
Responses to Reviewer #1 
 
The paper assimilated a long-term data which is critical for air quality managers and 
researchers to understand the long term air quality trends and changes at a fine scale county 
level. Also made that long-term data available to the stakeholders through a dashboard which 
makes it very easy to visualize the data. 
We thank the reviewer for a thorough review of our manuscript and for providing constructive 
comments. Below, we provide a point-by-point response to your concerns. Reviewer’s 
comments appear in regular black font and our responses appear in regular blue font.  
 
Specific Comments: 
 
R1.1) Line 107: Is the methodology any different than any of the previous studies? If so the 
author should provide that information and highlight the differences.  
A1.1) Our regional reanalysis is based on three-dimensional variational (3DVAR) approach, 
which is different compared to the four-dimensional variational (4D-Var) approach (Inness et al., 
2019) and Ensemble Kalman Filter approaches (Gaubert et al., 2017; Kong et al., 2021; 
Miyazaki et al., 2020) used in recent long-term global and regional air quality reanalysis. Among 
these, 3DVAR is computationally the most efficient approach because it uses only a single 
model simulation, but its accuracy can be limited by the assumption of a constant background 
error covariance matrix that both 4DVAR and EnKF address. This information is added to the 
revised manuscript.  
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R1.2) Line 188: What is the rationale to perform 9 simulations every day rather than the every 
hour of the day? 



A1.2) This is because of the three-hour difference between Terra and Aqua overpass times. 
Since we are assimilating only satellite observations, there are no unique observations available 
for assimilation every hour. We have added this information to the revised manuscript.   
 
R1.3) Line 189: The first simulation seems to cover more time period that the subsequent 
simulations. Will that compromise any of the model predictions? 
A1.3) No, this does not compromise any model predictions because there are no satellite 
retrievals available over CONUS before 15 Z.  
 
R1.4) Line 212: Did the author perform any trace gas species performance for the with and 
without assimilation of the MOPITT to show the indirect effect of CO on the trace gas species? 
A1.4) Yes, we analyzed the impact of MOPITT CO assimilation on surface ozone because CO 
is a precursor of ozone and also affects the oxidative capacity of the atmosphere. We found 
instantaneous changes in the range of -1.3 to 3.2 ppbv but monthly average changes are within 
the range of ±0.3 ppbv in surface ozone. This information has also been added to the revised 
manuscript.  
 
R1.5) Line 275: Can the author specify the 10 regions in the text or in the supplementary 
document? The 10 regions information will be helpful for the reader to understand the regional 
changes in the data.  
A1.5) We have included a map showing the 10 EPA regions in appendix A2 as Figure A2.2 in 
the revised manuscript. The map is reproduced below in Figure R1.1 for your reference. Note 
that our evaluation does not include Puerto Rico in Region 2, Hawaiian Islands in Region 9, and 
Alaska in Region 10.  

 
Figure R1.1: Map showing the EPA regions over which model evaluation has been performed. 
The map is reproduced from https://www.epa.gov/aboutepa/visiting-regional-office.   

 

https://www.epa.gov/aboutepa/visiting-regional-office


R1.6) Line 279: Figure 2-5: The time series for all the parameters appears too clustered and it is 
not clear to see the red and black lines. Is it possible to reduce the temporal resolution to 
something like daily while plotting? 
A1.6) The plots looked very clustered even with the daily averages. So, we have changed these 
plots to monthly average values with standard deviation and tried to increase the transparency 
of these plots (see Figure R1.2 below as an example for 2 m temperature). Following reviewer 
#2 suggestions, we have also added plots showing diurnal variations in T2, RH, and 10 m wind 
speed as Figure A2.3 in the revised manuscript (see Figure R1.3 below).   
 

 



Figure R1.2: Time series of monthly averaged 2 m temperature over 10 EPA regions (R1-R10) 
from WRF-CMAQ setup (red-triangle) and METAR observations (black-circle) during 2005-2018. 
Orange and Grey lines represent the standard deviation for WRF-CMAQ and METAR, 
respectively. The correlation coefficient (r), mean bias (MB), and the root mean square error 
(RMSE) for each region is also shown. 

