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Abstract. The Qinghai Tibet Plateau (QTP), known as the "Third Pole of the Earth" and the "Water Tower of Asia", plays a

crucial role in global climate regulation, biodiversity conservation, and regional socio-economic development. Continuous

annual vegetation types and their geographical distribution data are essential for studying the response and adaptation of10
vegetation to climate change. However, there is very limited data on vegetation types and their geographical distributions on

the QTP due to harsh natural environment. Currently, land cover/surface vegetation (LCSV) data are typically obtained using

independent classification methods for each period's product, based on remote sensing information. These approaches do not

consider the temporal continuity of vegetation presence, leading to a gradual increase in misclassified pixels and uncertainty

in their locations, consequently decreasing the interpretability of the long-time series remote sensing products. To address15
this issue, this study developed a new approach to long-time continuous annual vegetation mapping from remote sensing

imagery, and mapped the vegetation of the QTP from 2000 to 2022 at a 500 m spatial resolution through the MOD09A1

product. The overall accuracy of continuous annual QTP vegetation mapping from 2000 to 2022 reached 83.27%, with the

reference annual 2020 reaching an accuracy of 83.32% and a Kappa coefficient of 0.82. This study supports the use of

remote sensing data for long-term continuous annual vegetation mapping.20

1 Introduction

Vegetation, an integral component of Earth's ecosystems, plays an irreplaceable role in maintaining climate stability,

preserving biodiversity, and supplying vital resources for humans. Vegetation maps not only facilitate a visual

comprehension of vegetation types and their geographic distribution, but also provide essential data for natural resource

management and environmental protection (Immerzeel et al., 2010). Particularly, long-time series of geographical25
distribution data on vegetation types are crucial for revealing the impacts of climate change and human activities on

vegetation, elucidating the succession processes of vegetation, and scientifically managing vegetation ecosystems.

The availability of large-scale, long-term, and free remote sensing imagery has significantly advanced the development of

land cover and surface vegetation (LCSV) data. Notable international products include the European Space Agency (ESA)'s



2

GlobCover_2005 and GlobCover_2009 (300 m) (Bontemps et al., 2011), and National Aeronautics and Space30
Administration (NASA)'s annual MCD12Q1 product since 2001 (500 m) (Friedl et al., 2010; Sulla-Menashe et al., 2019). In

China, representative products include GlobeLand30 by Chen et al. (2015), Finer Resolution Observation and Monitoring of

Global Land Cover (FROM_GLC)10 and FROM_GLC30 by Tsinghua University (Gong et al., 2013; Gong et al., 2019),

Global 30m Land-cover Classification with a Fine Classification System (GLC_FCS30) and Global 30m Land-cover

Dynamics Monitoring Dataset (GLC_FCS30D) by the Chinese Academy of Sciences (Zhang et al., 2019b, Zhang et al.,35
2023), and China Land Cover Dataset (CLCD) by Wuhan University (Yang and Huang, 2021). Leveraging the intelligent

remote sensing mapping (iMap) concept and framework, there has been rapid progress in developing global-scale seamless

daily data cubes and in creating annual and seasonal land surface maps (Feng and Li, 2020; Liu et al., 2021).

In traditional long-time series LCSV datasets, it is common to classify each period’s product independently. For example,

ESA produced the global 300 m land cover products GlobCover_2005 and GlobCover_2009 using a combination of40
supervised and unsupervised classification methods (Bontemps et al., 2011). However, there are significant spatial

distribution differences between GlobCover_2009 and GlobCover_2005, making these two land cover maps not directly

comparable and unsuitable for change detection studies (Bontemps et al., 2011). NASA, using MODIS data, produced the

annual MCD12Q1.v5 product using the decision tree classifier (Friedl et al., 2010). A significant drawback of MCD12Q1.v5

is the instability of land cover labels. The product shows an annual change of approximately 11.4% in land cover labels45
between 2001 and 2013. The MCD12Q1.v6 product, which uses the Hidden Markov Model (HMM) for post-processing,

reduced this instability to 1.6% (Sulla-Menashe et al., 2019). The strategy of independently classifying each period often

leads to significant spurious changes between products from different periods, further undermining their reliability (Liu et al.,

2021). The temporal stability of land cover products generated using such methods largely depends on post-processing

techniques, such as the HMM (Sulla-Menashe et al., 2019) and spatial-temporal consistency methods (Yang and Huang,50
2021). Therefore, there is an urgent need to develop new methods that can effectively integrate spatial-temporal information

during the classification process, to overcome the limitations of existing independent classification and post-processing

approaches. This would make better use of publicly available, free, long-time series data, and improve the temporal

consistency and reliability of land cover products.

The QTP, known as the "Roof of the World" and the "Water Tower of Asia," is critical for global climate regulation and55
regional socio-economic development. In the 1970s, China carried out the first extensive scientific survey of the QTP.

Currently, the second QTP scientific expedition is underway, with vegetation survey being one of the major components.

Understanding the evolution of vegetation types on the QTP is important for revealing the effects of climate change on

vegetation structure and function. Additionally, such insights are essential for elucidating the carbon and water cycles of the

QTP and for formulating high-quality, sustainable development strategies for the region amidst global warming.60
As the "Third Pole" of the Earth, the QTP has very limited data on vegetation types and geographical distribution due to

its harsh natural environment. Currently, the primary vegetation data for the QTP include the "Vegetation map of Qinghai

Tibet Plateau in 2020 with 10 m spatial resolution" (Zhou et al., 2022a), the "A new vegetation map for Qinghai-Tibet
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Plateau by integrated classification from multi-source data products (2020)" (Zhang et al., 2022), and the "Vegetation map of

Qinghai Tibet Plateau in 1980s" (Zhou et al., 2022b). These vegetation distribution products are single-period maps, which65
are insufficient to depict dynamic changes in vegetation, thus limiting the understanding of vegetation evolution trends and

mechanisms on the QTP. Therefore, many scholars have conducted thematic mapping studies on long-time series of LCSV

data of the QTP, such as wetland, water, and glacier (Li et al., 2023; Zhang et al., 2019a; Hu et al., 2022). However, these

long-time series products, created with independent classification methods, are primarily focused on specific LCSV types,

overlooking the need to identify temporal changes across different types, which limits the accuracy of the products.70
Therefore, in order to provide continuous data support for research on the interaction between vegetation and climate change,

there is an urgent need for long-time series vegetation mapping.

This study aims to develop a new approach to long-time series vegetation mapping using remote sensing imagery, and to

map vegetation of the entire QTP at 500 m from 2000 to 2022, using the MOD09A1 remote sensing data.

