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Abstract. Exceptional precision and excellent resolution reconstruction of sea surface currents are beneficial for exploring

complex oceanic dynamic processes. Normally, this required physical inversion models for global or regional oceans are

constructed to reconstruct oceanic currents. These models are based on the analysis of sea surface geostrophic and Ekman

currents derived from satellite observations of sea level and wind stress fields. Nevertheless, the presence of various typical5

dynamic processes in marine environments, such as mesoscale eddies and small-scale waves, continues to pose challenges

in accurately reconstructing oceanic currents. Meanwhile, any product of surface current that neglects the contribution of

wave motion would, at best, be incomplete. Therefore, in this paper, we introduce an accurate sea surface current product

at a depth of 15 m, named GEST (Geostrophic-Ekman-Stokes-Tide). This product is produced by a multi-scale dynamics-

informed neural network that learns the intricate representation of concealed characteristics in Ekman, geostrophic currents,10

wave-induced Stokes drift, and TPXO9 tidal currents. Its structure design is predicated upon the intricate coupling relationships

between various ocean surface components and the veritable currents discerned by the deployment of drift buoys, with each

ocean surface component correlating to discrete physical processes. Compared with the prevailing product, the GEST confers

an elevation in precision by approximately 9.2 cm/s over the traditional multinomial fitting method, 10.4 cm/s beyond the

OSCAR, and 8.81 cm/s surpassing GlobCurrent.15

1 Introduction

The ocean surface currents are quintessential for climatological research and are intricately linked with a plethora of oceano-

graphic applications (Lagerloef et al., 2003; Caniaux et al., 2005; Jin et al., 2014). Granular insights into these currents exert a

profound impact on fisheries management, maritime navigation, and marine rescue operations (Lo and McCord, 1998). Specif-

ically, the comprehension of the velocities and directions of ocean surface currents is indispensable for monitoring suspended20
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material such as spilled oil, algae, sea ice, and pelagic microplastic (Choi et al., 2013; Yang et al., 2014; Weisberg et al., 2019;

Onink et al., 2019), thereby facilitating the efficacious exploration of planktonic ecosystems and the preservation of marine

biodiversity (Wahl et al., 1996; Garçon et al., 2001). Therefore, a high-resolution, long-time series ocean surface current is

imperative for augmenting extant oceanographic datasets, deepening the understanding of refined ocean dynamical processes

and enhancing the precision of prognostications regarding climatic system alterations Chapman and Charantonis (2017).25

Cutting-edge technologies have been efficaciously applied to the observation of ocean surface currents. Notwithstanding, a

global current observation system that obtains sea surface velocities across the entirety of spatial and temporal dimensions has

not been actualized. Despite the manifest success of the Global Drifter Program (GDP) initiated by the National Oceanic and

Atmospheric Administration (NOAA) which has run for about 40 years, there are still extant limitations and shortcomings,

such as the granularity of space-time sampling and the scarcity of coastal distributions.30

It is widely acknowledged that algorithms derived from satellite data can account for approximately 70% of the dynamics of

global ocean currents (Sudre and Morrow, 2008), within which the large-scale geostrophic circulation has been ascertained for

the past 25-30 years. In establishing a stable equilibrium between wind-induced friction stresses and Coriolis forces, the Elman

current serves as a fundamental theoretical framework for comprehending the wind-driven aspects of oceanic circulation and

is likewise recognized as a principal dynamic mechanism in ocean currents (Ekman, 1905). Furthermore, high-resolution Sea35

Surface Temperature (SST) products and Ocean Color (OC) images have significantly enhanced the accuracy of reconstructed

ocean currents models by employing methodologies derived from the Maximum Cross-Correlation technique and surface

quasi-geostrophic theory (Bowen et al., 2002; González-Haro and Isern-Fontanet, 2014; Liu et al., 2017; Rio and Santoleri,

2018). The construction of global physical estimation models, such as OSCAR (Ocean Surface Current Analysis Real Time),

GEKCO (Geostrophic and Ekman Current Observatory), and the GlobCurrent project (Bonjean and Lagerloef, 2002; Dohan40

and Maximenko, 2010; Sudre et al., 2013; Rio et al., 2014), represents a remarkable advancement in the estimation of long-time

series ocean surface current datasets. Wind-driven currents were obtained by Sudre et al. (2013) through the reanalysis of wind

stress fields using a bi-parameter model, with parameters adjusted using linear stability equations informed by the assimilation

of drifter data. Rio et al. (2014) utilized a new 0.25◦ CNES-CLS13 MDT by assimilating drifter observations, leading to an

average increase of 200% in geostrophic velocities in strong currents. Additionally, an empirical Ekman model encompassing45

two levels (0 m and 15 m) was calculated using surface drifters and Argo floats. Both algorithms contribute to enhancing the

accuracy of ocean current estimations. Bonjean and Lagerloef (2002) improved the estimation of tropical circulation based

on quasi-linear and steady physics by combining geostrophic, Ekman, and Stommel shear dynamics, and a complementary

term from surface buoyancy gradient. All these surface currents were directly calculated from geostrophic and wind-induced