 
Figure R1.3: Seasonal mean diurnal variations in 2 m Temperature (Top panel), relative 
humidity (middle panel) and 10 m wind speed (bottom panel) from METAR observations and 
WRF model. 
 
R1.7) Line 323: Figure 7: Again the hourly time series looks very overcrowded, can this be 
changed to daily MDA8? 
A1.7) We have added daily MDA8 and Daily (24-hr) mean PM2.5 as figs. 7, 8. The plots are 
also shown below for reference in Figures R1.4 and R1.5, respectively.  



 
Figure R1.4: Time series of daily Maximum Daily 8-hour average (MDA8) surface ozone over 10 
EPA regions (R-01 to R-10) from WRF-CMAQ setup (red) and EPA AQS observations (black) 
during 2005-2018. The correlation coefficient (r), mean bias (MB), and the root mean square error 
(RMSE) for each region are also shown. 
 



 
Figure R1.5: Same as Fig. R1.4 but for daily 24-hour average PM2.5 
 
R1.8) Line 325-327: The author made a point about the nighttime ozone but there is no figure or 
data to support the statement. Can the author include figure or a table in the appendix to show 
this finding? 
A1.8) We have added seasonal averaged diurnal profiles shown in Figure R1.6 for your 
reference. This figure has been added in Appendix A2 Figure A2.4 in the revised manuscript. 



 
Figure R1.6: Average diurnal profile of ozone (top panel) and PM2.5 (bottom panel) over all AQS 
sites in CONUS. 
 
R1.9) Line 373: Explain what is trend analysis here, so that the reader can understand the 
context clearly.  
A1.9) Thanks for this suggestion. We have added the following information now: “To help air 
quality managers and the public determine the confidence they can put in using this reanalysis 
for analyzing changes in air quality in their regions, we have evaluated the trends in our CMAQ 
simulated MDA8 ozone and 24-hr average PM2.5 against the AQS observations.” 
 
R1.10) Line 379: Why did the author pick 2-sigma level for this analysis? 
A1.10) In a normal distribution, ~95% of the data points lie within 2 standard deviations (±2𝞂) of 
the mean. If the trend falls outside this range, it is considered unlikely to have occurred by 
chance (i.e., at a statistical significance in the probability of less than 5%). Therefore, the 2-
sigma rule is a standard way of testing whether a trend is statistically significant. This 
information has been added to the revised manuscript.  
 
R1.11) Line 391: Include the number of sites in the parenthesis.  
A1.11) We apologize for the typo in the percentage number given in this line. Lines 389-392 
have been changed to include information about the number of sites. Here is the revised text: 
“About 55% (278 of 501) of the sites showed positive trends in both AQS and CMAQ data 
during winter but only ~3% (29 of 1012) of the sites showed positive trends in summer.”  
 
R1.12) Line 509: Reword this line "millions of people in counties with no monitors" 



A1.12) The line has been revised to “Air pollution is an important health hazard affecting human 
health and the economy in the CONUS, yet millions of people live in counties without air quality 
monitors.”  
 
  



Responses to Reviewer #2 
 
This paper describes the methodology and data evaluation for a long-term, high-resolution air 
quality reanalysis using assimilated AOD, CO, and the CMAQ air quality model. The authors 
have also developed a dashboard to make the data easily accessible and publicly available to 
stakeholders. The high-resolution reanalysis offers valuable information, particularly in regions 
without monitoring stations, and can be useful for local policymakers and public in 
understanding air quality trends and exceedances under various pollution control policies. 
 
Overall, the paper is clearly written, particularly in the methods section. However, despite the 
detailed evaluation provided, a more thorough analysis of the reanalysis performance on diurnal 
cycles, extremes, and challenges in simulating PM2.5 peaks, as well as PM2.5 trends in certain 
regions, is needed. This additional information would help users better understand the data's 
quality and potential limitations when interpreting trends or assessing policy effectiveness. 
 
