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Abstract  17 

We present a 14-year 12-km hourly air quality dataset created by assimilating satellite observations 18 

of aerosol optical depth (AOD) and carbon monoxide (CO) in an air quality model to fill gaps in 19 

the contiguous United States (CONUS) air quality monitoring network and help air quality 20 

managers understand long-term changes in county level air quality. Specifically, we assimilate the 21 

Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and the Measurement of 22 

Pollution in the Troposphere (MOPITT) CO observations in the Community Multiscale Air 23 

Quality Model (CMAQ) every day from 01 Jan 2005 to 31 Dec 2018 to produce this dataset. The 24 

Weather Research and Forecasting (WRF) model simulated meteorological fields are used to drive 25 

CMAQ offline and to generate meteorology dependent anthropogenic emissions. Both the weather 26 

and air quality (surface fine particulate matter (PM2.5) and ozone) simulations are subjected to a 27 

comprehensive evaluation against multi-platform observations to establish the credibility of our 28 

dataset and characterize its uncertainties. We show that our dataset captures regional hourly, 29 

seasonal, and interannual variability in meteorology very well across the CONUS. The correlation 30 

coefficient between the observed and simulated surface ozone and PM2.5 concentrations for 31 

different Environmental Protection Agency (EPA) defined regions across CONUS are 0.77-0.91 32 

and 0.49-0.79, respectively. The mean bias and root mean squared error for modeled ozone are 33 

3.7-6.8 ppbv and 7-9 ppbv, respectively, while the corresponding values for PM2.5 are -0.9-5.6 34 

µg/m3 and 3.0-8.3 µg/m3, respectively. We estimate that annual CONUS averaged maximum daily 35 

8-hour average (MDA8) ozone and PM2.5 trends are -0.30 ppb/year and -0.24 μg/m3/year, 36 

respectively. Wintertime MDA8 ozone shows an increasing but statistically insignificant trend at 37 

several sites. We also found a decreasing trend in the 95th percentile of MDA8 ozone but an 38 

increasing trend in the 5th percentile. Most of the sites in the Pacific Northwest show an increasing 39 
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but statistically insignificant trend during summer. An ArcGIS air quality dashboard has been 40 

developed to enable easy visualization and interpretation of county level air quality measures and 41 

trends by stakeholders, and a Python-based Streamlit application has been developed to allow the 42 

download of the air quality data in simplified text and graphic formats.  43 

 44 

  45 
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1. Introduction 46 

Air quality is one of the most important global environmental concerns as almost the entire global 47 

population (99%) is estimated to breathe air that exceeds the World Health Organization (WHO) 48 

defined Air Quality Guidelines (WHO, 2023). Exposure to ambient air pollution causes about 4.2 49 

million premature mortalities every year (WHO, 2020). Air quality has improved substantially 50 

over the past two decades in the US as the Environmental Protection Agency (EPA) observations 51 

show that maximum daily 8h average (MDA8) surface ozone levels have decreased by 29% over 52 

1980-2021, and annual average concentrations of particulate matter with an aerodynamic diameter 53 

smaller than 2.5 μm (PM2.5) have decreased by 37% over 2000-2021 (https://www.epa.gov/air-54 

trends/air-quality-national-summary). However, air pollution continues to violate the National 55 

Ambient Air Quality Standards (NAAQS) in many parts of the US, such as the Colorado Front 56 

Range, California, northeast US, and nearly all the national parks. A recent study reported that 57 

97% of US national parks suffer from significant or unsatisfactory levels of harm from air pollution 58 

(Orozco et al., 2024). Poor air quality is reported to cause about 160,000 premature deaths in the 59 

US, with a total economic loss of about $175 billion (Im et al., 2018). Exposure to air pollution 60 

levels even below the EPA NAAQS can adversely affect human health (Di et al., 2017). To 61 

mitigate the risks of air pollution and how air quality is responding to emission control policies, it 62 

is, therefore, imperative to quantify past changes in air quality.  63 

Numerous studies have revealed several key features of long-term changes in surface ozone 64 

and PM2.5 over the US using long-term observations from the EPA monitoring networks. First, 65 

both the urban and rural sites in the eastern US show negative ozone trends during the summer 66 

season (Butler et al., 2011; Cooper et al., 2012), but lower ozone levels at some sites have an 67 

increasing trend during winter and early spring (Bloomer et al., 2010; Cooper et al., 2012; Simon 68 

https://www.epa.gov/air-trends/air-quality-national-summary
https://www.epa.gov/air-trends/air-quality-national-summary
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et al., 2015). Second, surface and free tropospheric ozone show positive trends in all seasons at 69 

rural and remote sites in the western US (Jaffe and Ray, 2007; Cooper et al., 2012). Third, 70 

increasing ozone is observed in the inflow to the US west coast (Jaffe et al., 2003), over the North 71 

Pacific (Parrish et al., 2004), and west coast marine boundary layer (Parrish et al., 2009). The 72 

Tropospheric Ozone Assessment Report (TOAR) showed that summertime surface ozone 73 

continues to decrease over the US, but the trend is less certain at the urban sites (Chang et al., 74 

2017; Fleming et al., 2018). Similar regional and seasonal differences in the long-term trends are 75 

also seen in PM2.5 and its components. For example, carbonaceous aerosols (organic and black 76 

carbon) show a widespread decrease over 1990-2010 across the US in winter and spring and show 77 

positive but insignificant trends over the western US (Hand et al., 2013). PM2.5 levels continue to 78 

decrease over the majority of the US except in the wildfire-prone areas (McClure and Jaffe, 2018).   79 

In addition to the observation-based trend analysis, chemical transport model (CTM) 80 

simulations have been employed to interpret the observed trends. For example, the increase in 81 

lower ozone values can be attributed to the increase in Asian emissions from 1980-1995 (Fiore et 82 

al., 2002). The anthropogenic emissions and natural variability were found to have competing 83 

effects on surface ozone over much of the US over 1980-2005 (Pozzoli et al., 2011). Another study 84 

reproduced negative summertime ozone trends over the eastern US but underestimated the positive 85 

trends in the western US likely due to underestimation of Asian emission trends or trans-pacific 86 

transport or changes in stratosphere-troposphere exchange (Koumoutsaris and Bey, 2012). Lin et 87 

al. (2017) quantified the contributions of rising Asian emissions, domestic U.S. emission controls, 88 

wildfires and climate to changes in surface ozone from 1980 to 2014. Several studies have also 89 

quantified the contributions of wildfires to PM2.5 trends in the U.S. (Xie et al., 2020, Burke et al., 90 

2023). While global models captured most of the observed variability and trends in summertime 91 



 6 

ozone, the use of high-resolution regional models is recommended to reproduce interannual 92 

variability in winter and spring in the western US (Strode et al., 2015).  93 

Apart from the interpretation of observed trends, the CTMs also provide information in 94 

areas with no observations. However, CTM simulations suffer from both systematic (i.e., biases) 95 

and random errors due to a number of factors, including numerical approximations, inadequate 96 

understanding of some processes that control the spatial and temporal distribution of air pollutants, 97 

inaccuracies in the initialization of the physical and chemical atmospheric state, and uncertainties 98 

in the emission inventories. While continuous efforts are being made to improve the representation 99 

of processes controlling PM2.5 and ozone (Appel et al., 2010, 2013, 2017; Nolte et al., 2015; Fahey 100 

et al., 2017) and emission inventories are updated by the EPA every three years, recent 101 

developments have shown that assimilation of the National Aeronautics and Space Administration 102 

(NASA) satellite retrievals of atmospheric composition in CTMs can significantly improve air 103 

quality simulations (Gaubert et al., 2016; Kumar et al., 2019; Liu et al., 2011; Pagowski et al., 104 

2014; Saide et al., 2013). NASA satellite retrievals of atmospheric constituents with a far greater 105 

spatial coverage compared to ground-based monitoring networks presents a unique opportunity to 106 

develop long-term high-resolution air quality reanalysis, which can be useful for quantifying air 107 

quality changes in unmonitored areas and assessing the impacts of changes in air quality on human 108 

health and ecosystems.  109 

This paper describes the methodology and evaluation of a long-term high-resolution 110 

regional air quality reanalysis generated over the CONUS from 2005 to 2018 by assimilating the 111 

Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) and the 112 

Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO) retrievals daily 113 

in the Community Multiscale Air Quality (CMAQ) model. Our regional reanalysis is based on 114 
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three-dimensional variational (3DVAR) approach, which is different compared to the four-115 

dimensional variational (4D-Var) approach (Innes et al., 2019) and Ensemble Kalman Filter 116 

approaches (Gaubert et al. 2017, Miyazaki et al., 2020, Kong et al., 2021) used in recent long-term 117 

global and regional air quality reanalysis. Among these, 3DVAR is computationally the most 118 

efficient approach because it uses only a single model simulation, but its accuracy can be limited 119 

by the assumption of a constant background error covariance matrix that both 4DVAR and EnKF 120 

address. An air quality dashboard developed to enable the use of this dataset by a variety of 121 

stakeholders is also described. 122 

 123 

2. Methodology 124 

2.1. The Chemical Transport Model  125 

The CMAQ model version 5.3.2 driven offline by the Weather Research and Forecasting (WRF) 126 

model version 4.1 is used to simulate air quality over the CONUS from 01 Jan 2005 to 31 Dec 127 

2018. We employ the “cb6r3_ae7_aq” chemical mechanism that uses Carbon Bond 6 version r3 128 

for gas-phase chemistry and AERO7 aerosol module for representing aerosol processes, including 129 

secondary organic aerosols (Appel et al., 2021). Both the WRF and CMAQ models use a horizontal 130 

grid spacing of 12 x 12 km2 with WRF (CMAQ) grid using 481 (442), 369 (265), 36 (35) grid 131 

points in the longitudinal, latitudinal, and vertical directions, respectively. The model top is set to 132 

50 hPa for both the models. The meteorological initial and boundary conditions for WRF are based 133 

on the six hourly ERA-Interim analyses at a grid spacing of 0.7o x 0.7o. We follow Appel et al. 134 

(2017) for physical parameterizations, four-dimensional data assimilation, and soil moisture 135 

nudging settings in WRF.  136 
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Emissions from several anthropogenic emissions sectors such as residential wood combustion, 137 

agricultural emissions from livestock and fertilizer applications, and mobile sources depend on 138 

meteorological conditions. For example, ambient temperature affects the heating demand, affects 139 

the volatilization of emissions from fertilizer use, drives air conditioning use, etc. The SMOKE 140 

modeling system allows us to simulate these relationships. To be consistent in the use of 141 

meteorological fields for both emission processing and driving CMAQ, we generate meteorology-142 

dependent anthropogenic emissions for the EPA National Emissions Inventory (NEI) base years 143 

of 2011, 2014, and 2017 by feeding the WRF meteorological fields to the Sparse Matrix Operator 144 

Kernel Emissions (SMOKE). The emissions for 2005-2010 are derived by applying EPA reported 145 

annual state-wise trends to the NEIv2 2011 emissions. While NEI emissions are available for 2005 146 

and 2008, the emissions processing platform for 2005 and 2008 does not process emissions for the 147 

“cb6r3_ae7_aq” chemical mechanism of CMAQ used here. Similarly, NEIv2 2014 emissions are 148 

used to derive emissions for 2012 and 2013, and the NEIv1 2017 emissions are used to derive 149 

anthropogenic emissions for the rest of the years. Fire emissions in CMAQ are represented using 150 

the Fire Inventory from NCAR (FINN) version 2.2 which provides daily varying global fire 151 

emissions at 1 x 1 km2 resolution (Wiedinmyer et al., 2023). FINN emissions are processed through 152 

SMOKE to enable inline plume rise of fire emissions within CMAQ. Biogenic emissions are 153 

calculated online within the model using the Biogenic Emission Inventory System (BEIS). The 154 

chemical boundary conditions are based on 6-hourly Whole Atmosphere Community Climate 155 

Model (WACCM) simulations (Marsh et al., 2013; Gettelman et al., 2019). The WACCM output 156 

is mapped onto CMAQ grids using the Initial Conditions Processor (ICON) and Boundary 157 

Conditions Processor (BCON).  158 

 159 
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2.2. Data Assimilation System   160 

We have used the three-dimensional variational (3DVAR) capability of the community Gridpoint 161 

Statistical Interpolation (GSI) version 3.5 to assimilate the Level 2 MODIS AOD retrievals and 162 

the Level 2 MOPITT CO retrievals in CMAQ. The MODIS AOD assimilation framework is the 163 

same as we developed previously (Kumar et al., 2019) and the MOPITT CO assimilation capability 164 

has been developed in this work. We use total aerosol mass per mode (Aiken, Accumulation, and 165 

Coarse) and CO mixing ratios as the control variables in GSI. The state variables include individual 166 

aerosol components, total aerosol mass per mode, CO mixing ratios, meteorological variables 167 

(temperature, pressure, and relative humidity), and CMAQ vertical grid. Daily MODIS and 168 

MOPITT retrievals are converted into a format compatible with GSI input modules.  169 

A climatological background error covariance (BEC) matrix is generated separately for 170 

winter (January) and summer (July) conditions using the GEN_BE tool, which reads two different 171 

WRF-CMAQ runs driven by different meteorological and emission inputs but valid at the satellite 172 

overpass time. Since there are multiple overpasses of the Terra and Aqua satellites that host the 173 

MOPITT and MODIS sensors, we calculate the BEC at 15 Z, 18 Z, and 21 Z. The winter BEC is 174 

used when assimilating satellite retrievals from November through March and the summer BEC is 175 

used for the rest of the months. Our BEC design considers the uncertainties in meteorology, 176 

anthropogenic, and biomass burning emissions. Meteorological uncertainties are represented by 177 

using two different sets of physical parameterizations (Table A3.1) in two WRF runs to capture 178 

errors in meteorology related to assumptions used in physical parameterizations. Species-179 

dependent perturbation factors for anthropogenic and biomass burning emissions are estimated by 180 

comparing a number of available global/regional anthropogenic and biomass burning emission 181 

inventories over the CONUS (Table A3.2 and A3.3). Among the two WRF-CMAQ runs fed to 182 
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GEN_BE for BEC estimation, we used the default emissions in the first run and perturbed the 183 

emissions in the second run. The BEC was then estimated in terms of variances and length scales 184 

(both horizontal and vertical) for total aerosol mass per mode and CO, and used in GSI. We refer 185 

the reader to Kumar et al. (2019) for a description of BEC parameters. 186 

 We have assimilated standard Level 2 Collection 6.1 MODIS AOD and Version 8 187 

MOPITT CO retrievals based on the multispectral algorithm (thermal and near infrared) in CMAQ. 188 

This multispectral product is more sensitive to near-surface CO over land compared to the thermal-189 

infrared only retrievals. MOPITT retrievals agree with in-situ measurements at all vertical levels 190 

within ±5% (Deeter et al., 2019). The observation errors for MODIS AOD retrievals are specified 191 

as (0.03 + 0.05 * AOD) and (0.05 + 0.15 * AOD) over the ocean and the land, respectively (Remer 192 

et al., 2005). The observation errors for CO profiles are used as reported in the MOPITT retrieval 193 

product. A simple forward operator and its adjoint based on the parameterization of (Malm and 194 

Hand, 2007) is used to convert CMAQ aerosol chemical composition into AOD for a direct 195 

comparison with MODIS AOD retrievals as described in Kumar et al. (2019). The forward 196 

operator and its adjoint for MOPITT CO assimilation are developed in this study and described in 197 

Appendix A1.   198 

  199 

2.3. Reanalysis production workflow  200 

Daily analyses of three-dimensional fields of aerosols and CO based on the assimilation of MODIS 201 

