A Submesoscale Eddy Identification Dataset in the Northwest Pacific Ocean Derived from GOCI I Chlorophyll–a Data based on Deep Learning
Abstract. This paper presents an observational dataset on submesoscale eddies obtained from high–resolution chlorophyll–a data captured by GOCI I. Our methodology involves a combination of digital image processing, filtering, and object detection techniques, along with specific chlorophyll–a image enhancement procedure to extract essential information about submesoscale eddies. This information includes their time, polarity, geographical coordinates of the eddy center, eddy radius, coordinates of the upper left and lower right corners of the prediction box, area of the eddy's inner ellipse, and confidence score. The dataset spans eight time intervals, ranging from 00:00 to 08:00 (UTC) daily, covering the period from April 1, 2011, to March 31, 2021. A total of 19,136 anticyclonic eddies and 93,897 cyclonic eddies were identified with a confidence minimum of 0.2. The mean radius of anticyclonic eddies is 24.44 km (range 2.5 km to 44.25 km), while that of cyclonic eddies is 12.34 km (range 1.75 km to 44 km). This unprecedented hourly resolution dataset on submesoscale eddies offers valuable insights into their distribution, morphology, and energy dissipation. It significantly contributes to our understanding of marine environments, ecosystems and the improvement of climate model predictions. The dataset is available at https://doi.org/10.5281/zenodo.7694115 (Wang and Yang, 2023).