We thank the reviewer for a thorough review of our manuscript and providing constructive 
comments. Below, we provide a point-by-point response to your concerns. Reviewer’s 
comments appear in regular black font and our responses appear in regular blue font.  
 
Major Comments: 
 
R2.1) Are Figures 2-5 and Figures 7-8 showing hourly time series? The diurnal cycle is difficult 
to see from this figure. It would be helpful to also compare the diurnal cycle for four seasons for 
meteorological variables as well as ozone and PM2.5 concentrations. 
A2.1) Yes, these are hourly time series. Following reviewer #1 suggestion, we have changed 
the time series of meteorological variables to monthly averages and those of PM2.5 and ozone 
to daily averages. The seasonal diurnal cycles for meteorological variables, ozone and PM2.5 
concentration are shown in the revised manuscript in Appendix A2 as Figures A2.3 and A2.4, 
which are also reproduced below for your reference.   



 
Figure R2.1: Seasonal mean diurnal variations in 2 m Temperature (Top panel), relative 
humidity (middle panel) and 10 m wind speed (bottom panel) from METAR observations and 
WRF model. 
 

 



Figure R2.2: Mean diurnal profiles of Ozone (top panel) and PM2.5 (bottom panel) over all AQS 
sites in CONUS. 
 
R2.2) The black lines representing observations in Figures 7-8 are difficult to see. The authors 
might consider increasing the transparency of the red lines. Also, additional analysis of the 
diurnal cycle and annual trends would be valuable as suggested above. 
A2.2) Revisions are made in figs. 2-5, 7-8 are done to increase visibility. Revised Fig. 2 is 
shown below as a reference. . 
 

 



Figure R2.3: Time series of monthly averaged 2 m temperature over 10 EPA regions (R1-R10) 
from WRF-CMAQ setup (red-triangle) and METAR observations (black-circle) during 2005-2018. 
Orange and Grey lines represent the standard deviation for WRF-CMAQ and METAR, 
respectively. The correlation coefficient (r), mean bias (MB), and the root mean square error 
(RMSE) for each region is also shown. 

 
R2.3) The air quality reanalysis seems unable to capture PM2.5 trends in some regions and 
PM2.5 extremes exceeding the national standard of 35 µg/m³ in most regions (as shown in 
Figure 8). These discrepancies could significantly impact trend and exceedance evaluations, 
and thus affecting policy interpretation. What is the main causes of these biases? Is there a 
reason why assimilating AOD data does not mitigate these biases? 
A2.3) These biases are primarily located in the western US, a region significantly affected by 
wildfires and dust. There are several challenges in capturing PM2.5 extremes despite AOD 
assimilation. First, the observation error (0.05 + 15% of MODIS AOD value over land; Remer et 
al., 2005) for MODIS AOD increases with an increase in the magnitude AOD which in turn 
restricts the data assimilation system (GSI) in pushing the modeled AOD towards the MODIS 
AOD. Second, the AOD retrievals do not contain any information about the vertical distribution 
of aerosols. Thus GSI simply scales the modeled vertical profile to match the MODIS AOD 
within the constraints of observation and model error. Therefore, AOD assimilation is unable to 
correct any errors in the vertical distribution of aerosols resulting from errors in the plume rise of 
fire emissions. Third, fire emission inventories used to drive air quality model simulations have 
large uncertainties with a factor of 3.13-8.0 (see Table A3.3), which makes the model error too 
large for the data assimilation system to correct. These reasons are mentioned along with other 
potential contributors in the last paragraph of Section 4.2.   
 
R2.4) Figures 11-12 provide examples of the dashboard displaying annual trends in pollution 
concentrations and the number of days exceeding national standards at the county level. Model 
uncertainties in reproducing the observed trends and daily pollution extremes may be an issue. 
For instance, the mean bias for ozone is 3.7-6.8 ppbv and for PM2.5 is -0.9-5.6 µg/m³, which 
could significantly impact the calculation of days exceeding 70 ppb or 35 µg/m³. Is there any 
way to add an uncertainty metric to the datasets and the display? 
A2.4) This is an excellent suggestion, however, it is not possible to calculate biases at the 
county level because nearly two-thirds of the counties in the US do not have any air quality 
monitor (see Figure R2.4). To ensure stakeholders have an understanding of the uncertainties, 
we have included the following message on the website: “Note that mean bias of 3.7-6.8 ppbv in 
ozone and that of -0.9-5.6 µg/m³ in PM2.5 could have impacted the calculation of days 
exceeding the corresponding National Ambient Air Quality Standards.” This information has also 
been included in the revised manuscript.  
 