AOD and MOPITT CO retrievals in CMAQ using the GSI system has been performed using the 202 

workflow shown in Figure 1. The first CMAQ simulation on 01 Jan 2005 is initialized using the 203 

global model simulations from WACCM, and all subsequent simulations until 31 Dec 2018 are 204 

initialized from the previous CMAQ simulations. Every day, we perform 9 simulations following 205 
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the availability of new satellite observations every three hours owing to difference between Terra 206 

and Aqua overpass times. The first simulation runs CMAQ from 00-15 Z, the second simulation 207 

assimilates MODIS Terra and Aqua AOD retrievals at 15 Z, and third simulation assimilates 208 

MOPITT CO retrievals at 15 Z. The fourth simulation advances CMAQ from 15 Z to 18 Z with 209 

the fifth and sixth simulations assimilating MODIS AOD and MOPITT CO at 18Z, respectively. 210 

The seventh simulation advances CMAQ from 18 Z to 21 Z, the eighth simulation assimilates 211 

MODIS Aqua AOD retrievals at 21 Z, and the ninth simulation advances CMAQ from 21 Z to 00 212 

Z of the next day. This resulted in a total of 46,152 jobs submission on the NCAR supercomputer 213 

Cheyenne (https://arc.ucar.edu/knowledge_base/70549542). An automated script was developed 214 

to submit and track successful completion of these jobs. 215 

The assimilation times of 15 Z, 18 Z, and 21 Z were determined based on the analysis of 216 

overpass times of Terra and Aqua satellites, which pass over the CONUS between 13:30 Z and 217 

22:30 Z. All the satellite retrievals belonging to a 3-hour window are assumed to be available for 218 

assimilation at the center of that window. For example, all the satellite retrievals between 1330 Z 219 

and 1630 Z are assimilated at 1500 Z.  220 

Our previous work has shown that the assimilation of MODIS AOD in CMAQ improved 221 

the correlation coefficient between CMAQ simulated and independently observed PM2.5 by ~67% 222 

and reduced the mean bias by ~38% over the CONUS during July 2014. To understand whether 223 

GSI pushes CMAQ towards MOPITT, we performed and compared one month (July 2018) of 224 

CMAQ experiments with and without assimilation of MOPITT CO profiles. We find that the 225 

assimilation of MOPITT CO profiles substantially improves the correlation coefficient and reduces 226 

the errors (both mean bias and root mean squared error) between CMAQ and MOPITT CO at all 227 

the pressure levels except at 100 hPa where the MOPITT sensitivity is the lowest (Appendix A2, 228 
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Figure A2.1). This simple test confirms the ability of GSI to constrain the performance of CMAQ 229 

with satellite observations. Other trace gas species (e.g., ozone and OH) are not affected directly 230 

by the assimilation of AOD and CO, but the impact of assimilation indirectly affects these species 231 

through photochemical processes in the model. For example, we found instantaneous changes in 232 

surface ozone in the range of -1.3 to 3.2 ppbv but monthly average changes are within the range 233 

of ±0.3 ppbv during July 2018.      234 

 235 

2.4. Output frequency and optimization 236 

The production of a chemical reanalysis also poses a challenge of storing the model output. Since 237 

our chemical reanalysis focuses on air quality applications, we saved all the chemical variables 238 

together with relevant meteorological parameters (2 m temperature and relative humidity, 10 m 239 

wind speed and direction, planetary boundary layer height, precipitation, and downward reaching 240 

solar radiation) and deposition (both dry and wet) fluxes every hour at the surface. The total size 241 

of this output is 12 Terabytes.  242 

 243 

3. Ground-based observations and trend calculation method 244 

We have obtained and processed hourly in-situ measurements of 2 m temperature (T2), 2 m relative 245 

humidity (RH), 10 m wind speed (WS10), 10 m wind direction (WD10), and surface pressure from 246 

the METeorological Aerodrome Reports (METAR) network, which is distributed by the NCEP’s 247 

Meteorological Assimilation Data Ingest System (MADIS). METAR data are surface weather 248 

observations and it consists of meteorological data from airports (Automated Surface Observing 249 

Systems) and other permanent weather stations (Automated Weather Observing System) located 250 

throughout the US. We used the Level-3 Quality Controlled METRAR data over CONUS to 251 
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evaluate our modeled meteorological fields (https://madis.ncep.noaa.gov/madis_metar.shtml). 252 

Daily precipitation data from the 0.1-deg Integrated Multi-satellitE Retrievals for Global 253 

precipitation measurements (IMERG; https://gpm.nasa.gov/data/imerg) dataset is used to evaluate 254 

WRF simulated precipitation.  255 

To evaluate the modeled surface PM2.5 and ozone concentrations, we have obtained hourly 256 

PM2.5 and ozone observations from the EPA Air Quality System, which currently measures PM2.5 257 

and ozone at more than 1000 sites across the US. The AQS data also contains values below the 258 

method detection limit (MDL). The MDLs are different for ozone and PM2.5 and also vary as a 259 

function of site and instrument type. For consistency, we assume the MDL values of 5 ppb for 260 

ozone and 2 µg/m3 for PM2.5 for all sites. All the data below MDL was replaced by MDL/2 261 

(https://www3.epa.gov/ttnamti1/files/ambient/airtox/workbook/AirtoxWkbk4Preparingdataforan262 

alysis.pdf; https://pubs.acs.org/doi/10.1021/es071301c). The sites for which two simultaneous 263 

measurements (corresponding to two instruments) were available, the mean value is taken for 264 

further calculation.  265 

The trend calculations were performed using both the observed and modeled ozone and 266 

PM2.5 values. The monthly mean time series of observed and modeled maximum daily 8-hour 267 

(MDA8) ozone and 24-hour average PM2.5 during 2005-2018 is calculated over all measurement 268 

sites. The daily MDA8 ozone over a site is calculated using the EPA’s defined methodology 269 

(https://www.govinfo.gov/content/pkg/FR-2015-10-26/pdf/2015-26594.pdf, pp 168). For each 270 

day, 8-hour running averages are taken from 7 am to 11 pm local standard time, which constitutes 271 

17 8-hour running mean values per day. If an 8-hour window has less than 6 hours of data and the 272 

mean value of the remaining hours is less than 70 ppb then the data for that window is discarded. 273 

If a site has fewer than 13 valid 8-hour mean values or the maximum value of the available 8-hour 274 

https://www3.epa.gov/ttnamti1/files/ambient/airtox/workbook/AirtoxWkbk4Preparingdataforanalysis.pdf
https://www3.epa.gov/ttnamti1/files/ambient/airtox/workbook/AirtoxWkbk4Preparingdataforanalysis.pdf
https://pubs.acs.org/doi/10.1021/es071301c
https://www.govinfo.gov/content/pkg/FR-2015-10-26/pdf/2015-26594.pdf
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average is less than 70 ppb then the value for that day is discarded. For PM2.5, a daily 24-hour 275 

average value is calculated in local standard time only if at least 18 hours of valid data/day are 276 

available. Furthermore, we discarded all sites with (1) < 50% data per month, (2) < 50 % data 277 

during each year, and (3) if number of years with ≥ 50% data were < 10 years during 2005-2018. 278 

The number of valid sites fulfilling the above criteria over CONUS are estimated to be 1012 and 279 

369, for MDA8 ozone and 24-hour PM2.5, respectively. Daily values of MDA8 ozone and 24-hour 280 

PM2.5 are used to calculate monthly 5th percentile, 50th percentile, 95th percentile and mean time 281 

series during 2005-18 at each valid site. A similar criterion for seasonal mean, 5th, 50th and 95th 282 

percentile time series was also used. The number of valid sites during summer season were the 283 

maximum (1010/357 for MDA8 O3/24-hour PM2.5) and were minimum (501/337 for MDA8 284 

O3/24-hour PM2.5) during the winter season. These annual and seasonal MDA8 ozone and PM2.5 285 

time series are then used to estimate annual and seasonal trends and the significance of trend values 286 

are also tested. 287 

 288 

4. Results and Discussions 289 

4.1. Meteorological evaluation 290 

The WRF simulations for the entire period (2005-2018) processed using the Meteorology-291 