2 Materials and Methods75

2.1 Study Area

The QTP, situated between 25°59′30″N and 40°1′0″N, 67°40′37″E and 104°40′57″E, has an average elevation

of about 4320 m and a total area of 3.08 million km² (Zhang et al., 2021b). This study covers the entire QTP, spanning six

provinces and regions within China - Tibet, Qinghai, Gansu, Sichuan, Yunnan, and Xinjiang - as well as areas in India,

Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar, and Kyrgyzstan. In particular, the area of the QTP within China80
is about 2.58 million km² (approximately 83.7% of the QTP) with an average elevation of about 4400 m (Yu et al., 2014;

Zhang, 2019; Zhang et al., 2021c; Zhang et al., 2021d). The QTP slopes downward from the high northwest to the lower

southeast, with a humid and rainy climate in the southeast and arid conditions in the northwest. The vegetation distribution

across the QTP is influenced by topography and climatic conditions, revealing a clear horizontal zonation ranging from

forests, shrubs, and meadows in the southeast to grasslands and deserts in the northwest. Additionally, as temperatures85
decrease with increasing altitude, there is a distinct vertical stratification in vegetation, ranging from forests at lower

elevations to permanent glaciers, snow cover, and permafrost at higher altitudes.

2.2 Data Sources

2.2.1 Training Sample Data for Vegetation Type

The vegetation of the QTP is primarily categorized into 15 types (Zhou et al., 2023). Given the significance of glaciers and90
snow cover, this study expanded the vegetation classification to 16 types for the 500 m spatial resolution mapping, including

evergreen broad-leaved forest (EBF), evergreen coniferous forest (ECF), coniferous and broad-leaved mixed forest (CBMF),

deciduous broad-leaved forest (DBF), deciduous coniferous forest (DCF), scrub (SC), alpine scrub meadow (ASM), alpine
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meadow (AM), alpine grassland (AG), alpine vegetation (AV), alpine desert (AD), cultivated vegetation (CV), wetland

(WE), water (WA), non-vegetated area (NVA), and glacier and snow (GS).95
The training vegetation samples for the QTP within China were obtained from the “Vegetation map of Qinghai Tibet

Plateau in 2020 with 10 m spatial resolution” (Zhou et al., 2022a). This product was created using a regional vegetation

mapping method based on terrain-climate-remote sensing information, with a spatial resolution of 10 m and an overall

accuracy of 89.5%. Its classification system is consistent with that of this study, except for the exclusion of GS, and was

therefore used to generate the vegetation type training sample data for this research (Zhou et al., 2023). The vegetation map100
was resampled to 500 m. Subsequently, the dominant vegetation type and its proportional area, derived from the

corresponding 50×50 pixels at 10 m spatial resolution, were determined as the vegetation type categorization and pixel purity

(reflected as the percentage of the dominant vegetation type within these 50×50 pixels) for the 500 m spatial resolution map.

Concurrently, different purity levels and their area proportions were calculated (Table 1). Random sampling was then

conducted in areas with purity levels exceeding 70%, representing approximately 62.34% of the QTP. For the QTP regions105
outside China, vegetation type sample data were obtained from high-resolution Google Earth imagery from 2020. By

visually interpreting these images, samples were selected from areas with consistent vegetation types within a 500 m range.

Using these methods, a total of 8,937 training samples were collected to train the 2020 vegetation classification model (Fig.

1). The sample distribution included: EBF (936 points), ECF (768 points), CBMF (475 points), DBF (570 points), DCF (370

points), SC (397 points), ASM (213 points), AM (1,375 points), AG (872 points), AV (503 points), AD (499 points), CV110
(469 points), WE (246 points), WA (377 points), NVA (204 points), and GS (663 points).
Table 1. Purity and area proportion of 500 m resolution pixel samples of vegetation types on the QTP within China.

Purity (%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Area

Proportion (%)
0.02 0.04 1.01 4.20 8.28 12.55 11.56 11.40 12.55 38.39
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Figure 1. Spatial distribution of training (2020) and validation (2000-2022) samples for vegetation mapping at 500 m resolution on
the QTP.115

2.2.2 Validation Sample Data for Vegetation Type

As the "Third Pole of the Earth ", the QTP has high altitudes and sparse human activity, making it difficult to obtain

validation samples. The validation samples in this study consist of three parts: field measurements, visual interpretation, and

third-party samples.

The field measurement samples include 173 samples collected during field expeditions on the QTP in 2019, 2020, and120
2021. These samples were collected during the vegetation growing season on the QTP, with neighboring samples spaced

approximately 50 km apart. Each sample is ensured to have uniform and consistent vegetation distribution within a 1 km×1

km area. The visual interpretation samples (1002 in total) were obtained from previous work by Wu et al. (2024). This

sample set was obtained through visual interpretation on Google Earth and Google Earth Engine (GEE). The selected

samples are all located in areas where the vegetation distribution types remained consistent from 1990 to 2020, and each125
sample covers a spatial extent greater than 500 m. Each sample was independently interpreted regarding its vegetation type

by three interpreters, using long-time series temperature and precipitation data as well as Landsat remote sensing images. For

samples with conflicting results, the second interpretation was conducted; if inconsistencies remained, the sample was

abandoned.

The third-party samples include the First All-season Sample Set produced by Li et al. (2017), the Global Land Cover130
Validation Samples collected by Zhang et al. (2021a), and validation samples gathered through literature search. The First

All-season Sample Set was obtained through visual interpretation with Global Mapper software using Landsat 8 data from

2013, 2014, and 2015, including approximately 140,000 validation samples worldwide. This sample set uses the FROM-
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GLC classification system, which contains 12 primary classes and 30 secondary classes. The second sample set is derived

from various auxiliary datasets, including Global Cropland Reference Data, Global Observation for Forest Cover and Land135
Dynamics reference data, the FROM_GLC global validation sample set, and the Global Lakes and Wetlands Database. This

set includes 44,043 validation samples covering the globe. It is based on detailed land cover types, including 24 types,

primarily from around 2015, and was published as a validation dataset for the GLC-FCS30-2015 product. The literature

search samples were obtained from the China National Knowledge Infrastructure (https://www.cnki.net/) and Web of

Science (https://www.webofscience.com/) databases using keywords such as "Qinghai-Tibet Plateau," "vegetation", and140
"vegetation cover" to collect published validation samples from 2000 to 2022.

