 2018 categorized as Fit1 and post-2018 as Fit2. Although Fit2 shows greater 

amplitude in the R, N, and S1 bands compared to Fit1, the waveform remains similar. Despite a breakpoint was detected, 450 

Landsat images from 2016 to 2020 confirm that the area consistently featured CV. The detected changes were likely caused 

by variations in cultivation practices in 2018 or similar factors, rather than actual changes in vegetation. As a result, the annual 

vegetation maps did not capture the change detected by the CCD in 2018. 

Given its performance, the CCD algorithm effectively identifies the regions and timings of breakpoints in long-time remote 

sensing imagery, making it a suitable foundational method for detecting potential change areas in annual vegetation mapping. 455 

Although the CCD algorithm is susceptible to false positives due to factors such as changes in cultivated species (Fig. 12), the 

subsequent methods employed in this study, including potential area identification, true vegetation type recognition, and 

spatial-temporal constraints, help mitigate these false positive errors (Fig. 12). 
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 460 

Figure 12. Validation of vegetation mapping: CV sample [100.8570E, 35.2474N] changes detected by CCD not reflected in Landsat 

and annual vegetation maps. 
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4.2 Inter-comparison with other products 

MCD12Q1 (Sulla-Menashe et al., 2019), CLCD (Yang and Huang, 2021), and GLC-FCS30D (Zhang et al., 2024b) were 

selected for cross-comparison with the annual vegetation maps. MCD12Q1 provides annual global land cover data at a 500 m 465 

resolution from 2001 to 2022, using the International Geosphere-Biosphere Programme (IGBP) classification system, which 

includes 17 categories such as evergreen needleleaf forest, grassland, and cropland. CLCD offers 30 m land cover data for 

China from 1990 to 2022, classifying land into nine types: cropland, forest, shrub, grassland, water, snow/ice, barren, 

impervious, and wetland. GLC-FCS30D delivers land cover data from 1985 to 2022, with five-year intervals before 2000 and 

annual intervals thereafter, covering 35 detailed land cover categories. Based on the temporal coverage of these products, 470 

annual vegetation maps from 2001, 2011, and 2021 were selected for cross-validation, with a regional focus on four main 

types: WA, GS, grassland, and forest. 

Landsat remote sensing images reveal significant shrinkage of water in this region from 2001 to 2021 (Fig. 13a). In 2001, 

all four products accurately depicted the distribution of WA, with clear boundaries and complete representation. By 2011, 

GLC-FCS30D identified part of the WA as WE, while the other three products consistently showed it as WA. By 2021, the 475 

WA had markedly shrunk compared to their extent in 2001. Compared to the Landsat images, CLCD showed an omission of 

WA, with most areas transforming into AD, while GLC-FCS30D misclassified part of the WA as WE and identified some 

non-water areas as WA. 

For GS areas, all four products demonstrated good identification in 2001, 2011, and 2021 (Fig. 13b). Uniquely, the annual 

vegetation maps identified additional "alpine vegetation". Consequently, in the vicinity of GS, MCD12Q1 categorized these 480 

areas as AD, while CLCD and GLC-FCS30D largely classified them as grassland. The annual vegetation maps not only 

preserved the distribution details of GS, AD, and AG from the comparison products but also provided a more detailed 

classification of AV. 

However, the three comparison products classified this region simply as grassland without further differentiation (Fig. 14a). 

Grassland is a dominant vegetation type on the QTP, covering approximately 57% of the QTP. According to Zhou et al. 485 

(2022a), grasslands on the QTP can be divided into AG, AM, ASM, and AD. Therefore, it is essential to differentiate between 

AG, AM, ASM, and AD. In Fig. 14a, the overall distribution of AG and AM has remained consistent over time, though changes 

have occurred in their transition zones. For example, in the southwestern AM region of Fig. 14a, some AG areas have gradually 

transitioned to AM over the past 23 years. 

Forests are sparsely distributed on the QTP, found mainly on the southern slopes of the Himalayas and in the southeastern 490 

region (Fig. 14b). Their distribution has remained stable over the years with minimal change. Among the four products, CLCD 

did not differentiate forest types, and thus represents them under the general category of 'Forest'. In contrast, the other three 

products classified the forested areas as EBF. MCD12Q1 shows a smaller forest extent and includes a notable proportion of 

CBMF within this range. The forest extent in the annual vegetation maps, CLCD, and GLC-FCS30D shows high consistency 

with the Landsat images. However, the annual vegetation maps identified some ASM in the meadow areas adjacent to forests. 495 
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Figure 13. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a): Region dominated by WA and 

AG. (b): Region dominated by GA and AM. 
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 500 

Figure 14. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a): Region dominated by AM and 

AG. (b): Region dominated by EBF and AM) 



31 

 

5 Data availability 

The 500 m annual vegetation maps of QTP from 2000 to 2022 are available at https://doi.org/10.11888/Terre.tpdc.301205 

(Zhou et al., 2024). The vegetation maps are stored in TIFF format, with the file name "QTP_Vegetation_Map_XXXX.tif," 505 

where XXXX represents the year. All files can be opened and reprocessed using software such as ArcGIS, QGIS, and ENVI. 

Each TIFF dataset contains values from 0 to 16, where 0 represents invalid values, and 1 to 16 correspond to the 16 vegetation 

types listed in Table 1. The MOD09A1, MCD12Q1, and SRTM data used in this study were obtained from GEE 

(http://code.earthengine.google.com, last access: 23 July 2024). The "1-km monthly precipitation dataset for China (1901-

2023)", the "1-km monthly mean temperature dataset for China (1901-2023)", the "Vegetation map of Qinghai Tibet Plateau 510 

in 2020 with 10 m spatial resolution", and QTP boundary dataset were provided by the National Tibetan Plateau / Third Pole 

Environment Data Center (https://data.tpdc.ac.cn, last access: 29 September 2024). The First All-season Sample Set can be 

download from https://data-starcloud.pcl.ac.cn/resource/54 (last access: 29 September 2024). The Global Land Cover 

Validation Samples can be download from https://zenodo.org/records/3551995 (last access: 29 September 2024). The CLCD 

can be download from https://zenodo.org/records/8176941 (last access: 23 July 2024), and the GLC-FCS30D can be download 515 

from https://zenodo.org/records/8239305 (last access: 23 July 2024). 

6 Conclusions 

Long-time series of annual regional vegetation types and geographic distribution data are vital for examining the impact of 

climate change on vegetation and its evolutionary trends. In this study, annual vegetation of the QTP from 2000 to 2022 at a 

500 m spatial resolution was mapped through the MOD09A1 product, together with a reference year vegetation classification 520 

map and a breakpoint detection algorithm. The study achieved an overall accuracy of 83.27% for continuous annual vegetation 

mapping at a 500 m resolution from 2000 to 2022. The study supports the use of remote sensing data to mapping a long-term 

continuous annual vegetation. Furthermore, it facilitates the elucidation of the spatial and temporal evolution of regional and 

global vegetation under the background of global warming. 
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