Chemistry Interface Processor (MCIP) are collocated with METAR observations of T2, RH, 292 

WS10, and WD10 in space and time, and paired values are used for evaluating the model. The 293 

evaluation is performed at a regional scale following the EPA regional classification of the 294 

CONUS in 10 regions (see Appendix A2, Figure A2.2). The number of METAR sites during 2005-295 

2018 was 1290, and the maximum available hourly data during the study period was 33-68 % over 296 

10 EPA regions. Region 8 has the least data (~33-37%), and other regions have 47-68 % data 297 
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during 2005-2018. Monthly regional averaged model and METAR observations time series are 298 

compared over 10 EPA regions for T2 (Figure 2), RH (Figure 3), WS10 (Figure 4), and WD10 299 

(Figure 5). Three statistical metrics, namely correlation coefficient (r), mean bias (MB), and root 300 

mean square error (RMSE), for each region are also listed in Figures 2-5. 301 

Monthly regional averaged T2 between model and observations (Figure 2) show excellent 302 

correlations of 0.8-1.0 with low mean biases of -0.3 to 0.4 oC and the RMSE ranging from 2.0-5.7 303 

oC over the 10 EPA regions. The model also performed well (r = 0.7-0.9) in simulating RH (Figure 304 

3) over 10 EPA regions with the mean biases of 0.9-3.6 % and the RMSE of 12.5 - 16.3 %. Since 305 

RH is estimated as a ratio of vapor pressure to saturation pressure (es) and es depends on T2, the 306 

biases in T2 also contribute to the biases in RH. For example, EPA Region 6 which shows the 307 

highest T2 RMSE also shows the highest RH RMSE. The model reproduces the variations in 308 

surface pressure very well (r = 1.0) with a slight underestimation (MB = -8.1 to 0.2 hPa; RMSE = 309 

0.3-8.1 hPa). The slight underestimation in pressure is seen in eight out of 10 EPA regions with 310 

the largest MB in Regions 9 (-8.1 hPa) and 10 (-7.4 hPa). The errors in surface pressure (plot not 311 

shown) over these regions could also contribute to biases in T2 and RH.  312 

Prior to 10 m wind speed comparison, model wind speeds are assigned “zero value” if the 313 

hourly wind speed at any site is less than 0.51 m/s (1 knot). This step was needed to make model 314 

output consistent with the METAR wind speed data, which treats such wind speeds as calm winds 315 

and assigns it a zero value. Our model simulation slightly overestimates (MB = 0.1-0.8 m/s) WS10 316 

(Figure 4) over most of EPA regions with the exception of Region 8 (MB = -0.1 m/s). Wind 317 

direction (Figure 5) biases (absolute) over these regions were 34o-58o. The correlation coefficients 318 

for both WS10 and WD10 are slightly lower in Regions 8-10, which is likely due to the complex 319 

topography in these regions. The correlation coefficients for 10 m wind speed were lower than 320 
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those for temperature, and relative humidity, indicating a slightly poorer model performance for 321 

winds. The WRF model is known to overpredict 10 m wind speed at low to moderate wind speeds 322 

in all available planetary boundary layer (PBL) schemes (Mass and Ovens, 2010). This 323 

shortcoming of the model was partly attributed to unresolved topographical features by the default 324 

surface drag parameterization, which in turn influences surface drag and friction velocity, and 325 

partly to the use of coarse horizontal and vertical resolutions of the domain (Cheng et al., 2005). 326 

The WRF model also captures the seasonally averaged diurnal variations in T2, RH, and 10 m 327 

Wind speed very well but overestimates the wind speed particularly at night (see Appendix A2, 328 

Figure A2.3).  329 

Since WRF and IMERG precipitation have different resolutions, we first mapped the WRF 330 

simulated precipitation from a 12 km x 12 km grid on Lambert conformal projection to the IMERG 331 

rectilinear grid of 0.1o x 0.1o using the “rcm2rgrid” functionality of the NCAR command language 332 

(https://www.ncl.ucar.edu/Document/Functions/Built-in/rcm2rgrid.shtml). The seasonal mean 333 

WRF simulated and IMERG derived precipitation are then compared over four seasons during 334 

2005-2018 (Figure 6). The model is able to capture the spatial patterns in precipitation in different 335 

seasons, with an underestimation of -0.1 to -0.9 mm/day. The highest underestimation is observed 336 

during the winter season. The eastern CONUS showed an underestimation during winter, spring 337 

and autumn seasons, however, over the western US, the model mostly overestimated the 338 

precipitation, especially in the mountainous regions (Rockies, Cascades, and Sierra Nevada). The 339 

model also showed larger biases over the lakes and oceanic regions. Despite the biases, this 340 

comprehensive evaluation shows that our model simulations captured the key features of regional 341 

and temporal variability of the key meteorological parameters over the CONUS fairly well.   342 

 343 

https://www.ncl.ucar.edu/Document/Functions/Built-in/rcm2rgrid.shtml
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4.2.  Air Quality evaluation  344 

Hourly regional averaged observed and CMAQ simulated surface ozone and PM2.5 are 345 

compared for all the EPA regions in Figures 7 and 8, respectively. In all the regions, the model 346 

captures the seasonal cycle in surface ozone characterized by a summertime peak as well as the 347 

observed interannual variability very well, with correlation coefficients of 0.77 to 0.91. The model 348 

also overestimates the nighttime ozone levels in all the regions (see Appendix A2, Figure A2.4), 349 

but a larger overestimation is seen in Regions 8 and 9. The mean bias and RMSE in modeled ozone 350 

are very similar across the regions, with values ranging from 3.7 - 6.8 ppbv and 7.0-9.0 ppbv, 351 

respectively. The model shows a slightly poorer skill in capturing the variability in PM2.5 relative 352 

to ozone as reflected by smaller r values of 0.49-0.79 but captures long-term trends in most of the 353 

regions reasonably well. The mean bias and RMSE in modeled PM2.5 are estimated to be -0.9 to 354 

5.6 µg/m3 and 3.0 to 8.3 µg/m3, respectively. The largest underestimation of PM2.5 is seen in 355 

Region 8, particularly from 2005 to 2012 while the largest overestimation is seen in Region 2. 356 

In addition to regional evaluation, we also evaluated the model performance for different 357 

land use types and location settings (see Appendix A2, Figure A2.5 for classification of the number 358 

of sites in these categories). This categorization information by land use and location types was 359 

not available for a very small number of sites, and thus, they were excluded from the analysis (sites 360 

classified as “NONE” in Figure A2.2). Since Maximum Daily Averaged 8-hour (MDA8) ozone 361 

and daily averaged PM2.5 are policy-relevant metrics, we focus on the evaluation of these 362 

parameters on a monthly averaged scale for this evaluation. We evaluate monthly median (50th 363 

percentile), 5th and 95th percentile time series of MDA8 ozone, and daily averaged PM2.5 for 364 

different land use categories and location settings (Appendix A2, Figures A2.6-A2.11).  365 
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Among the rural sites, all land use categories showed the highest biases for the 5th 366 

percentile, followed by the median and 95th percentile for MDA8 ozone, except for the “Others” 367 

category, for which the median showed the lowest bias. For suburban and urban site types, 95th 368 

percentile MDA8 ozone consistently showed the lowest bias for all land use types, followed by 369 

the median and 5th percentile. Furthermore, “Others” land use category under the rural and urban 370 

sites shows the lowest bias for 5th percentile and the median, while “residential” land use type 371 

shows the lowest bias for the suburban sites. 372 

For PM2.5, the largest differences between the model and observations are seen for the 95th 373 

percentile at “Others” land use categories compared to the 5th percentile and median. The model 374 

generally captures the temporal variability in PM2.5 across all land use types (except “Others”) and 375 

location settings for all three-percentile metrics analyzed here but some anomalies are also evident. 376 

For example, residential and commercial sites in the urban category show larger overestimation 377 

for the median and 95th percentiles during 2005-2006, indicating higher uncertainties in 378 

anthropogenic emission estimates at these sites during these years. While the model follows most 379 

of the observed peaks in 95th percentile, it substantially underestimates the observed peaks.  380 