Unlike the validation samples obtained from field expeditions and visual interpretation, the quality of third-party

validation sample data carries uncertainties, such as the spatial range and spatial homogeneity. Li et al. (2017) provided the

unit sizes for each sample in the First All-season Sample Set, including 30 m, 100 m, 250 m, 500 m, and 1000 m,

representing 1×1, 3×3, 9×9, 17×17, and 33×33 Landsat pixel ranges, respectively. Among them, samples with unit sizes145
greater than 500 m are rare, accounting for only 10.6%. Samples with unit sizes less than 500 m are difficult to apply directly

for validating the 500 m vegetation maps in this study. Additionally, the Global Land Cover Validation Samples from Zhang

et al. (2021a) and the samples collected through literature searches can only ensure the accuracy of sampling time and type,

without confirm their spatial extent. To address this issue, this study employed the method proposed by Feng et al. (2012) to

extract the patially homogeneous regions of MOD09A1 data. Specifically, at the spatial scale, this study statistically150
analyzed the maximum and minimum values of nine 500 m resolution pixels in a 3×3 grid across various bands and

calculated the range as an indicator of homogeneity. For the blue, green, red, near-infrared, shortwave infrared 1, and

shortwave infrared 2 bands, thresholds of 0.03, 0.03, 0.03, 0.06, 0.03, and 0.03 were used, respectively. If the range for all

bands fell within the threshold, the corresponding area was deemed homogeneous. This method ensures that there is at most

one representative sample within a 500m spatial extent for third-party validation samples, and that it lies within a 1.5 km×1.5155
km spatially homogeneous region. GS on the QTP are mostly classified as heterogeneous areas. Therefore, the samples

labeled as GS in the third-party samples are visually interpreted to remove unreasonable ones. After the above quality

control, a total of 1,014 third-party validation samples were obtained, including 327 from the global all-season sample

library, 499 from the GLC-FCS30-2015 global validation sample set, and 188 from the literature search samples.

The validation sample dataset for this product contains 2,189 samples from field measurements, visual interpretation, and160
third-party samples. Among them, 173 field measurement samples are available for validating the 2020 product There are

1,002 samples from visual interpretation, characterized by stable attributes over multiple years, making them suitable for

validating annual products from 2000 to 2020. Furthermore, 1,014 third-party validation samples can be used to validate

annual products from 2000 to 2019.
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2.2.3 Remote Sensing Data165

Remote sensing data in this study were sourced from the Moderate Resolution Imaging Spectroradiometer (MODIS) series

satellite imagery provided by NASA. As one of the longest-operating Earth observation instruments currently in orbit,

MODIS is a multi-spectral observation sensor launched in May 1999, enabling efficient and comprehensive observation of

the Earth. The MOD09A1 surface reflectance dataset was obtained through the GEE platform and had been processed with

atmospheric and topographic corrections (Gorelick et al., 2017). The MOD09A1 dataset provides surface reflectance in170
seven spectral bands (Red, Blue, Green, NIR, MIR, SWIR 1, and SWIR 2) with 500 m spatial resolution, and all cloud-

contaminated pixels are removed. There were 1051 MOD09A1 remote sensing images from January 1, 2000, to December

31, 2022, selected for this study, which were converted from the original sinusoidal projection to the WGS84 geographic

coordinate grid for the preparation of annual vegetation maps at 500 m of the QTP from 2000 to 2022.

2.2.4 Climate and Terrain Data175

The Digital Elevation Model (DEM) and derived features are crucial for vegetation mapping. Additionally, the distribution

of vegetation on the QTP demonstrates distinct vertical zonation, greatly influenced by climate and topography (Zhou et al.,

2023). This study utilized climate data which included annual precipitation (AP) and annual average temperature (AT)

across the entire QTP from 2000 to 2022. For the QTP within China, climate data at 1,000 m were obtained from the

National Tibetan Plateau Data Center, specifically the "1-km monthly precipitation dataset for China (1901-2023)" and the180
"1-km monthly mean temperature dataset for China (1901-2023)" (Ding and Peng, 2020; Peng et al., 2017a; Peng et al.,

2017b; Peng, 2019; Peng et al., 2019; Peng, 2020). To derive the precipitation and temperature features required for this

study, the monthly precipitation data were summed to calculate annual totals, while the monthly mean temperature data were

averaged over the year. In contrast, climate data for areas of the QTP outside China were derived from the CRU high-

resolution gridded dataset, featuring a spatial resolution of approximately 50,000 m. The terrain data was from the SRTM by185
the USGS (Farr et al., 2007), with a spatial resolution of 30 m. At last, this study applied the mean sampling method in GEE

to resample data on AP, AT, elevation, slope, and aspect variables derived from SRTM data to a 500 m spatial resolution for

integration into vegetation mapping.

2.3 Vegetation Mapping of the QTP at 500 m Resolution in 2020

2.3.1 Classification Platform and Algorithm190

The GEE cloud platform (Gorelick et al., 2017) offers a variety of machine learning models, such as SVM and RF, the latter

of which was utilized in this study for vegetation mapping. The RF model (Breiman, 2001) is an ensemble learning-based

machine learning algorithm that mitigates the overfitting risk inherent in single decision trees by constructing and integrating

multiple decision trees. This approach not only enhances the accuracy and stability of predictions but has also been widely

applied in the vegetation mapping.195
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2.3.2 Construction of Vegetation Mapping Features

The features used in vegetation mapping are divided into four categories (Table 2): terrain (elevation, slope, aspect), climate

(AT and AP), surface reflectance (R, N, B, G, M, S1, S2), and 14 index features, which are constructed from the single-band

surface reflectance. These features were derived from the MOD09A1 remote sensing imagery data spanning from January 1,

2020, to December 31, 2020. Additionally, six percentiles—15%, 30%, 45%, 60%, 75%, and 90%—were calculated for the200
7 reflectance bands and the 14 indices, representing the time series characteristics of each pixel. The 15% and 90%

percentiles were used as substitutes for the minimum and maximum values of the time series observations, effectively

mitigating the influence of extreme values in time-series data (Zhang et al., 2021a). The 30%, 45%, 60%, and 75% percentile

features were selected to capture temporal trends uniformly while avoiding feature redundancy (Sulla-Menashe et al., 2019;

Zhang et al., 2024). A total of 131 features were formulated from these 4 categories for vegetation mapping on the QTP.205
Table 2. Vegetation mapping features at 500 m resolution on the QTP.