Ekman currents. In physical ocean environment, however, the movement of upper oceans layers is attributed to a variety of50

environmental factors and can be categorically divided into four main types: large-scale ocean circulations, mesoscale eddies,

submesoscale dynamics, and small-scale phenomena such as internal waves and storm surges. Wave-induced transport acts

either as an enhancement or attenuation to the mean flow within the Ekman layer and should also be regarded as an essential

source of the ocean current (Bi et al., 2012).
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The aforementioned methodology of developing a mathematical model for ocean currents based on oceanographic physical55

mechanisms can be classified as a model-driven approach. As the scale of data expands, data-driven methods, particularly

deep learning, are increasingly utilized to dramatically improve the state-of-the-art in liquid computing (Guan et al., 2022),

atmosphere forecasting (Lam et al., 2023; Bi et al., 2023), and oceanography predicting (Ge et al., 2023). Deep learning allows

computational models that are composed of multiple processing layers, enabling the learning of data representations with varied

levels of abstraction (LeCun et al., 2015). The designation of these models significantly influences their learning capabilities,60

as various data sources offer distinct data representations. Convolution neural networks, which exhibit superior performance

in computer vision, rely on their architecture specifically designed for translation invariance (He et al., 2016; Liu et al., 2022).

Similarly, natural language processing models, including long short-term memory (Hochreiter and Schmidhuber, 1997) and the

Transformer model (Vaswani et al., 2017), are equipped with specialized mechanisms to memorize characteristics that evolve

over time and to capture the intricate relationships among different vocabulary elements. Consequently, to achieve the accurate65

reconstruction of global ocean surface currents, a neural network architecture specifically tailored for this purpose is essential.

In this paper, we develop a multi-scale dynamics-informed neural network based on the inherent coupling relationship be-

tween drifter observations and the velocities of ocean surface current components such as geostrophic and Ekman currents,

wave-induced tidal currents, and Stokes drift. This approach leads to a highly accurate ocean surface current product, integrat-

ing multi-scale dynamical processes. This global daily product covers the period of 2006-2019, with a 0.25◦ spatial resolution,70

and is compared with the OSCAR product and the GlobCurrent project products.

The organization of the remaining parts of this paper is as follows. Section 2 is concerned with the data used to calculate

the components of the currents. Section 3 presents the analysis of the coupling relationship between multi-scale dynamic

processes for reconstructing ocean surface currents. Section 4 describes the structure of the multi-scale dynamics-informed

neural network. Section 5 shows the results of flow field estimates and provides a discussion of our estimation work. Finally,75

we reveal the conclusions in Sect. 6

2 Data

2.1 Tidal data

Recently, numerous tidal estimation models with varying resolutions and precision have emerged due to the inadequacy of tidal

observation stations (e.g., HAMTIDE, FES, and TPXO) (Lyard et al., 2006; Taguchi et al., 2014). In our study, we utilized80

tidal data from the latest version of TPXO models available at the time, namely the TPXO9 model. This model is founded

on the two-dimensional positive pressure fluid equation, leveraging the generalized inversion method to assimilate altimetry

data (e.g., satellite altimetry from T/P, ERS1, 2, Envisat satellites) and in situ station-based tidal data. Subsequently, the data is

fitted using the least squares (LS) method (Egbert and Erofeeva, 2002). The TPXO9 model, curated by Gary Egbert and Lanna

Erofeeva from Oregon State University, USA, and utilized in our research for the global hourly tidal dataset, is renowned for85

its accuracy and reliability. It boasts a low root mean square error of M2 constituents across various oceanic regions, including
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the deep ocean, shallow seas, and continental shelf (Sun et al., 2022). The derived tidal data exhibits a resolution of 1/6◦ and

encompasses harmonic constants of 15 constituents, comprising eight major ones (M2, S2, N2, K2, K1, O1, P1, and Q1).

2.2 Wind data

The global daily wind fields utilized in our study were obtained from the QuikSCAT and Windsat satellites, launched by the90

United States and operational in orbit. These wind fields exhibit a spatial resolution of 0.25◦×0.25◦ and cover a time span of 14

years from January 2006 to January 2019. Subsequently, this dataset was employed to compute wind stress fields using a bulk

formula, incorporating a drag coefficient (Cd) derived from a curve-fitting procedure that combines data for low-to-moderate

winds with data for high wind speeds (Oey et al., 2006).

Based on reanalyzed wind stress fields, our aim is to extract wind-induced Ekman currents. These currents exhibit a perpen-95

dicular orientation to the direction of wind stress and are shifted to the left in the Southern Hemisphere (and conversely in the

Northern Hemisphere), resulting in a spiral motion due to the influence of turbulent viscosity, which is contingent upon the

local oceanic state (Roach et al., 2015).

2.3 Copernicus marine service global geostrophic currents and Stokes drift

This paper utilizes reanalyzed daily geostrophic velocities provided by the Copernicus Marine Service, featuring a spatial res-100

olution of 0.25◦× 0.25◦ and spanning the years 2006 to 2019 (Pujol et al., 2016). For latitudes beyond ±5◦ N, geostrophic

currents are derived from altimeter maps of the Absolute Dynamic Topography (ADT) using a nine-point stencil width method-

ology. However, in proximity to the equatorial zone, where the geostrophic balance becomes inapplicable, a β-plane approxi-

mation introduced by Lagerloef et al. (1999) is adopted.