The errors in air quality simulations can be attributed to the uncertainties in different types 381 

of emissions used to drive air quality models, errors in the lateral boundary conditions representing 382 

pollution inflow, uncertainties in meteorological parameters (as quantified earlier in this section), 383 

and poor understanding of some of the physical and chemical processes controlling the fate of 384 

those emissions. To quantify uncertainties in anthropogenic and biomass burning emissions over 385 

the CONUS, we compared all available anthropogenic and biomass burning emission inventories 386 

over the CONUS and found that anthropogenic emission estimates across various emission 387 

inventories vary by a factor of 1.16 - 2.94 (Table A3.2) and the corresponding fire emission 388 
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estimates vary by 3.13 - 8.0 (Table A3.3). The extrapolation of the NEI emissions to years other 389 

than the base years might have also introduced some uncertainties in our simulations because EPA 390 

reported state level trends may not always represent local (sub-state) changes in emissions and 391 

also do not provide information about new emission sources appearing in the CONUS between 392 

two NEI base emission inventory years. In addition, the observation error (0.05 + 15% of MODIS 393 

AOD value over land; Remer et al., 2005) for MODIS AOD increases with increase in the 394 

magnitude AOD which in turn restricts the data assimilation system (GSI) in pushing the modeled 395 

AOD towards the MODIS AOD. Furthermore, the AOD retrievals do not contain any information 396 

about the vertical distribution of aerosols and thus GSI simply scales the modeled vertical profile 397 

to match the MODIS AOD within the constraints of observation and model error. Thus, AOD 398 

assimilation is unable to correct for any errors in vertical distribution of aerosols resulting from 399 

errors in the plume rise of fire emissions. 400 

 401 

4.3.  Trend analysis 402 

To help air quality managers and the public determine the confidence they can put in using this 403 

reanalysis for analyzing changes in air quality in their regions, we have evaluated the trends in our 404 

CMAQ simulated MDA8 ozone and 24-hr average PM2.5 against the AQS observations. The 405 

spatial distribution of positive/negative trend values in MDA8 ozone and 24-hr average PM2.5 406 

calculated using monthly median values in AQS and CMAQ data during 2005-2018 are shown in 407 

Figures 9 and 10, respectively. Different symbols are used to represent urban, suburban, and rural 408 

site types. Based on location, ~42/23% of sites were in rural areas, ~41/45 % in suburban areas 409 

and ~17/32% were in urban or city centers, respectively, for MDA8 ozone/24-hr average PM2.5. 410 

Darker/lighter red and blue colors represent statistically significant/insignificant increasing and 411 
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decreasing trends at 2-sigma level. The 2-sigma rule is a standard way of testing statistical 412 

significance of trends. In a normal distribution, ~95% of the data points lie within 2 standard 413 

deviations (±2-sigma) of the mean. If the trend falls outside this range, it is considered unlikely to 414 

have occurred by chance (i.e., at a statistical significance in the probability of less than 5%). Over 415 

the study period, both the model and observations show decreasing trends in MDA8 ozone over 416 

the majority of the CONUS. Most eastern US sites show decreasing trends that were statistically 417 

significant with p values less than 0.05. The sites located in western/northwestern US, however, 418 

showed mixed results with some sites showing increasing trends, most of which were not 419 

statistically significant. Similar results were observed during the summer season with most sites 420 

showing statistically significant decreasing trends over the most locations. During autumn and 421 

winter seasons, several sites over California and the eastern US showed decreasing but 422 

insignificant trends. Some sites over the midwestern US also changed the trend sign during these 423 

seasons. The trends in winter seasons were mostly positive over most sites in the US (except for 424 

the coastal sites in the southeastern US). About 55% (278 of 501) of the sites showed positive 425 

trends in both AQS and CMAQ data during winter but only ~3% (29 of 1012) of the sites showed 426 

positive trends in summer. The seasonal changes in monthly median trends discussed above were 427 

mostly consistent (67-86%) between the AQS and CMAQ data. A similar analysis with 5th and 428 

95th percentile time series suggested that the higher percentiles showed mostly decreasing trends, 429 

but 5th percentile dataset at the mid-western US, Boston-New York-DC, and central US sites 430 

showed increasing trends on a seasonal and annual basis. The MDA8 ozone trend over CONUS 431 

(1012 sites) is estimated to be -0.53 ± 0.46/-0.56 ± 0.45 ppb/year (summertime) and -0.31 ± 0.43/-432 

0.29 ± 0.39 ppb/year (annual), respectively, for AQS/CMAQ data, with most sites (~70 %) 433 

showing negative trends. At the 2-sigma level (p-value < 0.05), the summertime mean ozone trends 434 
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are -0.85± 0.36/-0.75 ± 0.35 ppb/year for 484/620 sites and annual MDA8 ozone trends are -0.52 435 

± 0.45/-0.47 ± 0.42 ppb/year for 554/562 sites, respectively, for AQS/CMAQ data over CONUS. 436 

This suggests decreases in monthly high ozone days but increases in monthly low ozone. On an 437 

annual basis, MDA8 ozone showed the most decreasing trends (AQS/CMAQ= -0.40 ± 0.37/-0.34 438 

± 0.34 ppb/year) in the 428 rural sites. The mean ozone trends over urban (411 sites) and suburban 439 

(170) areas were (AQS/CMAQ = -0.28 ± 0.44/-0.29 ± 0.40 ppb/year) and (AQS/CMAQ = -0.13 ± 440 

0.48/-0.15 ± 0.48 ppb/year), respectively. The ozone trends over high-altitude sites (16 sites), are 441 

mostly negative for AQS/CMAQ = -0.43 ± 0.45/-0.12 ± 0.36 ppb/year) in summer and annually 442 

(AQS/CMAQ, = -0.39 ± 0.38/-0.03 ± 0.29 ppb/year).  443 

Similar MDA8 ozone trends were also reported in a previous study (Simon et al., 2015). 444 

Mousavinezhad et al. (2023) reported that all regions except the Northern Rockies and the 445 

Southwest experienced decreasing trends in median MDA8 ozone values during the warm season 446 

of 1991-2020, with rural stations in the Southeast and urban stations in the Northeast experiencing 447 

the greatest declines of -1.29 ± 0.07 ppb/year and -0.85 ± 0.08 ppb/year, respectively. They also 448 

reported a large decrease in MDA8 ozone 95th percentile in all regions. Similarities in ozone trends 449 

between the AQS observations and CMAQ simulations over a longer time period 1990-2015 is 450 

also reported by He et al. (2020).  451 

On an annual basis, 24-hr average PM2.5 also showed mostly decreasing trends (~79 %) 452 

over most of the sites. A majority of these trends were also statistically significant at 2-sigma level 453 

(AQS/CMAQ = 70 %/75 %). However, unlike MDA8 ozone, an increasing trend (though 454 

insignificant) in summertime PM2.5 is observed over the north-western US (Fig. 10). The 455 

wintertime trends were also mostly decreasing over most of the sites, except for the northwestern 456 

US. During summer season about 5-fold increase (annual ~ 5%; summer ~ 24%) in positive trends 457 



 22 

is observed in high PM2.5 days (95th percentile time series) and most of these increases were 458 

observed over the Pacific Northwest. These summertime increases in PM2.5 trends are also evident 459 

from the 95th percentile time series, where a sharp increase in PM2.5 is observed during 2017-2018 460 

overall sites except industrial locations (see Figure A2.11). In recent years these changes could be 461 

even stronger as wildfire activity over the western US has increased in the last decade. The 462 

dramatic decreasing trends of PM2.5 in the eastern US were also reported in previous studies 463 

(Zhang et al., 2018; Gan et al., 2015; Xing et al., 2015) (Gan et al., 2015; Xing et al., 2015; Zhang 464 

et al., 2018) due to emission reductions. The increasing trend in the western central area is due in 465 

part to frequent wildfires (Dennison et al., 2014; McClure and Jaffe, 2018). For PM2.5 the overall 466 

mean trends are -0.24 ± 0.21/-0.24 ± 0.24 μg/m3/year (369 sites) in AQS/CMAQ data sets. Unlike, 467 