Category Features Description

Terrain

Elevation

Slope

Aspect

Climate
AT Annual average temperature

AP Annual precipitation

Surface reflectance

R Red

N NIR

B Blue

G Green

M MIR

S1 Swir1

S2 Swir2

Vegetation Index

NDVI
N − R
N + R

EVI 2.5
N − R

N + 6R − 7.5B + 1

RVI
N
R

DVI N − R

SAVI N − R ∗ 1.5
N + R + 0.5

GCVI
N
G − 1



9

NIRV
(N − R) ∗ N

N + R

Urban Index
NDBI

S1 − N
S1 + N

IBI
NDBI − (SAVI + (G − S1)/(G + S1))/2
NDBI + (SAVI + (G − S1)/(G + S1))/2

Water Index
NDWI

G − N
G + N

LSWI
N − S1
N + S1

Snow Index
NDSI

G − S1
G + S1

NDGlaI
G − R
G + R

Soil Index BI
(S1 + R) − (N + B)
S1 + R + (N + B)

2.3.3 Feature Importance Evaluation and Feature Selection

Among the 131 features used for vegetation mapping, 126 optical remote sensing features (excluding topography and

climate) were constructed based on surface reflectance. These features are prone to severe collinearity issues, which can lead

to model overfitting, increased computational costs, and diminished interpretability. To mitigate the issue of high collinearity210
among these features, the Variance Inflation Factor (VIF) (James et al., 2013) was employed, providing the ratio of variance

in a model with multicollinearity among features to the variance in a model where multicollinearity is absent:

VIFj=
1

1-Rj
2 (1)

where VIFj is the VIF for feature j, and Rj
2 is the squared multiple correlation coefficient obtained from the regression of

feature j with all other features. A higher VIF value indicates more severe collinearity, with a VIFj greater than 30 suggesting

significant collinearity in feature j. This study utilized the RF classifier to determine the optimal feature combination for215
vegetation classification. The importance of terrain, climate, and optical remote sensing features was assessed through RF

classifier and filtered using the VIF method (Ramosaj and Pauly, 2019). The features were then ranked according to the

calculated importance, and the top-ranking feature, along with combinations such as the top two, top three, etc., were used to

construct various RF models for all possible feature combinations. The feature set with the smallest out-of-bag error was

chosen as the best feature set for vegetation mapping on the QTP.220

2.3.4 Evaluation of Mapping Accuracy

An optimal combination of terrain, climate, and optical remote sensing data in 2020 was integrated to achieve vegetation

mapping of the QTP based on RF model in this study. The mapping accuracy was evaluated using the confusion matrix

method, which involved calculating the OA (Eq. 2), Kappa (Eq. 3), PA (Eq. 4), and UA (Eq. 5).
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OA = i=1
n mi�
N

(2)

Kappa =
N × i=1

n mi� − i=1
n (Gi × Ci)�

N2 − i=1
n (Gi × Ci)�

(3)

PA =
mi

Gi
(4)

UA =
mi

Ci
(5)

where mi is the count of correctly classified pixels for category i; n is the count of categories; N is the overall quantity of225

classified pixels; Ci and Gi are the total counts of pixels classified as and actually in category i, respectively; OA is the

overall accuracy; Kappa is the Kappa coefficient; PA is the mapping accuracy; and UA is the user accuracy.

2.4 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022

Utilizing the 2020 vegetation map at a 500 m spatial resolution as the reference, this study dynamically updated the 2019

vegetation map of the QTP with various algorithms: continuous change detection (CCD) (Eq. 6), potential vegetation change230
area identification (Eq. 7), and actual vegetation type identification (Eq. 8-9). The process was then repeated, taking the

newly updated 2019 map as the reference to dynamically update the 2018 vegetation map. This method was consistently

employed to enable the dynamic updating annual vegetation maps from 2000 to 2019, as well as for 2021 and 2022.
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235
Figure 2. Vegetation mapping technology route at 500 m resolution on the QTP from 2000 to 2022 (dynamically updating the 2019
vegetation map with the 2020 vegetation map as a reference).

2.4.1 Continuous Change Detection Algorithm

The Continuous Change Detection and Classification (CCDC) is an "online" algorithm that utilizes all available Landsat

observations to detect "breaks" in the time series, allowing for the generation of land cover maps for any given time (Zhu240
and Woodcock, 2014; Zhu et al., 2019). While initially developed for Landsat data, this algorithm has also been used for

MODIS and Sentinel datasets (Shimizu et al., 2019; Tang et al., 2019; Xian et al., 2022). The CCDC algorithm comprises

two components: "Continuous Change Detection (CCD)" and "Classification (C)".

The CCD part uses a time series fitting model (Eq. 6) to analyze observational data and employs the root mean square

error (RMSE) of the fitting model and the residuals of new observations to detect changes. The model includes harmonic245
terms and a slope term, where the harmonic terms capture intra-annual seasonal variations, and the slope term estimates

inter-annual changes. When the residuals of multiple consecutive observations exceed a specified threshold, the
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corresponding time period is flagged as a "break." This process is then repeated to identify subsequent "breaks" until all

observations have been evaluated. The CCD segments the entire observation sequence into several subsequences, each

separated by "breaks." Each subsequence is associated with its own fitting model and specific fitting coefficients.250

ρ� i, t = c0i +
n=1

3
(ani cos

2πn
T t + bni sin

2πn
T t )� + c1it (6)

where ρ� i, t is the predicted value of the ith band on Julian day t; T is the average number of days in a year; ��� and ��� are

the harmonic coefficients of nth order for the ith band i; �0� and �1� are the intercept and slope coefficients, respectively.

The second part of the CCDC, the "C," uses the RF method to classify each subsequence based on its fitting coefficients

(Zhu and Woodcock, 2014). Due to the unique geographical location and climatic conditions of the QTP, terrian and climate

factors significantly influence vegetation distribution (Zhou et al., 2023). Therefore, instead of focusing solely on the255
differences in subsequence coefficients from the CCD results, all detected "breaks" were used to identify potential change

areas. Subsequently, this study classified vegetation using an RF model based on terrain-climate-remote sensing data.

The CCDC algorithm was initially developed in MATLAB (Zhu and Woodcock, 2014) and later in Python (Brown et al.,

2020). While its "online" advantage enables effective detection of changes and model updates as new observations are

collected, this advantage comes with high computational resource demands, particularly for long-term monitoring over260
extensive areas. The GEE platform, with its robust cloud computing capabilities, resolves these challenges by providing the

CCDC algorithm as a time segmentation tool labeled “ee.Algorithms.TemporalSegmentation.Ccdc” (Arévalo et al., 2020;

Pasquarella et al., 2022). On the GEE platform, the CCDC algorithm includes parameters such as “breakpointBands,”

“minObservations,” “chiSquareProbability,” “minNumOfYearsScaler,” “dateFormat,” “lambda,” and “maxIterations.”