Additionally, the Stokes drift data are sourced from the Global Ocean Waves Reanalysis (WAVERYS) numerical assimi-105

lation products covering the period from 2006 to 2019, provided by the Copernicus Marine Service. These products feature

grid points with a spatial resolution of 0.2◦ longitude and 0.2◦ latitude spacing. The dataset comprises 3-hour instantaneous

fields of integrated wave parameters, such as Sea Surface Wave Significant Height (SWH), Sea Surface Wind Wave Direc-

tion (WW), and Stokes Drift Velocities (VSDXY). They are derived from the global wave reanalysis conducted using the

MeteoFranceWAve-Model (MFWAM) wave model, which assimilates altimeter wave data and directional spectrum informa-110

tion provided by Sentinel-1 (Law-Chune et al., 2021).

2.4 Surface drifting buoys

AOML’s Global Drift Program comprises a worldwide network of over 1,000 satellite-tracked surface drifting buoys ("drifters"),

which collect extensive surface velocity measurements and track current directions using the Lagrangian method. In this inves-

tigation, we utilize the velocities from these in situ drifters as "reference tags." This comprehensive global dataset, featuring115

long time series, is interpolated at hourly intervals, providing detailed insights into global high-frequency and small-scale

oceanic processes. Positions and velocities are determined by locally modeling the trajectory as first-order polynomials, with
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coefficients obtained through the maximization of the likelihood function (Elipot et al., 2016, 2022). To illustrate the distribu-

tion of collocated drifter data, the global spatial distribution of drifter observations per 1◦× 1◦ cell is depicted in Fig.,1.

Figure 1. Spatial distribution for the drifter observations per 1◦× 1◦ from 1999 to 2019.

3 Multiscale dynamics for current reconstruction120

Designing an accurate and impactful neural network model requires careful consideration of the dynamics and knowledge of

current reconstruction. This involves transferring the dynamics interaction into the model structure and adopting a suitable

neural operator. Therefore, the initial step involves exploring the global correlation distribution of various currents with drifters

and understanding their dynamic interactions with the physical environment, which contains the local applicability of wind-

driven currents, decay scales of Stokes drift and tidal currents, and coupling effect between different currents.125

3.1 Local applicability of wind-driven currents

We use the two-parameter empirical model Eq. 1 to estimate Ekman Currents (ue,ve) (Niiler and Paduan, 1995; Sudre and

Morrow, 2008),

(ue + ive) = Beiθ(τx + iτy) (1)

where τx and τy denote zonal and meridional wind stress, respectively. In the latitudinal bands of 25◦S− 90◦S and 25◦N −130

90◦N , we follow the amplitude B = 0.3ms−1pa−1 and the vectoring angle θ of 55◦ relative to the wind stress direction. In the

vicinity of the equator 25◦S−25◦N , the latitude-dependent parameters B and θ derived by Lagerloef et al. (1999) are adopted.

These parameters are related to the Coriolis force parameter f , the water density ρ = 1025kgm−3, the linear drag coefficient

re = 2.15× 10−4ms−1, and the friction depth he = 32.5m,

B =
1
ρ
(r2

e + f2h2
e)

1
2 , θ = arctan(

fhe

re
) (2)135
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Figure 2. Global annual climatological flow fields. The left column represents flow speed of (a) geostrophic currents for 1999-2019, (b)

Ekman currents for 1999-2019, (c) Stokes drift for 2013-2019, (d) tidal currents for 2013-2019, and (e) drifter observations for 1999-2019.

While the right column is the flow direction.
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Fig. 2 illustrates a climatological annual mean of Ekman currents alongside the geostrophic, Stokes, and tidal components. It is

noteworthy that the uncertain assessment scheme of parameters B and θ within the equatorial band, as proposed by Lagerloef

et al. (1999), seems to lead to elevated Ekman current velocities, contradicting the theory of a calm belt near the equator. In

previous studies, geostrophic wind-driven velocities, derived by subtracting the geostrophic component from the drifting buoy

velocities, have been utilized to calibrate parameters B and θ through least squares fitting. The friction depth of wind-driven140

currents (or Ekman depth) exhibits local adaptability, ranging from a few meters to a hundred meters, depending on wind

stress intensity and the viscosity coefficient of seawater. Verification is essential to ensure that the mixing depth of the Ekman

layer reaches the vertical position of the drogue (15 m). According to Van Meurs and Niiler (1997) and Lagerloef et al. (1999)

proposed the linear steady momentum balance

τy = ρ(fheu + rev), τx = ρ(reu− fhev), (3)145

the friction depth he of Ekman currents can be calculated by

he =
1
f

τyu− τxv

ρ(u2 + v2)
, (4)

where u and v represent geostrophic vectors obtained by removing geostrophic velocities from drifters’ observations of the

monthly climate state. As shown in Fig.,3, with the deepening of Ekman’s depth he, the correlation between ocean current

velocities at different scales and drifter velocities exhibits a trend of initially increasing and then decreasing. This trend may150

be attributed to the sharp decline in the number of drifter observations after the validation of wind-driven friction depth.

Considering the location of drogue drifters, the correlation between ocean components and drifter observations, along the

variability in drifter observations, a friction depth of 15m was employed as the minimum threshold for filtering Ekman currents.