MDA8 ozone, the number of sites remained almost the same (337-357 sites in four seasons, 369 468 

annual) during seasons and an overall negative trend is also observed (-0.18 ± 0.25 to -0.30 ± 0.35 469 

μg/m3/year). At 2-sigma level, the number of sites that showed negative trends in both the datasets 470 

were 69-80 %. 471 

On an annual basis, the mean PM2.5 trends over urban sites are -0.17 ± 0.22/-0.18 ± 0.15 472 

μg/m3/year, suburban sites are -0.28 ± 0.22/-0.24 ± 0.26 μg/m3/year and -0.3 μg/m3/year, and urban 473 

and city center are -0.23 ± 0.21/-0.30 ± 0.27 μg/m3/year μg/m3/year, respectively, for AQS/CMAQ 474 

data. The only high-altitude site for PM2.5 showed an increase in the annual (0.07/0.06 μg/m3/year 475 

for AQS/CMAQ data) and summertime trend (0.13/0.13 μg/m3/year for AQS/CAMQ data). 476 

During other seasons, mostly low negative trends were observed. The ozone trends over high-477 

altitude sites (16 sites), however, are mostly negative (-0.43 ± 0.45/-0.12 ± 0.36 ppb/year in 478 

summer and -0.39 ± 0.38/-0.03 ± 0.29 ppb/year, annually). The ozone trends at high altitude sites 479 
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showed large seasonal variations with min to max ranges of -0.69 to 0.87/-1.5 to 0.26 ppb/year for 480 

AQS/CMAQ data. 481 

 482 

4.4. Air Quality dashboard  483 

The comprehensive evaluation of our reanalysis in the above sections shows that our 484 

reanalysis is able to capture key features of long-term trends in both MDA8 ozone and PM2.5 over 485 

most parts of the CONUS. This increases confidence in using this dataset for assessing the trends 486 

in unmonitored areas of the CONUS. Therefore, a Geographic Information System (GIS)-based 487 

dashboard has been developed to aid in community engagement and understanding of the 488 

reanalysis data. The dashboard was developed using Esri ArcGIS Dashboard technology (Esri, 489 

2024). An interactive web-based dashboard allows stakeholders to explore air quality annual 490 

concentrations and the number of days that exceed a certain threshold over space and time. It 491 

provides a step-by-step path for users to explore information at the CONUS, state, and county 492 

levels. In the center of the dashboard is a time series chart showing trends in annual concentrations 493 

of MDA8 ozone, NO2, PM2.5, PM1, and PM10 between 2005 and 2018. An indicator element of a 494 

dashboard highlights how many days between 2005 and 2018 have exceeded the National Ambient 495 

Air Quality Standards (NAAQS) for ozone and PM2.5, and a bar chart graph shows the number of 496 

days that exceeded the NAAQS each year. There is also a map that zooms to the selected state or 497 

county of interest and illustrates the spatial distribution of air quality variables using a quantitative 498 

color bar.  499 

The dashboard can be used to better understand how particular events, such as large 500 

wildfires, have affected air quality in certain geographic areas. For example, the 2008 wildfires in 501 

Shasta and Trinity Counties in California, referred to as the June Fire Siege, had a major impact 502 
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on air quality (https://storymaps.arcgis.com/stories/c6535ee477e14b72a20393a5f10aefbc). Figure 503 

11 shows MDA8 ozone concentrations for Shasta County, California. The dashboard shows a 504 

sharp increase in MDA8 ozone concentration in 2008, as depicted in the time series plot.  The bar 505 

chart in the lower right corner also reflects the large number of days that exceeded the NAAQS 506 

criteria for MDA8 ozone in 2008. 507 

The dashboards also can be used to visualize the efficacy of air quality management 508 

policies. For example, Los Angeles County, CA has designed and implemented strict emission 509 

standards to improve air quality. Figure 12 shows the downward trend in PM2.5 concentrations in 510 

Los Angeles County during 2005-2018. The air quality dashboard is publicly accessible at 511 

https://ncar.maps.arcgis.com/apps/dashboards/9a97650dc77b4f7192b99ea9bef36a21.  To ensure 512 

stakeholders have an understanding of the uncertainties, we have included the following message 513 

on the website: “Note that mean bias of 3.7-6.8 ppbv in ozone and that of -0.9-5.6 µg/m³ in PM2.5 514 

could have impacted the calculation of days exceeding the corresponding National Ambient Air 515 

Quality Standards.”   516 

We have also developed a Python-based Streamlit application allowing users to select and 517 

download data for specific time periods aggregated over administrative boundaries such as cities, 518 

counties, and states. Temporal and spatial aggregations are performed on the server, and only 519 

information of interest is downloaded and delivered to the users, taking the data processing 520 

workload off of the users. The Streamlit application allows users to select a time period, a temporal 521 

aggregation (daily, weekly, monthly, annual), one or more air quality variables, statistics (min, 522 

mean, max), and an area of interest (state, county, city). The data can then be downloaded as a 523 

comma-separated file as well as graphed on the website as seen in Figure 13. The Streamlit 524 

application is available at:  https://compass.rap.ucar.edu/airquality/  525 

https://storymaps.arcgis.com/stories/c6535ee477e14b72a20393a5f10aefbc
https://ncar.maps.arcgis.com/apps/dashboards/9a97650dc77b4f7192b99ea9bef36a21
https://compass.rap.ucar.edu/airquality/
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 526 

5. Data availability 527 

The global meteorological datasets used to drive WRF are publicly available through National 528 

Center for Atmospheric Research (NCAR) Research Data Archive (https://rda.ucar.edu/). The 529 

SMOKE setup used to create emissions for CMAQ is accessible via EPA emissions modeling 530 

platform (https://www.epa.gov/air-emissions-modeling/emissions-modeling-platforms). FINN 531 

biomass burning emissions can be downloaded from https://rda.ucar.edu/datasets/ds312.9/.  532 

Meteorological observations used to evaluate the model performance are downloaded from 533 

https://madis-data.cprk.ncep.noaa.gov/madisPublic1/data/archive/. The EPA AQS system 534 

observations are downloaded from https://www.epa.gov/aqs. Hourly surface output from the 535 

WRF-CMAQ-GSI system can be downloaded from https://doi.org/10.5065/cfya-4g50 (Kumar and 536 

He, 2023)   537 

 538 

6. Code availability  539 

The WRF, CMAQ, and GSI source codes are publicly accessible at https://github.com/wrf-model/, 540 

https://github.com/USEPA/CMAQ, and https://dtcenter.org/community-code/gridpoint-541 

statistical-interpolation-gsi/download.    542 

 543 

7. Conclusions 544 

Air pollution is an important health hazard affecting human health and the economy in the 545 

CONUS, yet millions of people live in counties without air quality monitors. To address this gap 546 

and help air quality managers understand long-term changes in air qualities at the county level 547 

across the CONUS, we have created a 14-year long 12-km hourly dataset by daily assimilation of 548 

https://rda.ucar.edu/
https://www.epa.gov/air-emissions-modeling/emissions-modeling-platforms
https://rda.ucar.edu/datasets/ds312.9/
https://madis-data.cprk.ncep.noaa.gov/madisPublic1/data/archive/
https://www.epa.gov/aqs
https://doi.org/10.5065/cfya-4g50
https://github.com/wrf-model/
https://github.com/USEPA/CMAQ
https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/download
https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/download
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atmospheric composition observations from the NASA MODIS and MOPITT sensors aboard the 549 

Terra and Aqua satellites in the Community Multiscale Air Quality (CMAQ) model from 01 Jan 550 