While some studies have fine-tuned these parameters for better results (Awty-Carroll et al., 2019; Brown et al., 2020; Cohen265
et al., 2020), this study primarily used the default parameters provided by GEE, modifying only “dateFormat” and

“breakpointBands.” The “breakpointBands” parameter specifies the bands for breakpoint detection, including Red, NIR, and

SWIR 1, which correlate with chlorophyll content, leaf structure, and water content, respectively. The “dateFormat”

parameter is set to 2, indicating that all breakpoint times are represented as Unix timestamps.

2.4.2 Potential Vegetation Change Area Identification Algorithm270

Identifying potential change areas annually is essential for achieving vegetation mapping each year. For example, in

dynamically updating the 2019 vegetation map based on the 2020 vegetation map (Fig. 2b), the study area was divided into 4

types (Eq. 7): areas without breakpoints in both 2019 and 2020 (unchanged areas), areas with breakpoints in both 2019 and

2020 (PC 1), areas with breakpoints in 2019 but not in 2020 (PC 2), and areas without breakpoints in 2019 but with

breakpoints in 2020 (PC 3). The three types of areas with breakpoints were combined as potential areas for vegetation type275
changes in 2019, while other areas remained the same as the vegetation types in 2020.

ST−1 = (BT−1 ∩ BT) ∪ (BT−1 ∩ BT� �� ) ∪ (BT−1� ���� ∩ BT) (7)
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where ST−1 is the potential vegetation change area for year T-1, BT−1 is the breakpoint area for year T-1, BT is the breakpoint

area for year T, BT−1� ���� is the non-breakpoint area for year T-1, and BT� �� is the non-breakpoint area for year T.

2.4.3 Actual Vegetation Type Identification Algorithm

The potential vegetation change areas merely indicate regions where vegetation types might change, thus necessitating280
further identification of the actual vegetation change areas. Based on the RF model constructed in 2020, and combining the

terrain, climate, remote sensing data, and potential vegetation change areas of 2019, the actual vegetation types in the

potential change areas for 2019 can be determined. Subsequently, the 2019 vegetation map was obtained by overlaying and

analyzing this data with the 2020 vegetation map (Fig. 2c).

RT−1
' = M2020 FT−1, ST−1 (8)

RT−1 = RT−1
' , ST−1 and RT−1

' ≠ RT
RT, otherwise (9)

where M2020 is the RF model for the year 2020, FT−1 is the vegetation mapping features for the year T-1, ST−1 is the285

potential vegetation change area for the year T-1, RT−1
' is the vegetation classification result for the potential change area of

the year T-1, RT is the vegetation classification result for the year T, and RT−1 is the vegetation classification result for the

year T-1.

2.4.4 Spatial-temporal Consistency

In this study, RF model is used to generate annual vegetation maps. Although RF handles complex data structures efficiently,290
its pixel-by-pixel classification method can result in salt-and-pepper noise. To mitigate this issue, this study employs a

spatial-temporal constraint method, which assesses the consistency of each pixel's label within a 3×3×3 cube across both

spatial and temporal dimensions (Fig. 2d). The consistency, Cx,y,t , is calculated by averaging the agreement of the central

pixel's label with the labels of 27 surrounding pixels (Xu et al., 2021; Li et al., 2015):

Cx,y,t =
1
27 i=x−1

x+1

j=y−1

y+1

k=t−1

t+1
I(Labelx,y,t = Labeli,j,k)��� (10)

where I is an indicator function returning 1 if the labels match, otherwise 0.295

If Cx,y,t < 0.5 and t > 2000, the pixel is deemed misclassified, and its label is corrected to match the previous year's central

label. For the year 2000, where previous year data is unavailable, the label is adjusted to the most frequent label in the spatial

3×3 area. This approach assumes that significant, inconsistent changes are unlikely both spatially and temporally, thereby

enhancing the accuracy of the classification.
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3 Results300

3.1 Vegetation Mapping of the QTP at 500 m Resolution in 2020

Due to the significant collinearity among the 126 features in MODIS data, this study focused on 13 features with VIF below

30, including various band reflectance features and vegetation indices such as NDGlaI 15%, NDGlaI 90%, IBI 30%, NDBI

90%, IBI 15%, IBI 90%, EVI 90%, NDVI 90%, IBI 75%, IBI 60%, LSWI 90%, M 90%, and IBI 45%. Combined with two

climate factors (AT and AP) and three terrain features (Elevation, Slope, and Aspect), an 18-feature set was created for OOB305
error analysis. The results indicated that the OOB error decreased as the number of features increased, reaching a minimum

of 0.135 with 11 features, beyond which there was a slight increase (Fig. 3a). Subsequently, the top 11 features were selected

to construct the RF model: AP, Elevation, NDVI 90%, AT, Slope, M 90%, EVI 90%, NDBI 90%, NDGlaI 90%, NDGlaI

15%, and IBI 75%. Among them, AP, Elevation, AT, and Slope ranked 1st, 2nd, 4th, and 5th in importance score,

respectively. Therefore, climate and terrain are significant factors influencing vegetation distribution on the QTP (Fig. 3b).310
Finally, the 2020 vegetation map of the QTP was generated on the GEE platform at a 500 m spatial resolution (Fig. 4) based

on the developed RF model.

Figure 3. Evaluation of the 2020 vegetation classification model on the QTP.

The vegetation map of the QTP includes 16 types (Fig. 4). Among these, four types cover areas larger than 400,000 km²:315
AM, AG, AD, and AV. The AM covers the largest area, approximately 798,000 km², mainly in the eastern and southern

regions of Gansu and Qinghai provinces. The AG covers around 578,000 km², predominantly in the central part of the

plateau, with a distinct transitional zone adjoining the AM. The AD, covering about 562,000 km², is primarily located in the

Xinjiang region. The AV covers approximately 474,000 km² and is widely distributed from above the treeline or shrub zone

to the lower limit of the perennial snow line on the QTP. Among the five forest types in the QTP, ECF cover the largest area,320
about 154,000 km², mainly distributed in the Hengduan Mountains in the southeast of the QTP and near the Indus River in
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the west. DCF cover the smallest area, approximately 12,000 km², primarily located along the northwestern border of the

QTP.