Figure 3. The correlation between four flow fields and observed velocity of drifters (left axis), and the number of drifter observations (the

black line) varying with Ekman depth he (right axis).
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3.2 Decay scales of Stokes drift and tidal currents155

The reanalysis of Stokes drift and tidal currents u0 cover 0m vertically and require attenuation through the empirical percentage

method, as follows:

u = u0(1− c%), (5)

This function is related to a decay scale c. Additionally, there is a theoretical decay equation for Stokes drift that can be

expressed as160

us = us0exp(2kz), (6)

where us0 denotes the surface Stokes drift, z is the profile derived from a monochromatic wave with wavenumber k and

wavelength λ = 2π/k (Kukulka and Harcourt, 2017). As depicted in Fig. 4, the correlation between drifter observations and

various vector combinations of geostrophic, Ekman, tidal currents, and Stokes drift demonstrates a continuous increase in depth

when utilizing the theoretical formula. Conversely, for tides, the correlation coefficient reaches its peak at an 80% attenuation165

when employing the percentage decay method. Consequently, the 80% decay ratio is applied to attenuate Stokes drift and tidal

currents before the subsequent estimation of surface currents.

Figure 4. The zonal (top row) and meridional (bottom row) correlation of vector combinations of (a)-(b) geostrophic, Ekman currents, and

Stokes drift, and (c)-(d) geostrophic, Ekman, and tidal currents.
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3.3 Correlation analysis of ocean current components with drifter observations

A new drifter dataset is created by aligning pre-processed geostrophic currents, Ekman currents, Stokes drift, and tidal currents.

Subsequently, we calculate the Pearson correlation coefficient between ocean components and drifter observations. The Pearson170

correlation is formulated as follows:

Pearson =
∑n

i=1(xi−x)(yi− y)√∑n
i=1(xi−x)2

√∑n
i=1(yi− y)2

(7)

where x and y are the mean values of the components and drifter, respectively. The calculated results of the Pearson correlation

between ocean components and drifters are presented in Fig 5. What stands out in this figure is that the contribution of each

component to the flow field is evident. The geostrophic current emerges as a major component of the ocean surface current175

field, with a Pearson correlation coefficient reaching nearly 0.98 in regions characterized by strong and persistent currents

along the western boundary. Wind-induced Ekman current play a significant role, particularly in the westerly zone of the

northern and southern hemispheres, where the correlation of the geostrophic current is lower. This complementary feature

underscores the importance of considering the coupling of multiple flows when reconstructing the current. Furthermore, the

wind-induced Ekman currents are less noticeable near the equator, which may be related to the calm zone in the tropics. Stokes180

drift demonstrates a substantial contribution, reaching up to 60% in the West Pacific. Tides primarily act in shallow coastal

areas, with a maximum value of 0.5, consistent with their higher velocities along the coast.

Figure 5. Geographical distribution of the Pearson correlation coefficient of (a) geostrophic current, (b) Ekman current, (c) Stokes drift, and

(d) tidal current.
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Reconstruction Model
Region

Southwest Maldives Southwest Australia Eastern Malaysia Gulf of Mexico

Sub-GE 22.0333 9.1091 12.3418 7.9553

Sub-GES 20.9319 9.2731 11.9773 8.0693

Sub-GET 23.3724 9.2368 12.4657 7.6361

Sub-GEST 20.6216 9.3872 12.0061 7.8609
Table 1. The validation results of reconstructed current fields derived from the Sub-GE, Sub-GES, Sub-GET, and Sub-GEST models.

3.4 Polynomial coupling for estimating ocean surface current

To validate our approach for estimating ocean surface currents using the geostrophic current, Ekman current, Stokes drift,

and tidal current, we constructed a polynomial function to model the functional relationship between these four components185

and the actual current. Given the seasonal and local variability in velocity and direction of the surface current, we first build

polynomial regression on a 3° grid by season. Different flow field combinations (Sub-GE (Geostrophic-Ekman), Sub-GES

(Geostrophic-Ekman-Stokes), Sub-GET (Geostrophic-Ekman-Tide), and Sub-GEST (Geostrophic-Ekman-Stokes-Tide)) are

used to compare the performance of the four combined models. The data we utilized from 2006 to 2012, and verified the error

of the models with root mean square error (RMSE), which mathematic as follows:190

RMSE =

√√√√ 1
n

n∑

i=1

(ŷi− yi)2 (8)

Table 1 presents a regional comparison of the reconstruction errors for the sub-models. Different combinations of components

contribute differently to regional reconstruction. For instance, in the Southwest Maldives, the GEST combination outperforms

others, whereas in Eastern Malaysia, GEST proves to be more effective. This emphasizes the significance of considering

coupled effects in various regions for oceanic current reconstruction.195

Additionally, we compiled the global distribution of the zonal optimal sub-model and linear vector model selections dur-

ing spring, as illustrated in Fig. 6. The statistics reveal that vector synthesis models account for approximately 38.1%, while

regression models contribute to more than 60% globally. Meanwhile, Sub-GEST, Sub-GES, Sub-GET, and Sub-GE make up

11.1%, 16.2%, 13.8%, and 20.8%, respectively. Based on the regional estimates and the global distribution, reconstructing the

global ocean surface current using the four components is a nonlinear task that necessitates consideration of region, different200

combinations, and seasons. Therefore, constructing a neural network emerges as an accurate and efficient method for ocean

surface current reconstruction.