 
Figure R2.4: Map of CONUS overlaid with county boundaries and distribution of ozone 
monitoring sites used in the trend calculation.    
 
R2.5) The evaluations are performed and shown at 10 EPA regions, but the dashboard displays 
data at the county level. It would be helpful to provide uncertainty statistics at the county level. 
Also, it may be interesting to compare model performance in counties that are currently non-
attainment. 
A2.5) Please see answer A2.4.  
 
Minor Comments: 
 
R2.6) Lines 284-292: Should "RH2" be "RH"? 
A2.6) We called it RH2 to indicate it is 2 m relative humidity but we have changed it to RH to 
avoid any confusion.  
 
R2.7) Why did the authors choose the study period of 2005-2018? Meteorological and surface 
air quality datasets are available up to 2023. Is there any plan to update the data to include 
more recent years? 
A2.7) We started this study in early 2019 and had the datasets available only up to 2018 at that 
time. We selected 2005 as the starting year because initially we were also planning to 
assimilate Ozone Monitoring Instrument (OMI) retrieved tropospheric column NO2 retrievals in 
CMAQ. However, some test experiments showed little value in constraining NO2 concentrations 
with assimilation of OMI because of its shorter lifetime. So, we decided to move forward with the 
assimilation of CO and AOD only. Yes, we are planning to update this data to 2025 subject to 



the availability of resources. In fact, we are currently running the system for 2019 and 2020 and 
will publish those results soon in a new study.     
 
R2.8) Can the authors clarify what is meant by "meteorology-dependent anthropogenic 
emissions"? 
A2.8) Emissions from several anthropogenic emissions sectors such as residential wood 
combustion, agricultural emissions from livestock and fertilizer applications, and mobile sources 
depend on meteorological conditions. For example, ambient temperature affects heating 
demand, the volatilization of emissions from fertilizer use, driving air conditioning use, etc. The 
SMOKE modeling system allows us to simulate these relationships. To be consistent in the use 
of meteorological fields for both emission processing and driving CMAQ, we generated 
meteorology-dependent anthropogenic emissions for the EPA National Emissions Inventory 
(NEI) base years of 2011, 2014, and 2017 by feeding the WRF meteorological fields to the 
SMOKE. This information has been added to Section 2.1 in the revised manuscript.     
 
R2.9) Line 420: Should "fig. 9" be "fig. 10"? 
A2.9) Yes, that should be Fig. 10. Changed.  
 
R2.10) Figure 5 caption, 2 m temperature -> wind direction? 
A2.10) Thanks. Changed.  
 
R2.11) In the introduction section on recent trends in surface ozone and PM2.5, these following 
recent papers also provide detailed analysis on the observed trends and drivers, and include 
discussion of model problems of simulating these trends and extremes. 
Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., & Tonnesen, G. (2017). US surface ozone 
trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, 
domestic controls, wildfires, and climate. Atmospheric Chemistry and Physics, 17(4), 2943-
2970. 
Xie, Y., Lin, M., & Horowitz, L. W. (2020). Summer PM2. 5 pollution extremes caused by 
wildfires over the western United States during 2017–2018. Geophysical Research Letters, 
47(16), e2020GL089429. 
Burke, M., Childs, M. L., de la Cuesta, B., Qiu, M., Li, J., Gould, C. F., ... & Wara, M. (2023). 
The contribution of wildfire to PM2. 5 trends in the USA. Nature, 622(7984), 761-766. 
A2.11) Thanks for bringing these studies to our attention. We have cited these in our revised 
manuscript.  
 