Figure 4. Vegetation types and spatial distribution at 500 m resolution on the QTP in 2020.325

3.2 Continuous Annual Vegetation Mapping at 500 m Resolution from 2000 to 2022

This study used the CCD algorithm to detect "breaks" in the dense time series MODIS data of the QTP from 2000 to 2022,

defining these breaks as potential changes (PC) (Fig. 5a). Subsequently, an RF model incorporating terrain, climate, and

remote sensing data was applied to annually update and generate vegetation maps of the QTP, identifying changes between

adjacent years as real changes (RC) (Fig. 5b).330
Approximately 31.8% of the QTP is classified as PC areas. Regions with one or two instances of PC account for 18.2%

and 7.12% of the area, respectively (Fig. 5g), primarily located at the junctions of AM, AG, and AD in the central part of the

plateau (Fig. 5a). Notably, areas near Hala Lake in the northeast (ROI1) and Mapam Yumco in the southwest Ali region

(ROI2) experienced more than five instances of change, covering approximately 0.82% of the total area of the QTP (Fig. 5c-

d). Compared to the PC areas, the RC areas from the annual vegetation maps of the QTP are significantly smaller (Fig. 5b),335
encompassing only 3.17% of the total area. As shown in Fig. 5g, regions with one or two instances of RC account for 2.75%

and 0.34% of the QTP, respectively. Areas with three or more instances of RC make up only 0.08%, with no regions

experiencing five or more instances of change. In all categories of change frequency, the area of RC is consistently smaller

than that of PC. In the RC regions of ROI1 and ROI2, only a few areas show one or two instances of change. Notably, in

ROI2, no areas with five instances of PC (red) appear in the corresponding RC regions; only a small portion shows a single340
instance of RC change.
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Although the CCD model, which relies on dense spectral data, often detects many false changes—meaning that many

"breaks" detected by CCD do not necessarily represent land type transformations (Zhu et al., 2019)—the RF model based on

climate, terrain, and remote sensing data produces annual vegetation maps that effectively reduce these false changes. The

frequency and area of detected change regions are significantly smaller compared to the CCD model results.345

Figure 5. Overview of potential change (PC) and real change areas (RC) on the QTP from 2000 to 2022. (a-b) Distribution of PC
and RC on the QTP; (c-f) PC and RC areas in ROI1 and ROI2; (g) Area statistics of PC and RC on the QTP.
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Figure 6. Annual area changes for 16 vegetation types on the QTP from 2000 to 2022.350

Fig. 6 illustrates the area changes of 16 vegetation types on the QTP from 2000 to 2022. All forest types remained

relatively stable, with changes within 0.3%. Among the five forest types, ECF showed a small decrease, reducing by

approximately 400 km² (0.28%), while DCF had a small increase by about 14 km² (0.12%). Except for DBF, SC and ASM

have limited distributions on the plateau. ASM decreased by about 300 km² (1.02%), primarily before 2005. AM, AG, AV,

and AD are the four most widespread types on the plateau. AM and AV showed significant increases, with AM rising by355
about 8,800 km² (1.11%) and AV by about 12,600 km² (2.73%). In contrast, AD significantly decreased by about 21,500 km²

(3.69%). AG fluctuated but notably declined by about 3,100 km² (0.54%) after 2016. CV increased by approximately 500

km² (1.32%), mainly after 2018. WA showed the most significant change, increasing by about 4,300 km² (8.40%) between

2000 and 2022. GS decreased by approximately 200 km² (0.17%), primarily after 2010. Both WE and NVA showed a

decreasing trend, with reductions of about 600 km² and 100 km², respectively, from 2000 to 2022.360
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Figure 7. Annual vegetation cover changes in Area 1 [88.6985E, 31.5002N]. (a, c): Remote sensing images from 2000 and 2022,
respectively. (b): Distribution and frequency of RC. (d-i): Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k):
Area proportions of major vegetation types in 2000 and 2022, respectively.

As shown in Fig. 7, most RC occurred only once, predominantly in the northern, eastern, and southwestern parts of Selin365
Co. In 2000, these areas were classified as WE, AD, and AG, respectively. From 2000 to 2022, these regions gradually

transformed into WA, as evident in the remote sensing images. Specifically, the northern WE transitioned to WA between

2000 and 2015, the eastern AD between 2000 and 2010, and the southern AG between 2000 and 2005. The WA in this

region increased from approximately 43.43% in 2000 to 48.73% in 2022, marking a 5.3% rise. Simultaneously, AG, AD, and
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WE decreased by 1.09%, 2.56%, and 1.65%, respectively. The eastern AD was the most significant contributor to the370
expansion of Selin Co's water.

Figure 8. Annual vegetation cover changes in Area 2 [95.8644E, 37.6311N]. (a, c): Remote sensing images from 2000 and 2022,
respectively. (b): Distribution and frequency of RC. (d-i): Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k):
Area proportions of major vegetation types in 2000 and 2022, respectively.375

In the northeastern part of Hala Lake, close to ROI1, the area primarily consists of AG, AV, AF, and GS. Fig. 8b shows

that most changes in this region from 2000 to 2022 occurred once or twice. The area of GA changed very little over the past

23 years, increasing slightly from 6.32% to 6.34%. In contrast, AG expanded significantly, from 41.67% to 53.49%, an

increase of about 11.82%. Meanwhile, the areas of AD and AV decreased by 9.51% and 2.33%, respectively. These changes
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mainly occurred in transition zones, particularly between AG and AD, where most conversion from AD to AG happened380
between 2000 and 2010. The shift from AV to AG mostly occurred between 2000 and 2005. Notably, some areas in Fig. 8b

experienced two changes. These changes mainly reflect fluctuations between AD and AG (Fig. 8c-d), likely due to similar

climate and spectral characteristics in the transition zones, causing some pixels to switch between the two types multiple

times.

3.3 Accuracy Validation385

The annual vegetation map of the QTP is dynamically updated using 2020 as the reference year, making its accuracy crucial

for long-term product reliability. Due to minimal differences in vegetation distribution between adjacent years, samples from

2019, 2020, and 2021 were used to validate the reference map. This validation set included 1,175 samples. The results

showed an OA of 83.32% for 2020, with a Kappa coefficient of 0.82 (Table 3). For most vegetation types, the UA for DCF,

AM, AV, AD, and WA exceeded 90%, and the PA for DCF, WE, WA, and GS was also above 90%. However, the UA and390
PA for CBMF were only 57.14% and 48.00%, respectively. This lower accuracy is likely because CBMF, as a mix of

coniferous and broadleaf forests, is often misclassified by the RF model as EBF, ECF, or DBF due to spatial similarities.