4 Multi-scale dynamics-informed neural network

Machine learning, a cornerstone of artificial intelligence, allows machines to discern rules gleaned from data. The decision

tree, serving as a proficient nonlinear model, has the capability to assemble a forest through ensemble learning techniques.205
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Figure 6. The global distribution of the zonal optimal sub-models combinations in spring.

The neural network, famous for its unmatched capacity for nonlinear fitting, empowers the machine to uncover latent features

embedded within vast datasets. Drawing upon insights gleaned from the preceding analysis of the correlation and impact of

multi-scale dynamics on modern reconstruction endeavors, we amalgamated the random forest and neural network to craft a

model informed by multi-scale dynamics, christened GESTNet. The architecture of GESTNet is depicted in Fig. 7.

Figure 7. The architecture of the GESTNet. The dotted lines are the process of the LightGBM, and the full lines denote the pipeline of the

neural network.
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4.1 GESTNet

In light of the interaction of multiscale current dynamics, our objective is to construct the oceanic surface current utilizing these210

multiscale current components, which encompass time t, coordinate information i, j, geostrophic currents G(u,v), Ekman

currents E(u,v), Stokes currents S(u,v), and tide currents T(u,v). Therefore, a function needs to be built for

cu,v = F(xu,v), x = {t, i, j,Gu,v,Eu,v,Su,v,Tu,v} (9)

where cu,v represents the reconstruction values. However, the geostrophic current, Ekman current, Stokes drift, and tidal current

exhibit varying resolutions and densities. Regardless of whether employing a tree-based or neural network approach, these215

data characteristics pose challenges to achieving accurate and effective reconstruction. Therefore, to ensure the highest data

resolution, we organized all data into a 0.25 degree grid. Subsequently, these collated data are fed into the LightGBM model.

LightGBM, a renowned model developed on the gradient boosting decision tree (GBDT), is employed. GBDT, an ensemble

model, constructs a robust regression model by generating multiple weak regression trees. The depth and number of leaves in

the tree significantly impact model accuracy and generalization ability. Thus, during the iterative training of LightGBM, the220

incorporation of a penalty function becomes necessary to regulate leaf splitting. This formulation is expressed as

Ω(ft) = γT +
1
2
λ

T∑

j=1

w2
j (10)

where ft represents the t-th tree, T denotes the number of leaf nodes, γ signifies the complexity cost introduced by new leaf

nodes, and w2
j denotes the L2 regularization term of the leaf fraction. Given that LightGBM is an ensemble model, the ft

governs the regression results. The output can be mathematically formalized as225

ŷt
i =

t∑

k=1

fk(xi) = ŷt−1
i + ft(xi) (11)

where ŷt
i represents the regression value of the t-th tree. To attain the optimal LightGBM model, it is necessary to minimize

Eq.(10) and Eq.(11), thereby minimizing the function

L=
n∑

i=1

|yi− ŷt
i |+ Ω(ft) +C (12)

Subsequently, leveraging the optimal LightGBM model, we can acquire the estimated current. Owing to the distinctive traits230

of the tree model, the regression value is constrained within the bounds of the training data’s minimum and maximum values.

However, the neural network possesses significant inference power, enabling it to address the aforementioned challenge. Conse-

quently, we integrated the estimated current with the original data and formulated a neural network to identify the discrepancies

between the estimated current and the real-world environment.
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Within the neural network structure, we incorporated the estimated current, thereby transforming the ocean surface current235

reconstruction task into

ĉu,v = F̂(xu,v), x = {t, i, j,Gu,v,Eu,v,Su,v,Tu,v} (13)

Diverging from the LightGBM approach, these features cannot be directly inputted into the neural network. The current com-

ponents require normalization, and the time and coordinate features need to be transformed into continuous space. Thus, we

employ the embedding method to embed the time, latitude, and longitude into continuous features, mitigating the issue of240

small feature disparities arising from normalization. Subsequently, we integrate the embedded time, latitude, longitude, and

each current component into standard multilayer perceptrons (MLPs). These MLPs nonlinearly map each current component

according to the time and coordinate, extracting hidden features. Moreover, MLPs possess the capability to expand the input

resolution to a certain extent, enhancing reconstruction accuracy. Following this, we construct a deep neural network (DNN) to

model the relationship between components and the physical environment, learning the disparity between real and estimated245

currents. Considering the influence of multi-scale dynamics on surface currents, we account for the differing effects of current

components at different locations when constructing the DNN and employing the MLP for data mapping. Furthermore, the

concatenation of all embedded data into the DNN enables the neural network to not only consider the meridional current but

also refer to the indirect interaction of zonal current while reconstructing the meridional value.

4.2 Training Detail250

The LightGBM is configured with 1024 leaves, 100 estimators, and 500 iterations. To prevent overfitting, we employ an early

stopping round of 5. As for the neural network, we conduct 50 training epochs, initialize the learning rate to 0.0001, and set

the batch size to 4096. To expedite model convergence, we adopt the cosine annealing learning rate adjustment strategy with

an adjustment step of 500. For parameter optimization in the neural network, we utilize the AdamW optimizer and employ L1

loss for loss calculation. This loss function helps mitigate the impact of outliers and is formulated as255

L1Loss =
n∑

i=1

|yi− ŷi| (14)

Considering the significant variations in current velocity and direction across different seasons in the equatorial region, we

conducted separate training sessions for the LightGBM and neural network for each quarter to ensure accurate reconstruction.

