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Abstract. The Landsat series constitutes an unparalleled repository of multi-decadal Earth observations, serving as a 

cornerstone in global environmental monitoring. However, the inconsistent coverage of Landsat data due to its long revisit 

intervals and frequent cloud cover poses significant challenges to land monitoring over large geographical extents. In this 

study, we developed a full-chain processing framework for the multi-sensor data fusion of Landsat-5, 7, 8, 9 and MODIS 

Terra surface reflectance products. Based on this framework, a global, 30-m resolution, and daily Seamless Data Cube 20 

(SDC) of land surface reflectance was generated, spanning from 2000 to 2022. A thorough evaluation of the SDC was 

undertaken using a leave-one-out approach and a cross-comparison with NASA’s Harmonized Landsat and Sentinel-2 (HLS) 

products. The leave-one-out validation at 425 global test sites assessed the agreement between the SDC with actual Landsat 

surface reflectance values (not used as input), revealing an overall Mean Absolute Error (MAE) of 0.014 (the valid range of 

surface reflectance values is 0-1). The cross-comparison with the HLS products at 22 Military Grid Reference System 25 

(MGRS) tiles revealed an overall Mean Absolute Deviation (MAD) of 0.017 with L30 (Landsat-8-based 30-m HLS product) 

and a MAD of 0.021 with S30 (Sentinel-2-based 30-m HLS product). Moreover, experimental results underscore the 

advantages of employing the SDC for global land cover classification, achieving a sizable improvement in overall accuracy 

(2.4%~11.3%) over that obtained using Landsat composite and interpolated datasets. A web-based interface has been 

developed for researchers to freely access the SDC dataset, which is available at 30 

https://doi.org/10.12436/SDC30.26.20240506 (Chen et al., 2024). 

 

mailto:penggong@hku.hk
mailto:wangj10@pcl.ac.cn
https://doi.org/10.12436/SDC30.26.20240506


2 
 

1 Introduction 

Earth Observation (EO) data acquired by satellite sensors are fundamental to global land monitoring (Markham and Helder, 

2012; Song et al., 2018; Wulder et al., 2022), providing critical information sources with unparalleled spatial and temporal 35 

coverage at a low cost. Over the past decades, satellite remote sensing has emerged as a prominent technology in Earth 

system science (Gong et al., 2023; Yang et al., 2013), contributing to the monitoring of land surface dynamics (Gong et al., 

2013, 2019; Huang et al., 2017; H. Liu et al., 2020; Liu et al., 2021; Song et al., 2018), land surface phenology (Bolton et al., 

2020; Piao et al., 2019), forest (Hansen et al., 2013, 2008), water (Ji et al., 2018; Pekel et al., 2016; Pickens et al., 2022; 

Sagan et al., 2020), and urbanization (Gong et al., 2020, 2012; X. Liu et al., 2020).  40 

      The Landsat series stands as the most enduring source of Earth observations, with a historical archive extending back to 

1972 (Wulder et al., 2022). This longevity, combined with its relatively high spatial resolution, rigorous radiometric 

calibration, and free-access policy, has made Landsat a cornerstone for monitoring global terrestrial environments (Markham 

and Helder, 2012; Wulder et al., 2022). Nevertheless, the utility of Landsat data inevitably encounters certain limitations. A 

notable constraint is its relatively low temporal frequency, revisiting each area on Earth every 16 days (8 days when there are 45 

two Landsat satellites in orbit with an 8-day offset) (Zhu et al., 2015b). This issue is further compounded by the presence of 

cloud and cloud shadow, which can introduce significant temporal gaps in the acquisition of clear-sky observations, 

especially in cloudy regions (Zhu et al., 2016). Moreover, Landsat time series observations typically exhibit irregularities in 

both observation frequencies and acquisition dates, due to the presence of cloud contamination and the geographically 

heterogeneous Landsat overpass coverage (Li and Roy, 2017). These irregularities present significant challenges when 50 

utilizing Landsat for large-scale monitoring of land cover and land use change (Potapov et al., 2020; Zhang et al., 2024). 