2005 to 31 Dec 2018.   The WRF model has been used to simulate meteorological parameters, 551 

which are then used to drive CMAQ offline and for generating meteorology-dependent 552 

anthropogenic emissions.  553 

The meteorological parameters, ozone, and PM2.5 have been extensively validated against 554 

multi-platform observations to characterize uncertainties in our dataset, which air quality managers 555 

need to determine the confidence they can put in our dataset. We show that our dataset captures 556 

regional scale hourly, seasonal, and interannual variability in the meteorological variability well 557 

across the CONUS. The model shows an excellent performance in simulating the regional and 558 

temporal variability in temperature and relative humidity but a slightly poorer performance in 559 

simulating winds and precipitation, which are well known shortcomings of the WRF model. The 560 

model also shows a higher skill in reproducing variabilities in surface ozone (r = 0.77-0.91) than 561 

PM2.5 (0.49-0.79). The mean biases for CMAQ ozone and PM2.5 are estimated to be 3.7-6.8 ppbv 562 

and -0.9-5.6 µg/m3, respectively, and the corresponding RMSE values are 7-9 ppbv and 3.0-8.3 563 

µg/m3, respectively.  564 

The MDA8 ozone trend over CONUS is estimated to be -0.53 ± 0.46/-0.56 ± 0.45 ppb/year 565 

(summertime) and -0.31 ± 0.43/-0.29 ± 0.39 ppb/year (annual), respectively, for AQS/CMAQ data 566 

with ~70% of sites showing negative trends. At a 2-sigma level, the summertime MDA8 ozone 567 

trends are -0.85 ± 0.36/-0.75 ± 0.35 ppb/year and annual MDA8 ozone trends are -0.52 ± 0.45/-568 

0.47 ± 0.42 ppb/year, respectively, for AQS/CMAQ data over CONUS. Annually, at 2-sigma level, 569 

46% sites showed negative trends in both the data. Annual mean PM2.5 trends are –0.24 ± 0.21/-570 

0.24 ± 0.24 μg/m3/year, respectively in AQS/CMAQ data sets, and ~79% of the sites showed 571 
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negative trends. Annually, at 2-sigma level, 66% sites showed negative trends in both the data. 572 

During summertime, the negative trend percent is reduced to 71%, where an increase in positive 573 

trends are observed in the northwestern US.  574 

An air quality dashboard has been developed, which provides a step-by-step path for users 575 

to explore information at the CONUS, state, and county levels. This dashboard allows the users to 576 

visualize air quality information in the form of maps, bar charts, and the NAAQS exceedance days. 577 

Finally, a Python-based Streamlit application is developed to allow the download of the air quality 578 

data in simplified text and graphic formats for the end user’s choice of the region and time of 579 

interest.  580 

  581 
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8. Figures 582 

 583 

Figure 1: Architecture of the daily GSI/CMAQ based chemical data assimilation workflow.  584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 
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 592 

Figure 2: Time series of monthly averaged 2 m temperature over 10 EPA regions (R1-R10) from 593 

WRF-CMAQ setup (red) and METAR observations (black) during 2005-2018. Orange and Grey 594 

lines represent the standard deviation for WRF-CMAQ and METAR, respectively. The correlation 595 

coefficient (r), mean bias (MB), and the root mean square error (RMSE) for each region is also 596 

shown.  597 
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   598 

Figure 3: Same as Figure 2 but for 2 m relative humidity (RH).   599 

 600 
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  601 

Figure 4: Same as Figure 2 but for 10 m wind speed.   602 

 603 

 604 
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  605 

Figure 5: Same as Figure 2 but for 10 m wind direction.   606 
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 607 

Figure 6: Spatial distribution of mean daily precipitation and bias during four seasons in 2005-608 

2018 (top to bottom, viz., Winter, Spring, Summer and Autumn). Left, center and right panels 609 

represent mean precipitation from WRF, IMERG and bias (WRF-IMERG) precipitation, 610 

respectively. 611 

 612 
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 613 

Figure 7: Time series of hourly averaged surface ozone over 10 EPA regions (R1-R10) from 614 

WRF-CMAQ setup (red) and EPA AQS observations (black) during 2005-2018. The correlation 615 

coefficient (r), mean bias (MB), and the root mean square error (RMSE) for each region is also 616 

shown.  617 
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 618 

  619 

Figure 8: Same as Figure 7 but for daily averaged surface fine particulate matter (PM2.5).  620 
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 621 

Figure 9: Spatial distribution of positive (blue colors), negative trends (red colors) in MDA8 ozone 622 

at different statistically significant levels (p-values) using annual, seasonal monthly median time 623 

series (top to bottom).  Plots on the right show differences in trend values [CMAQ-AQS]. 624 
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 625 

Figure 10: Spatial distribution of positive (blue colors), negative trends (red colors) in 24-hour 626 

avg. PM2.5 (right panel) at different statistically significant levels (p-values) using monthly median 627 

time series (top to bottom). Plots on the right show differences in trend values [CMAQ-AQS]. 628 

 629 
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 630 

Figure 11: Dashboard reflecting Ozone concentrations for Shasta, CA.  631 

 632 

 633 

 634 

 635 

 636 
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 637 

Figure 12: PM2.5 concentrations for Los Angeles, CA.  638 

 639 

 640 

 641 

 642 

 643 
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 644 

Figure 13: Streamlit Air Quality App to easily download and summarize data in a CSV format. 645 

 646 

 647 

  648 
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9. Appendices  649 

A1: Forward and Adjoint operators for MOPITT CO assimilation 650 

MOPITT retrieved profile consists of 10 levels, including a surface level followed by 100 hPa 651 

thick layers from 900 hPa to 100 hPa. The CMAQ vertical profile of CO cannot be compared with 652 

MOPITT CO directly and needs to be convolved with the MOPITT a priori profile and averaging 653 

kernel. Following (Barré et al., 2015; Gaubert et al., 2016), the CMAQ profile that can be 654 

compared directly to MOPITT can be written as:  655 

𝐶𝑂!"#
$%&' 	= 	 10(&)!"#$%%*+,&'($-(!)*)	0	(1	2&)!"#$%%)*+,&'($-+,-!"#$%%))		 (1) 656 

 657 

𝐶𝑂!"#
$%&'is the CMAQ CO profile convolved with MOPITT a priori averaging kernel (𝐴𝐾%-3144) 658 

and a priori profile (𝐶𝑂56!%-3144) that can be compared directly to the MOPITT retrieved CO profile. 659 

𝐶𝑂$%&'is the 10-layer CMAQ profile mapped to the MOPITT pressure grid. A 660 

𝑙𝑜𝑔78transformation is necessary because the averaging kernel matrix for retrievals is obtained 661 

with CO parameters in 𝑙𝑜𝑔78(CO). Differentiation of equation (1) will yield the sensitivity of 662 

𝐶𝑂!"#
$%&'with respect to 𝐶𝑂	$%&', which represents the adjoint of the forward operator. For the 663 

purpose of derivation, let 𝐶𝑂!"#
$%&' 	= 	𝑦; 𝐶𝑂	$%&' = 𝑥; 𝐴𝐾%-3144 	= 	𝐴; and (𝐼	 −664 

𝐴𝐾%-3144)𝑙𝑜𝑔78(𝐶𝑂56!%-3144) 	= 	𝐶 then equation (1) can be written as:  665 

𝑦	 = 	10(&*+,&'(9)	0	$)	    (2) 666 

Applying the differentiation rule :	[5
.]