4.3 Compare Method and Production

To ascertain the reconstruction accuracy of our proposed model, we compare the results with various methods and products,260

including:

Optimal GEST. Construct polynomial regression and vector combination models for various combinations of multi-scale flow

fields within each 3◦ grid. Through model error validation, identify the optimal combination GEST reconstruction model with

the lowest reconstruction error and the highest contribution in each subregion. Utilize the optimal GEST reconstruction model
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for the inversion of flow field data at spatial resolutions of 1◦ and 0.25◦.265

OSCARCurrent. The Ocean Surface Current Analysis Real-time (OSCAR) project, funded by the National Aeronautics and

Space Administration (NASA) of the United States, predominantly utilizes satellite remote sensing data to derive information

on sea surface wind fields, sea surface height gradients, and sea surface temperature distributions. These datasets are then

utilized in the inversion of geostrophic, wind-driven, and thermally-induced wind dynamics for ocean surface current recon-

struction. The ocean surface velocity files are formatted in Network Common Data Form (NetCDF), comprising total zonal u270

and meridional v velocities, as well as zonal ug and meridional geostrophic vg components.

GlobCurrent. The GlobCurrent project stands as a cornerstone initiative within the European Space Agency’s Earth Observa-

tion Programme’s fourth phase, committed to the progressive refinement of quantitative estimation of ocean surface currents

through the synergistic integration of satellite sensors. The dataset comprises surface geostrophic currents, Ekman currents

at both surface and 15 meters depth, along with composite flows arising from the amalgamation of geostrophic and Ekman275

currents. All components maintain a spatial resolution of 25 kilometers, with geostrophic currents observed at a temporal

resolution of 1 day, and Ekman currents and composite flows resolved at 3-hour intervals.

5 Results

The ocean surface current exhibits significant variability across different regions. Taking into account both the direction and

velocity of the current, the root mean square error (RMSE) and the mean absolute error were employed to assess the accuracy of280

the reconstruction results and the performance of our proposed model. Due to the distinct seasonal characteristics of equatorial

currents, we trained the GESTNet on quarterly data encompassing both zonal and meridional currents. Consequently, we

trained eight models to reconstruct data for a full year. For a more robust comparison of reconstruction accuracy, we utilized

data from 2013 to 2017 for verification. First of all, the reconstruction performance is assessed from a global perspective.

Fig. 8 illustrates the RMSE of the synthesized meridional and zonal values for the entire validation dataset obtained from285

Global Current, OSCARCurrent, Optimal GEST, and GESTNet, within a 3◦× 3◦ grid.

As illustrated in Fig. 8, it becomes evident that the utilization of a combination of geographical currents, Ekman currents,

Stokes currents, and tidal currents is imperative and highly effective for the comprehensive reconstruction of global ocean sur-

face currents. The reconstruction approach, anchored in the concept of multiscale currents, possesses the capability to enhance

the precision of both nearshore and equatorial currents. Furthermore, the integration of machine learning methods can harness290

the full potential of multiscale currents in reconstructing ocean surface currents. To convincingly verify the significance of

multiscale currents and the reconstruction performance of GESTNet, we computed the MAE and the RMSE between the com-

parative method and the actual production in the u, v, and
√

u2 + v2 values. Comparing the numerical values in Table 2, we

can discern that employing polynomial regression to reconstruct surface oceanic currents based on multiscale current composi-

tion yields accuracy levels close to those of GlobCurrent. The Optimal GEST model exhibits a 5% reduction in error compared295

to OSCARCurrent. These observations underscore the significance of utilizing multiscale currents in the reconstruction pro-

cess. Nevertheless, upon utilizing the machine learning approach for current reconstruction, the specifically designed model,
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Figure 8. The distribution of the global RMSE
√

u2 + v2 for GlobCurrent, OSCARCurrent, Optimal GEST, and GESTNet, calculated using

data from the Drifters. (a) The RMSE of OSCARCurrent. (b) The RMSE of GlobCurrent. (c) The RMSE of Optimal GEST. (d) the RMSE

of GESTNet.

Oceanic Currents
u v

√
u2 + v2

MAE RMSE MAE RMSE MAE RMSE

Production

GlobCurrent 14.407 19.377 13.579 18.334 14.314 19.411

OSCARCurrent 15.717 21.036 14.377 19.310 16.94 22.527

Model

Optimal GEST 14.908 19.926 13.803 18.564 14.808 19.995

GESTNet 5.040 6.808 5.612 7.466 5.222 7.029
Table 2. The MAE and RMSE of u, v,

√
u2 + v2 across GlobCurren, OSCARCurrent, OPtimalGEST, and GESTNet. The minimum error is

highlighted in bold font.

GESTNet, exhibits exceptional performance. For instance, when comparing the
√

u2 + v2 values of GlobCurrent, OSCAR-

Current, and Optimal GEST, the RMAE decreases by approximately 63%, 68%, and 64%, respectively. The MAE experiences

improvements of around 65%, 58%, and 63%, respectively. Thus, the utilization of machine learning or deep learning methods300

empowers the task of oceanic current reconstruction, leading to enhanced accuracy in the reconstruction process.

Ocean currents exhibit seasonal variations, including differences in velocity and flow direction at the equator between sum-

mer and winter. Moreover, it is crucial to assess whether the reconstruction results of GESTNet exhibit seasonal deviations.