Overall, the 2020 vegetation map, validated with 1,175 samples, achieved sufficient accuracy to be used as the reference for

dynamic updates.
Table 3. Confusion matrix, PA, and UA of vegetation mapping at 500 m resolution on the QTP in 2020395

EBF ECF CBMFDBF DCF SC ASM AM AG AV AD CV WE WA NVA GS Total UA (%)
EBF 56 11 8 1 0 0 0 0 0 0 0 0 0 0 0 0 76 73.68
ECF 2 74 3 2 1 1 0 3 0 0 0 0 0 0 0 0 86 86.05
CBMF 0 4 12 4 0 0 0 0 0 0 0 1 0 0 0 0 21 57.14
DBF 5 4 2 51 0 0 0 0 0 0 0 0 0 0 0 0 62 82.26
DCF 0 0 0 0 87 0 0 0 2 0 2 0 0 0 0 0 91 95.60
SC 0 0 0 0 0 46 2 6 1 0 1 2 0 0 0 0 58 79.31
ASM 5 0 0 0 0 8 29 4 1 0 0 1 0 0 0 0 48 60.42
AM 0 0 0 0 0 0 1 54 2 0 0 0 0 0 0 0 57 94.74
AG 0 1 0 0 0 4 0 8 61 0 7 2 0 0 0 0 83 73.49
AV 0 0 0 0 0 0 1 2 5 89 0 0 0 0 0 0 97 91.75
AD 0 0 0 0 5 1 0 1 1 0 85 0 0 0 0 0 93 91.40
CV 0 1 0 1 0 1 0 6 0 0 2 87 0 0 7 0 105 82.86
WE 0 0 0 0 2 0 0 6 1 0 4 3 60 0 0 0 76 78.95
WA 0 0 0 0 0 1 0 3 0 0 0 0 0 83 0 0 87 95.40
NVA 0 2 0 0 0 1 0 2 0 0 0 9 0 0 22 0 36 61.11
GS 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 83 99 83.84
Total 68 97 25 59 95 63 33 95 74 105 101 105 60 83 29 83 1175
PA (%) 82.35 76.29 48.00 86.44 91.58 73.02 87.88 56.84 82.43 84.76 84.16 82.86 100.00100.0075.86 100.00 83.32

The third-party samples (1,014 samples) and visual interpretation samples (1,002 samples) were used to validate the

accuracy of annual vegetation maps. The third-party samples mainly include grasslands, AD, and GS. Because the First All-

season Sample Set and the Global Land Cover Validation Samples did not differentiate between AM and AG, these two
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types were combined under the grasslands category during the validation process. The third-party samples mainly originate400
from 2014 (190 samples) and 2015 (666 samples), with smaller numbers from other years. The visual interpretation samples

exhibit stable characteristics across multiple years, making them suitable for validating annual vegetation maps from 2000 to

2019.

Validation results indicated that accuracy from 2000 to 2019 remained above 80%, with the lowest being 82.07% in 2015

(Fig. 9). Upon inspection, most of the misclassified samples were located in the Barren land (vegetation cover <10%)405
category in the First All-season Sample Set, which corresponds to AD in the vegetation maps. However, some samples of

this category were classified as AG in the vegetation map. There are definitional differences between Barren land and AD.

Additionally, AD and AG represent two largest vegetation types on the QTP, and there are significant transitional zones

between these two types (Fig. 4). As a result, the accuracy in 2015, when a large number of third-party samples were used,

was slightly lower than in other years. Moreover, because there were insufficient validation samples for 2021 and 2022, and410
2020 has already been validated as the reference year, the overall accuracy of the annual vegetation maps is estimated to be

83.27%, based on the average accuracy from 2000 to 2019.

Figure 9. Annual overall accuracy of vegetation maps from 2000 to 2019.

4 Discussion415

4.1 Evaluating the Efficacy of the CCD Algorithm in Annual Vegetation Mapping from 2000 to 2022

This study proposed a method for long-time continuous annual vegetation mapping. Specifically, the CCD algorithm was

applied to MODIS data from 2000 to 2022 to detect breakpoints. Subsequent processes involved identifying potential change

areas, recognizing true vegetation types, and spatial-temporal consistency. This enabled consistent mapping of vegetation on

the QTP annually from 2000 to 2022. The CCD algorithm in this study used harmonic functions to fit long-term remote420
sensing images, thereby identifying breakpoints and determining the timing of these breakpoints.



22

For instance, in Fig. 10, the CCD algorithm was applied to detect changes in the RED, NIR, and SWIR bands of the

sampling site from 2000 to 2022. The results indicated that there was a breakpoint in 2011 (highlighted in yellow), dividing

the period into Fit1 (from 2000 to 2011) and Fit2 (from 2011 to 2022). The annual amplitude of the three bands exhibited

small fluctuations with stable interannual patterns. In contrast, the amplitude of the RED and NIR bands in Fit2 far exceeded425
that of Fit1, showing significant differences in seasonal patterns within the year. Additionally, for the SWIR band, the

overall reflectance in Fit2 was substantially lower than in Fit1, reflecting distinct seasonal fluctuations within the year. Based

on the annual Landsat images from 2009 to 2013, there was a noticeable expansion of WA in the selected area, marking a

transition from AD prior to 2011 to WA thereafter. The annual vegetation maps accurately captured this transition, with the

area represented as brown-yellow (AD) before and up to 2010, and shifting to deep blue (WA) from 2011 onward. This430
change was further corroborated by the CCD fitting results and visual interpretation of the Landsat images.
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Figure 10. Validation of vegetation mapping: consistent change detection in WA sample [82.9294E, 35.2425N] by CCD, Landsat,
and annual vegetation maps.

In Fig. 11, the CCD algorithm indicated that there were no breakpoints from 2000 to 2022. The annual and interannual435
variations in the RED, NIR, and SWIR bands were stable over the years. Combined with the Landsat images, the selected
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area was consistently classified as EBF without any detected changes. The long-time annual vegetation maps consistently

reflected this characteristic.

Figure 11. Validation of vegetation mapping: consistency of no change detection in forest sample [95.2794E, 28.7617N] by CCD,440
Landsat, and annual vegetation maps.
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However, abrupt changes detected by the CCD algorithm may not always accurately reflect real changes on the ground

(Zhu and Woodcock, 2014; Du et al., 2023). In Fig. 12, an area of CV on the QTP was examined. The CCD results indicated

a breakpoint in 2018, with data from 2000 to 2018 categorized as Fit1 and post-2018 as Fit2. Although Fit2 shows greater

amplitude in the RED, NIR, and SWIR bands compared to Fit1, the waveform remains similar. Despite a breakpoint was445
detected, Landsat images from 2016 to 2020 confirm that the area consistently featured CV. The detected changes were

likely caused by variations in cultivation practices in 2018 or similar factors, rather than actual changes in vegetation. As a

result, the annual vegetation maps did not capture the change detected by the CCD in 2018.