Therefore, the availability of Landsat datasets characterized by consistency in both temporal and spatial dimensions is 

crucial for facilitating various global environmental studies (Khan et al., 2024; Li et al., 2023; Pickens et al., 2022; Potapov 

et al., 2022b, 2022a, 2021b, 2021a; Song et al., 2021; Turubanova et al., 2023) 

      One conventional approach employed to mitigate data gaps in optical remote sensing is image compositing, which 55 

selects the highest-quality observations within a pre-defined time interval, based on specific criteria, to create seamless clear 

images at large scales (Jin et al., 2023; Qiu et al., 2023; White et al., 2014). Historically, image compositing has been mostly 

applied to coarse resolution data with high temporal frequency (Qiu et al., 2023), such as that obtained by the Advanced 

Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors 

(Chuvieco et al., 2005; Cihlar et al., 1994; Holben, 1986; Huete et al., 2002; Wolfe et al., 1998). The use of image 60 

compositing for medium resolution data (e.g. Landsat) was comparatively uncommon before the advent of Landsat free-

access policy in 2008 (Qiu et al., 2023). In recent years, many image compositing algorithms have been developed for 

Landsat data (Frantz et al., 2017; Griffiths et al., 2019; Jin et al., 2023; Nelson and Steinwand, 2015; Qiu et al., 2023; Roy et 

al., 2010; White et al., 2014). Nevertheless, Landsat image compositing is not without its limitations. Firstly, due to the lack 

of frequent Landsat observations (especially in cloudy areas), it may take several months or even years to provide a 65 
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composite Landsat image, which can cause problems if there are land cover or phenological changes (Zhu et al., 2015b). 

Furthermore, the compositing process may introduce distortions to the temporal dynamics of Landsat time series (Qiu et al., 

2023), thereby hampering subsequent applications that depend on precise temporal information. 

      Landsat interpolation methods also provide the capability to generate seamless synthetic Landsat images (Brooks et al., 

2012; Malambo and Heatwole, 2016; Yan and Roy, 2018, 2020; Zhu et al., 2015b). Linear interpolation is commonly 70 

employed to address missing values in Landsat time series (Defourny et al., 2019; Inglada et al., 2017; Tran et al., 2022), 

though it may not be highly effective for applications like land cover classification (Che et al., 2024). To improve 

performance, more sophisticated interpolation methods have been developed (Brooks et al., 2012; Malambo and Heatwole, 

2016; Yan and Roy, 2018; Zhou et al., 2022; Zhu et al., 2015b). Nevertheless, a significant limitation of these methods is 

their dependence on numerous clear-sky Landsat observations for accurate time series estimation (Chen et al., 2021; Zhu et 75 

al., 2015b). This requirement poses a considerable obstacle to their large-scale applications, particularly in cloudy areas. 

Moreover, the performance of interpolation-based methods relies on the careful tuning and selection of model parameters, 

thereby encountering the challenge of balancing between over-fitting and under-fitting (Wu et al., 2022; Zhou et al., 2022). 

Large-scale remote sensing applications prefer processing algorithms capable of automatic adaptation to diverse input data 

conditions, eliminating the need for manual parameter tuning (Chen et al., 2023). 80 

      The spatiotemporal fusion technique provides a promising solution, which aims at incorporating more frequent coarse-

resolution observations to enhance the temporal frequency of Landsat and generate synthetic Landsat-like dense time-series 

images (Chen et al., 2023, 2021; Gao et al., 2006; Liu et al., 2022; Zhu et al., 2016, 2010). For example, the Terra/Aqua 

Moderate Resolution Imaging Spectroradiometer (MODIS) provides frequent coarse-resolution observations at a 250-500-

1000 m spatial resolution with a near-daily revisit frequency (Schaaf et al., 2002). The MODIS land bands have comparable 85 

center wavelengths to the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor, making the MODIS data an ideal input 

for the spatiotemporal fusion with Landsat (Gao et al., 2006). Many different types of Landsat-MODIS spatiotemporal 

fusion methods have been developed (Chen et al., 2023; Gao et al., 2006, 2022; Goyena et al., 2023; Guo et al., 2020; Hilker 

et al., 2009a; Liu et al., 2019, 2022; Mizuochi et al., 2017; Shi et al., 2022; Wang et al., 2017, 2020; Zhang et al., 2013; Zhu 

et al., 2010, 2016; Zurita-Milla et al., 2008)  and applied to land cover and land surface phenology monitoring (Abowarda et 90 

al., 2021; Battude et al., 2016; Chen et al., 2018; Gervais et al., 2017; Hilker et al., 2009b; Y. Li et al., 2017; Senf et al., 

2015; Singh, 2011; Tian et al., 2013; Walker et al., 2012; Watts et al., 2011). The utility of multi-sensor data fusion in 

facilitating land cover and land use analyses has also been validated empirically in previous studies (Carrasco et al., 2019; 

Chen et al., 2017; Yin et al., 2019). 