Therefore, we collected the RMSE and MAE for the four quarters across four models, as presented in Table 3, and drew the

global distribute RMSE of GESTNet shown in Fig. 9. The figures clearly demonstrate that regardless of the zonal or merid-305
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Figure 9. RMSE of the reconstructed ocean surface current using GESTNet. The left panels depict the zonal component, while the right

panels present the meridional current. Lines (a), (b), (c), and (d) correspond to the RMSE values for quarters Q1, Q2, Q3, and Q4, respectively.

ional components, the RMSE of the reconstructed current consistently stays below 15 cm/s, typically around 5 cm/s. Moreover,

GESTNet consistently displays significant performance across all quarters. Meanwhile, as shown in Table 3, the MAE hovers

around 5 cm/s, while the RMSE fluctuates around 7 cm/s. These findings illustrate that the reconstructed currents by GEST-

Net do not exist in seasonal deviations. When compared to other oceanic currents and models, GESTNet exhibits exceptional

reconfiguration performance. Across different seasons and components, both the MAE and RMSE consistently remain lower310

than those of the GlobCurrent, OSCARCurrent, and Optimal GEST. For instance, in the case of the u component, the relative

improvement of MAE across the four quarters is 64%, 67%, 64%, and 64%, respectively. In order to assess the global relative

improvement in the reconstruction of oceanic currents by GESTNet, we computed the degree of global relative improvement

between GESTNet and both GlobCurrent and OptimalGEST as shown in Fig. 10.

In Fig.,10, the most significant improvement is observed with GESTNet in equatorial regions. Based on statistics, the relative315

improvement degree of zonal current and meridional current at the equator is 41.145% and 41.839%, respectively. This demon-

strates the capacity of artificial intelligence methods to ameliorate the geostrophic imbalance of the current in the equatorial
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Oceanic Currents Component
Q1 Q2 Q3 Q4

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Production

GlobCurrent

u 14.702 19.687 14.434 19.387 14.327 19.278 14.407 19.377

v 13.788 18.532 13.593 18.318 13.508 18.227 13.579 18.334
√

u2 + v2 14.637 19.778 14.360 19.450 14.230 19.296 14.314 19.411

OSCARCurrent

u 15.926 21.155 15.668 21.036 15.588 20.874 15.717 21.036

v 14.570 19.482 14.367 19.31 14.289 19.193 14.377 19.310
√

u2 + v2 17.252 22.776 16.917 22.527 16.787 22.330 16.940 22.527

Model

OPtimalGEST

u 15.092 20.024 14.863 19.799 14.785 19.776 14.908 19.926

v 13.920 18.57 13.736 18.347 13.697 18.444 13.803 18.564
√

u2 + v2 15.134 20.258 14.814 19.879 14.669 19.841 14.808 19.995

GESTNet
u 5.168 6.987 4.761 6.411 5.157 6.956 5.048 6.829

v 5.759 7.652 5.314 7.050 5.704 7.593 5.644 7.519
√

u2 + v2
::::
5.343

::::
7.194

::::
4.914

::::
6.590

::::
5.338

::::
7.168

::::
5.269

::::
7.115

Table 3. The MAE and RMSE of zonal and meridional currents for various productions and models across different seasons. The optimal u

is highlighted in bold, the optimal v is underscored, and the
√

u2 + v2 is depicted with a wavy line.

region. Furthermore, from Fig. 10, it is evident that GESTNet not only enhanced the accuracy of flow field reconstruction in the

equatorial region but also improved accuracy in regions with strong flows, such as the Kuroshio region and the eastern coast

of North America. Subsequently, we computed the relative improvement degree in non-equatorial regions, which amounted to320

17.775% in the u component and 24.524% in the v component.

From Fig. 8 and Fig. 10, the errors vary across different latitudes. Therefore, in addition to assessing the model’s perfor-

mance and reconstructing the accuracy from a global distribution perspective, we calculated the zonal RMSE states illustrated

in Fig. 11. Observation from Fig. 11 reveals that reconstruction incorporating geographical, Ekman, Stokes, and tidal currents

enhances current reconstruction accuracy across most regions, affirming the feasibility, validity, and reliability of ocean sur-325

face current reconstruction using these components. Compared to GlobCurrent, GESTNet improves accuracy by 35.175%

between 20◦N and 20◦S. Moreover, direct observation from the figure indicates that GESTNet reduces errors in ocean sur-

face current reconstruction between 60◦N and 60◦S. Between 60◦S and 20◦S, GESTNet exhibits a 40.038%, 21.340%, and

20.793% improvement over OSCARCurrent, GlobCurrent, and Optimal GEST, respectively. Similarly, between 20◦N and

60◦N , GESTNet achieves a comparable reduction in errors compared to the Southern Hemisphere, surpassing OSCARCur-330

rent, GlobCurrent, and Optimal GEST by 41.431%, 18.185%, and 17.948%, respectively. Notably, at the equator, GESTNet,

employing machine learning techniques, achieves a 37.356%, 42.257%, and 33.947% improvement in reconstruction accuracy
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Figure 10. The global relative improvement degree between GESTNet and both GlobCurrent and OptimalGEST is analyzed. (a) GESTNet

improvement degree of zonal current compared with GlobCurrent, (b) GESTNet improvement degree of meridional current compared with