:9
	= 𝑙𝑛(𝑎) ⋅ 𝑎= 	 ⋅ :=

:9
	; we can differentiate equation (2) as:  667 

:>
:9	
	= 	𝑙𝑛(10) 	 ⋅ 10(&*+,&'(9)	0	$)	 ⋅ :

:9
	(𝐴𝑙𝑜𝑔78(𝑥) 	+ 	𝐶)  (3) 668 

Since 𝐴	and 𝐶 do not depend on CMAQ simulations, they are constants and thus their 669 

differentiation is zero. Since :
:9	
(𝑙𝑜𝑔78(𝑥)) 	= 	

7
9	*?(78)

, equation (3) simplifies to  670 
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:>
:9	
	= 	 10(&*+,&'(9)	0	$)	 ⋅ 𝐴 ⋅ 7

9	
	= 𝐴 ⋅ >

9	
	   (4) 671 

Substituting the values of 𝑦, 𝑥, 𝐴, 𝑎𝑛𝑑	𝐶	in equation (4), the changes in CO vertical profile in the 672 

MOPITT space can be related to changes in CO vertical profile in CMAQ as follows:   673 

𝑑𝐶𝑂!"#
$%&' = 𝐴𝐾%-3144 ⋅ $--/0

(!)*

$-	(!)*
𝑑𝐶𝑂	$%&'   (5) 674 

By writing equation (5) in matrix form and then transposing the forward operator matrix, we can 675 

write the adjoint of the forward operator as a recursive matrix equation:  676 

 𝑑𝐶𝑂	$%&' = 𝑑𝐶𝑂	$%&' 	+ 	𝐴𝐾%-3144 ⋅ $--/0
(!)*

$-	(!)*
𝑑𝐶𝑂!"#

$%&'  (6) 677 

 678 

  679 
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A2: Additional Figures 680 

 681 

 682 

Figure A2.1: Correlation coefficient, Mean bias, and Root Mean Squared Error (RMSE) 683 

between CMAQ and MOPITT CO profiles at ten MOPITT retrievals pressure levels for the 684 

CMAQ experiments with (ASM) and without (BKG) assimilation of the MOPITT CO profiles 685 

during July 2018. These statistics are based on 118552 data points at each level.  686 

 687 
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 688 

Figure A2.2: Map showing the EPA regions over which model evaluation has been performed. 689 

The map is reproduced from https://www.epa.gov/aboutepa/visiting-regional-office. Our 690 

evaluation does not include Puerto Rico in Region 2, Hawaiian Islands in Region 9, and Alaska 691 

in Region 10.  692 

https://www.epa.gov/aboutepa/visiting-regional-office
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 693 
Figure A2.3: Seasonal mean diurnal variations in 2 m Temperature (Top panel), relative 694 

humidity (middle panel) and 10 m wind speed (bottom panel) from METAR observations and 695 

WRF model. 696 

 697 
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Figure A2.4: Average diurnal profile of ozone (top panel) and PM2.5 (bottom panel) over all 698 

AQS sites in CONUS. 699 

 700 

 701 

Figure A2.5: The stacked histogram shows the number of sites in each location setting (different 702 

bars) and land use type (different colors) for MDA8 ozone (left) and 24-hr avg. PM2.5 (right). 703 

 704 

 705 

 706 
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 707 

Figure A2.6: The Annual mean (derived from monthly median values) time series of MDA8 708 

Ozone using AQS data (black) and CMAQ (red) over different location type (top to bottom) and 709 

land-use type (left to right) during 2005-2018. The number of sites for each scenario are presented 710 

in brackets. The blue color represents the mean bias. 711 

 712 

 713 
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 714 

Figure A2.7: Same as Figure A2.6 but time series is derived from monthly 5th percentile values 715 

 716 

 717 
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 718 

Figure A2.8: Same as Figure A2.6 but time series is derived from monthly 95th percentile values. 719 

 720 

 721 
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 722 

Figure A2.9: The Annual mean (derived from monthly values) time series of 24-hour avg. PM2.5 723 

using AQS data (black) and CMAQ (red) over different location types (top to bottom) and land-724 

use type (left to right) during 2005-18. The number of sites for each scenario are presented in 725 

brackets. The blue color represents the mean bias. 726 

 727 

 728 
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 729 

Figure A2.10: Same as Figure A2.9 but time series is derived from monthly 5th percentile values. 730 

 731 

 732 
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 733 

Figure A2.11: Same as Figure A2.9 but time series is derived from monthly 95th percentile values. 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 
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A3: Additional Tables 747 

Table A3.1: Key physics and chemical schemes used in the WRF-CMAQ configuration. 748 

Physics Setup-1 

(standard simulation used for 

assimilation) 

Setup-2 

(sensitivity simulation used to 

generate background error) 

Long-wave radiation RRTMG RRTM Longwave 

Short-wave radiation RRTMG Goddard Shortwave 

Microphysics Morrison double-moment Thomson 

Cumulus Kain–Fritsch version 2 Grell 3-D ensemble 

Land surface model Pleim–Xiu LSM  Unified Noah LSM 

Surface Layer Pleim–Xiu surface layer MYNN 

PBL ACM2 MYNN level 2.5 

Gas-phase chemistry CB06 CB06 

Aerosol chemistry AERO7 AERO7 

Anthropogenic and 

fire emissions 

EPA NEI EPA NEI perturbed by factors* 

derived from uncertainty analysis 

of multiple emission datasets 

Biogenic emission Online CMAQ BEIS Offline MEGAN 

 749 



 54 

Table A3.2: Annual anthropogenic emissions for nine species over CONUS during 2005-2018. 750 

Emissions 

(Tg/yr) 

HTAP v2 

[2010] 

EDGAR 

v4.3.2 

[2010] 

MACCity 

[2005-16] 

CAMSv4.2 

[2005-16] 

NEI+ 

[2014] 

Min-Max 

Ratio 

 

 

CO 56.20 56.77 46.02 ± 6.39 56.49 ± 6.46 45.69 1.24   

NH3 4.42 5.14 4.44 ± 0.14 5.12 ± 0.07 3.25 1.58   

NOx 11.07 10.93 10.40 ± 1.00 10.46 ± 0.96 12.03 1.16   

SO2 13.10 12.52 10.87 ± 2.44 11.48 ± 1.90 4.46 2.94   

CH2O 0.12 0.20 0.17 ± 0.02 0.26 ± 0.02 0.16 2.17   

NMVOC 15.61 14.57 6.58 ± 0.82 14.92 ± 0.74 12.28 2.37   

OC 0.61 0.36 0.48 ± 0.08 0.36 ± 0.01 0.79** 2.19   

BC 0.34 0.20 0.28 ± 0.06 0.21 ± 0.02 0.26** 1.70   

PM2.5 2.02 N/A N/A N/A 3.67 1.82   

+ Except NEI, all other emissions are simply summed over {20-50 N} & {60-130 W} region 751 

 ** CONUS PM2.5 emissions are 5.15 Tg/yr which has 8% BC (or EC) and 28% OC 752 

https://www.epa.gov/sites/production/files/2019-08/documents/210pm_rao_508_2.pdf 753 

 754 

  755 

https://www.epa.gov/sites/production/files/2019-08/documents/210pm_rao_508_2.pdf
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Table A3.3: Annual biomass burning emissions for nine species over the CONUS during 2005-756 

2018.  757 

Emissions 

(Tg/yr) 

Top-Down emissions Bottom-up emissions Min-Max 

Ratio 
QFED GFASv1.3 FINNv1.5 GFEDv4.1 NEI 

CO 12.90 ± 2.59 8.99 ± 2.40 10.93 ± 2.21 5.41 ± 1.12 16.95 3.13 

NH3 0.56 ± 0.11 0.12 ± 0.03 0.18 ± 0.04 0.07 ± 0.02 0.27 8.00 

NOx 0.56 ± 0.11 0.20 ± 0.06 0.47 ± 0.10 0.18 ± 0.04 0.25 3.11 

SO2 0.32 ± 0.07 0.07 ± 0.02 0.09 ± 0.02 0.04 ± 0.01 0.13 8.00 

CH2O 0.16 ± 0.03 0.15 ± 0.04 0.15 ± 0.03 0.10 ± 0.02 0.22 2.20 

tVOC 0.53 ± 0.11 1.05 ± 0.28 1.86 ± 0.40 1.06 ± 0.22 3.92 7.40 

OC 2.99 ± 0.63 0.60 ± 0.17 0.66 ± 0.13 0.34 ± 0.09 0.45 8.79 

BC 0.24± 0.05 0.05 ± 0.02 0.06 ± 0.01 0.03 ± 0.01 0.15 8.00 

PM2.5 4.37 ± 0.92 0.90 ± 0.24 N/A 0.61 ± 0.14 1.48 7.16 

  758 
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