      To the best of our knowledge, there is currently no global, 30-m, and seamless dataset of land surface reflectance 95 

generated by fusing Landsat and MODIS products available to the community. Although there have been numerous studies 

dedicated to develop algorithms for missing data reconstruction and multi-sensor data fusion (Shen et al., 2015; Zhu et al., 

2018), unified and generalized frameworks for effective and efficient Landsat-MODIS data fusion at global scales have not 

yet been explored extensively. To address this need, in this study, we: (i) developed a full-chain processing framework for 
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the multi-sensor data fusion of Landsat-5, 7, 8, 9 and MODIS Terra surface reflectance products; (ii) generated a global, 30-100 

m, and daily Seamless Data Cube (SDC) of land surface reflectance, covering the period from 2000 to 2022; (iii) evaluated 

the reconstruction accuracy of the proposed framework quantitatively using a leave-one-out strategy at 425 global test sites; 

(iv) evaluated the quality of the SDC quantitatively by cross-comparing it with the Harmonized Landsat and Sentinel-2 

(HLS) products at 22 Military Grid Reference System (MGRS) tiles; (v) evaluated the performance of using the SDC for 

global-scale land cover classification against Landsat composite and interpolated datasets; (vi) provided a web-based 105 

interface for researchers to freely access the SDC dataset. 

2 Materials 

2.1 Landsat collection-2 level-2 surface reflectance products 

We collected a comprehensive dataset comprising 6,564,546 Landsat Collection 2 Level 2 Surface Reflectance (L2SR) 

images from the USGS Earth Resources Observation and Science (EROS) Center, including data acquired by the Landsat 8-110 

9 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 5 Thematic Mapper 

(TM). This dataset covers most of global land surface except Antarctica, spanning from 2000 to 2022. 

      The L2SR products are generated through a sequence of processing steps applied to Landsat raw data. These steps 

include reprojection, radiometric calibration, geometric correction, atmospheric correction, and cloud masking. Compared to 

the previous Landsat Collection 1 products, the Collection 2 products have markedly improved the Landsat absolute 115 

geolocation accuracy using Landsat 8 geolocational imaging performance harmonized with the ESA GRI data (Crawford, 

2023). The Landsat 5,7 TM/ETM+ data were atmospherically corrected using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) (Masek et al., 2006), and the Landsat 8-9 OLI data were corrected using the Land Surface 

Reflectance Code (LaSRC) (Vermote et al., 2016). The Fmask algorithm (Zhu and Woodcock, 2012) was applied to detect 

cloud and cloud shadow in Landsat images. The L2SR products are spatially referenced using the Worldwide Reference 120 

System-2 (WRS-2) path rows and provided in the UTM projection. Figure 1 illustrates the spatial and temporal distribution 

of all the L2SR images used in this study. As listed in Table 1, we used the blue, green, red, near infrared (NIR), and two 

shortwave infrared (SWIR1 and SWIR2) bands for the generation of SDC. Although Landsat sensors have a relatively 

narrow field of view (15 degrees), the Bidirectional Reflectance Distribution Function (BRDF) normalization was found to 

be effective to make multi-temporal Landsat observations more consistent (Claverie et al., 2015; Roy et al., 2016b). We 125 

applied the c-factor technique and global constant BRDF coefficients provided by Roy et al. (2016b) to obtain the Landsat 

Nadir BRDF adjusted Reflectance (NBAR) dataset for SDC generation. 

 

 

 130 
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Table 1: Attributes of Landsat 5 TM, 7 ETM+, 8-9 OLI, and MODIS Terra products (Markham and Helder, 2012; Masek et al., 

2020; Morisette et al., 2002). 

 Wavelengths (micrometers) 

Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI Landsat 9 OLI-2 MODIS Terra 
 

Blue 0.450-0.520 0.450-0.515 0.452-0.512 0.452-0.512 0.459-0.479 

Green 0.520-0.600 0.525-0.600 0.533-0.590 0.532-0.589 0.545-0.565 

Red 0.630-0.690 0.630-0.690 0.636-0.673 0.636-0.672 0.620-0.670 

NIR 0.760-0.900 0.760-0.900 0.851-0.879 0.850-0.879 0.841-0.876 

SWIR1 1.550-1.750 1.550-1.750 1.566-1.651 1.565-1.651 1.628-1.652 

SWIR2 2.080-2.350 2.080-2.350 2.107-2.294 2.105-2.294 2.105-2.155 

Spatial resolution 30-m 30-m 30-m 30-m ~500-m 

Revisit frequency 16-day 16-day  16-day 16-day ~Daily 

 