GlobCurrent, (c) GESTNet improvement degree of zonal current compared with Optimal GEST, and (d) GESTNet improvement degree of

meridional current compared with Optimal GEST.
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Figure 11. The zonal RMSE distribution of GlobCurrent, OSCARCurrent, Optimal GEST, and GESTNet. (a) The RMSE of u. (b) The

RMSE of v. (c) The RMSE of
√

u2 + v2.
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Figure 12. The reconstructed global ocean surface current by GESTNet and the truth observation current by Drifter in 0.25◦ and 1◦. (a)

Reconstruction results (left) of the 1◦ resolution u component and actual observations (right). (b) same as (a) but for v component. (c) Left

is 0.25◦ u component reconstruction results, while the right is observed by Drifter. (d) same as (c) but for v component.

compared to GlobCurrent, OSCARCurrent, and Optimal GEST, respectively. These findings confirm the effectiveness and

superior reconstruction performance of machine learning methods in reconstructing sea surface flow fields.

Finally, we examine the resemblances and disparities between the reconstructed current and the Drifter flow field, as shown335

in Fig. 12. Fig. 12 displays the 2013-2017 mean reconstruction results of 0.25◦ and 1◦, and actual Drifter observations. Both the

u and v components of the current reconstructed by GESTNet exhibit substantial consistency with those observed by drifters

in terms of velocity and direction. Consequently, based on Fig. 12 and the preceding analysis of the reconstruction outcomes,

it can be asserted that the reconstruction results achieved by GESTNet demonstrate high accuracy and reliability.
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6 Conclusions340

Ocean surface currents exhibit multi-scale dynamic processes, prominently featuring large-scale geostrophic circulation and

wind-induced Ekman flow, while often disregarding small-scale wave phenomena. With this understanding, we devised a novel

multiscale-dynamics-informed model grounded in machine learning and deep learning techniques to produce a new product of

the global ocean current at a depth of 15 meters, integrating Geostrophic, Ekman, Stokes, and Tidal multiscale currents. This

research endeavor culminates in the following conclusions:345

– The multi-scale dynamics-based GESTNet product of ocean surface currents demonstrates reliability, evidenced by the

reduced RMSE of the 0.25◦ resolution product, which is approximately 15.498 cm/s lower than that of the OSCAR

product and 12.382 cm/s lower than that of the GlobCurrent.

– Acknowledging the challenge posed by geostrophic failure at the equator, we incorporated the LightGBM model into

GESTNet to provide an auxiliary estimate, thereby enhancing the accuracy of the current reconstruction and mitigating350

the local failure of the geostrophic effect in the equatorial region.

– The interaction among multi-scale currents guided the development of GESTNet, resulting in a substantial improve-

ment in the accuracy of oceanic surface current reconstruction. Specifically, in the equatorial region, the improvement

compared to GlobCurrent is nearly 37%.

It is important to highlight that the GEST current product is adept for conditions where Ekman currents influence up to a355

depth of 15 meters, contrasting with existing ocean current estimation products. Furthermore, the proposed GEST dataset

demonstrates superior performance at low to mid-latitudes independently, without relying on assimilated drifter observations.

However, it is noteworthy that GESTNet is designed to model different seasons’ current reconstruction. Additionally, multi-

scale currents are preprocessed before being inputted into the model. Therefore, in the future, it is imperative to incorporate

complex mechanisms such as planetary waves, mesoscale eddies, and sub-mesoscale processes into standard ocean models360

and parameterize them to enhance the reconstruction accuracy of sea surface currents. Furthermore, constructing a multimodal

model to reconstruct ocean surface currents end-to-end throughout the year is also a promising avenue for future research.

Code availability. The Code is abaliable at GitHub: https://github.com/AI4Ocean/GESTNet

Data availability.

All data used in this study are publicly available and are listed in Table 4. The TPXO9-atlas for tidal currents is available for365

academic research and other non-commercial uses under previous registration from https://www.tpxo.net/global/tpxo9-atlas

(Egbert and Erofeeva, 2002). The GEST product (Ge and Wang, 2024) produced in this research can be found at https://doi.

org/10.5281/zenodo.11142408.
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Dataset Link Citation

Geostrophic Current https://data.marine.copernicus.eu/product/

SEALEVEL_GLO_PHY_L4_MY_008_047/

Pujol et al. (2016)

Ocean Waves Reanalysis Data https://data.marine.copernicus.eu/product/

GLOBAL_MULTIYEAR_WAV_001_032/

Law-Chune et al. (2021)

WindSat Products https://www.remss.com/missions/windsat/ Wentz et al. (2013)

Quikscat Products https://www.remss.com/missions/qscat/ Ricciardulli et al. (2011)

Global Drifter Data https://www.aoml.noaa.gov/phod/gdp/hourly_data.

php

Elipot et al. (2022)

OSCAR Current https://search.earthdata.nasa.gov/downloads/

6873202440

Johnson et al. (2007)

GlobCurrent Product https://tds0.ifremer.fr/thredds/GLOBCURRENT/

GLOBCURRENT.html?\dataset=

GLOBCURRENT-L4-CUREUL_15M-ALT_

SUM-V03.0

Rio et al. (2014)

Table 4. Remotely sensed, in situ, and reanalysis data sets used in this paper.
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