Given its performance, the CCD algorithm effectively identifies the regions and timings of breakpoints in long-time

remote sensing imagery, making it a suitable foundational method for detecting potential change areas in annual vegetation450
mapping. Although the CCD algorithm is susceptible to false positives due to factors such as changes in cultivated species

(Fig. 12), the subsequent methods employed in this study, including potential area identification, true vegetation type

recognition, and spatial-temporal constraints, help mitigate these false positive errors (Fig. 12).
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455
Figure 12. Validation of vegetation mapping: CV sample [100.8570E, 35.2474N] changes detected by CCD not reflected in Landsat
and annual vegetation maps.
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4.2 Inter-comparison with other products

MCD12Q1 (Sulla-Menashe et al., 2019), CLCD (Yang and Huang, 2021), and GLC-FCS30D (Zhang et al., 2024) were

selected for cross-comparison with the annual vegetation maps. MCD12Q1 provides annual global land cover data at a 500460
m resolution from 2001 to 2022, using the International Geosphere-Biosphere Programme (IGBP) classification system,

which includes 17 categories such as evergreen needleleaf forest, grassland, and cropland. CLCD offers 30 m land cover

data for China from 1990 to 2022, classifying land into nine types: cropland, forest, shrub, grassland, water, snow/ice, barren,

impervious, and wetland. GLC-FCS30D delivers land cover data from 1985 to 2022, with five-year intervals before 2000

and annual intervals thereafter, covering 35 detailed land cover categories. Based on the temporal coverage of these products,465
annual vegetation maps from 2001, 2011, and 2021 were selected for cross-validation, with a regional focus on four main

types: WA, GS, grassland, and forest.

Landsat remote sensing images reveal significant shrinkage of water in this region from 2001 to 2021 (Fig. 13a). In 2001,

all four products accurately depicted the distribution of WA, with clear boundaries and complete representation. By 2011,

GLC-FCS30D identified part of the WA as WE, while the other three products consistently showed it as WA. By 2021, the470
WA had markedly shrunk compared to their extent in 2001. Compared to the Landsat images, CLCD showed an omission of

WA, with most areas transforming into AD, while GLC-FCS30D misclassified part of the WA as WE and identified some

non-water areas as WA.

For GS areas, all four products demonstrated good identification in 2001, 2011, and 2021 (Fig. 13b). Uniquely, the annual

vegetation maps identified additional "alpine vegetation". Consequently, in the vicinity of GS, MCD12Q1 categorized these475
areas as AD, while CLCD and GLC-FCS30D largely classified them as grassland. The annual vegetation maps not only

preserved the distribution details of GS, AD, and AG from the comparison products but also provided a more detailed

classification of AV.

However, the three comparison products classified this region simply as grassland without further differentiation (Fig.

14a). Grassland is a dominant vegetation type on the QTP, covering approximately 57% of the QTP. According to Zhou et al.480
(2022a), grasslands on the QTP can be divided into AG, AM, ASM, and AD. Therefore, it is essential to differentiate

between AG, AM, ASM, and AD. In Fig. 14a, the overall distribution of AG and AM has remained consistent over time,

though changes have occurred in their transition zones. For example, in the southwestern AM region of Fig. 14a, some AG

areas have gradually transitioned to AM over the past 23 years.

Forests are sparsely distributed on the QTP, found mainly on the southern slopes of the Himalayas and in the southeastern485
region (Fig. 14b). Their distribution has remained stable over the years with minimal change. Among the four products,

CLCD did not differentiate forest types, and thus represents them under the general category of 'Forest'. In contrast, the other

three products classified the forested areas as EBF. MCD12Q1 shows a smaller forest extent and includes a notable

proportion of CBMF within this range. The forest extent in the annual vegetation maps, CLCD, and GLC-FCS30D shows
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high consistency with the Landsat images. However, the annual vegetation maps identified some ASM in the meadow areas490
adjacent to forests.
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Figure 13. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a): Region dominated by WA
and AG. (b): Region dominated by GA and AM.495

Figure 14. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a): Region dominated by AM
and AG. (b): Region dominated by EBF and AM)



30

5 Data availability

The 500 m annual vegetation maps of QTP from 2000 to 2022 are available at https://data.tpdc.ac.cn/en/disallow/6304c1a4-500
efc0-4766-bae3-4148bdf7bcfd (Zhou et al., 2024). The vegetation maps are stored in TIFF format, with the file name

"QTP_Vegetation_Map_XXXX.tif," where XXXX represents the year. All files can be opened and reprocessed using

software such as ArcGIS, QGIS, and ENVI. Each TIFF dataset contains values from 0 to 16, where 0 represents invalid

values, and 1 to 16 correspond to the 16 vegetation types listed in Table 2. The MOD09A1, MCD12Q1, and SRTM data

used in this study were obtained from GEE (http://code.earthengine.google.com, last access: 23 July 2024). The "1-km505
monthly precipitation dataset for China (1901-2023)", the "1-km monthly mean temperature dataset for China (1901-2023)",

the "Vegetation map of Qinghai Tibet Plateau in 2020 with 10 m spatial resolution", and QTP boundary dataset were

provided by the National Tibetan Plateau / Third Pole Environment Data Center (https://data.tpdc.ac.cn, last access: 29

September 2024). The First All-season Sample Set can be download from https://data-starcloud.pcl.ac.cn/resource/54 (last

access: 29 September 2024). The Global Land Cover Validation Samples can be download from510
https://zenodo.org/records/3551995 (last access: 29 September 2024). The CLCD can be download from

https://zenodo.org/records/8176941 (last access: 23 July 2024), and the GLC-FCS30D can be download from

https://zenodo.org/records/8239305 (last access: 23 July 2024).

6 Conclusions

Long-time series of annual regional vegetation types and geographic distribution data are vital for examining the impact of515
climate change on vegetation and its evolutionary trends. In this study, annual vegetation of the QTP from 2000 to 2022 at a

500 m spatial resolution was mapped through the MOD09A1 product, together with a reference year vegetation

classification map and a breakpoint detection algorithm. The study achieved an overall accuracy of 83.27% for continuous

annual vegetation mapping at a 500 m resolution from 2000 to 2022. The study supports the use of remote sensing data to

mapping a long-term continuous annual vegetation. Furthermore, it facilitates the elucidation of the spatial and temporal520
evolution of regional and global vegetation under the background of global warming.
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