 
Figure 1: Spatial and temporal distribution of L2SR images used in this study. 135 
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2.2 MODIS Nadir BRDF-Adjusted Reflectance (NBAR) products 

We reprocessed the MODIS MOD09GA Version 6.1 surface reflectance product to obtain a daily seamless (without missing 

values) 500-m MODIS NBAR dataset, as detailed in Liang et al. (2024). The official MODIS MCD43A4 NBAR product 

was not employed due to persisting concerns associated with it, including the prevalence of missing data and residual 

influence of cloud and aerosols (Liang et al., 2024).  140 

      All MODIS Terra Surface Reflectance MOD09GA Version 6.1 images for the period 2000-2022 were acquired from 

NASA EarthData. The MOD09GA product is tiled in the MODIS sinusoidal system with a spatial resolution of about 500m. 

A set of processing algorithms was applied to these MOD09GA images to derive a daily, 500-m resolution, seamless 

MODIS NBAR data cube (Liang et al., 2024), including three main stages: (i) Land cover-based BRDF correction with the 

kernel-driven RossThick-LiSparse-Reciprocal (RTLSR) model using parameters derived from the MCD43A1 BRDF Model 145 

Parameters dataset and land cover maps from the MCD12Q1 land cover product; (ii) Outlier removal and gap filling using 

the ecosystem curve-fitting method; and (iii) Sliding-window temporal smoothing using the Savitzky-Golay filter. The 

generated MODIS NBAR seamless dataset provides seven spectral bands that are commonly used for terrestrial applications, 

six of which that have compatible bandwidths with Landsat sensors are employed for SDC generation, as listed in Table 1. 

2.3 The Harmonized Landsat and Sentinel-2 V2.0 surface reflectance product 150 

The NASA’s Harmonized Landsat and Sentinel-2 (HLS) V2.0 products were used in the cross-comparison with the 

generated SDC product for quantitative assessment. The HLS products combine observations from the Landsat Operational 

Land Imager (OLI, since 2013) and the Sentinel-2 Multi-Spectral Instrument (MSI, since 2016), providing global surface 

reflectance data at a 30-m spatial resolution with a theoretical revisit interval of 2-3 days at the equator and even more 

frequent in areas of higher latitudes (Claverie et al., 2018). The creation of the HLS products involves four major processes 155 

(Claverie et al., 2018): (i) atmospheric correction and cloud masking, (ii) geometric resampling and geographic registration, 

(iii) BRDF normalization, and (iv) bandpass adjustment. The HLS products are gridded into the UTM Military Grid 

Reference System (MGRS) used by the Sentinel-2 products. The HLS S30 product (Sentinel-2-based 30-m product) is 

derived from 10/20-m Sentinel-2 bands using overlapping-area-weighted averaging, and the L30 product (Landsat-based 30-

m product) is reprojected to the same Sentinel-2 grid using cubic convolution interpolation (Claverie et al., 2018). Both HLS 160 

L30 and S30 products are atmospherically corrected using the Land Surface Reflectance Code (LaSRC) (Vermote et al., 

2016). The cloud mask used in the HLS products is a combination of the mask derived from the Fmask algorithm and the 

mask derived from the LaSRC algorithm. The HLS L30 and S30 products are delivered as NBAR, using the c-factor 

technique and global constant BRDF coefficients provided by Roy et al. (2016b). A bandpass adjustment is applied to S30 

product using a global constant set of coefficients (Claverie et al., 2018). 165 
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3 Methods 

Figure 2 illustrates the overview of the SDC processing chain, comprising five key processing steps. 

 
Figure 2: Overview of the SDC processing chain for each task unit. 

 170 

3.1 Gridding and reprojection 

The UTM-based Military Grid Reference System (MGRS) was chosen as the projection system for the SDC product, which 

was also adopted by ESA’s Sentinel-2 products and NASA’s HLS products (Claverie et al., 2018). It is noteworthy that our 

adopted grid slightly deviates from the Sentinel-2 grid. The original Landsat coordinate system aligns the UTM coordinate 
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origin with a pixel center, while the Sentinel-2 grid aligns it with a pixel corner (Claverie et al., 2018). We expanded the 175 

Sentinel-2 tiles by 15 meters in each direction to align them with the original Landsat coordinate system, minimizing the 

need for resampling Landsat data. The SDC product is gridded into this modified MGRS system, with a tile size of 

109.83×109.83 km (3661×3661 Landsat pixels). Although it has been found that overlaps among neighbouring MGRS tiles 

may result in resource wastage to some extent (Bauer-Marschallinger and Falkner, 2023), implementing this UTM-based 

projection system serves to minimize the need for resampling Landsat data, thereby reducing the introduction of additional 180 

errors (Dwyer et al., 2018). 

      The metadata for all Landsat and MODIS images has been pre-indexed into a database. For each SDC generation task 

unit, the metadata regarding all source data falling within specified spatial and temporal ranges can be efficiently retrieved 

from the database. Subsequently, all involved Landsat and MODIS source data are reprojected and gridded into our UTM-

based grid, using nearest neighbour resampling for Landsat and bilinear resampling for MODIS. The MODIS data are 185 

resampled to 30-m spatial resolution to streamline subsequent processing steps, and the computational costs for this 

upscaling operation are negligible. Table 2 lists the input data products across distinct time periods utilized in SDC 

generation. 

 
Table 2: Input product specifications across distinct periods. 190 
Output Period Medium-resolution input Coarse-resolution input 

SDC 2000-2011 Landsat TM, ETM+ MODIS NBAR 

2012 Landsat ETM+ MODIS NBAR 

2013-2022 Landsat ETM+, OLI MODIS NBAR 

 

3.2 Landsat cloud masking 

Cloud and cloud shadow masks are essential for removing contaminated Landsat pixels in SDC generation. We used the 

Fmask (Zhu and Woodcock, 2012) detection results as primary cloud and cloud shadow indicators. There are still few clouds 

and heavy aerosols in Landsat images remain undetected by the current Fmask method, which may have noteworthy 195 

implications for subsequent data processing procedures (Chen et al., 2021). To mitigate this issue, an enhanced cloud 

filtering approach is employed to reduce residual clouds and cloud shadows in Landsat imagery, which comprises three 

major steps: 

       (1) Firstly, the cloud and cloud shadow masks generated by the Fmask algorithm are expanded by a margin of 150 

meters (Claverie et al., 2018). This dilation process is designed to exclude potentially contaminated pixels adjacent to the 200 

initially detected cloud and shadow areas. 
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       (2) Secondly, a brightness-threshold filter combined with a spatial filter is applied to remove remaining highly reflective 

pixels, which is achieved by cross-comparing with MODIS NBAR data. This filter operates on a patch-wise basis, with each 

patch measuring 20×20 Landsat pixels. For a given image patch, we commence by computing the ratio of Landsat 205 

reflectance (summed over the six spectral bands) to MODIS reflectance for each pixel. Following this, if the median of all 

these Landsat-MODIS reflectance ratios within this image patch surpasses a predefined threshold, the entire image patch is 

then flagged as cloudy. The threshold was set at 2 in this study, as this value effectively eliminates most residual clouds 

without being overly aggressive. 

𝑀𝑒𝑑𝑖𝑎𝑛 '∑ "!
"#$%&#'($,&)!

∑ "!
()*+,($,&)!

, … , for	all	pixels	within	the	image	patch< > 2,      (1) 210 

where (𝑥, 𝑦)  indicates the pixel location, 𝜌()*+,-*.(𝑥, 𝑦)  and 𝜌(/0123(𝑥, 𝑦)  are the surface reflectance of band 𝑖  for the   

corresponding Landsat pixel and MODIS pixel, respectively. 

 

       (3) Further, a time-series outlier detection technique based on the Hampel filter combined with a spatial filter is 

employed to detect temporal outliers using the Vegetation Index (VI) of Landsat time series (Claverie et al., 2018). 215 

𝑉𝐼(𝑡) = "-+.
"#$%&#'(.)

"./%
"#$%&#'(.)

,                                                                               (2) 

where 𝑡	indicates the time phase, 𝜌425)*+,-*.(𝑡) and 𝜌56,)*+,-*.(𝑡) are the NIR and Red bands surface reflectance of Landsat at 

time phase 𝑡. 

 

      For each sample 𝑉𝐼(𝑡) of the Landsat time series, the Hampel filter computes the median of the VIs in a temporal 220 

window (center sample excluded). 

𝑉𝐼76,(*+ = 𝑀𝑒𝑑𝑖𝑎𝑛{𝑉𝐼(𝑡 − Δ𝑡), … , 𝑉𝐼(𝑡 − 1), 𝑉𝐼(𝑡 + 1),… , 𝑉𝐼(𝑡 + Δ𝑡)},                                                           (3) 

where Δ𝑡 represents the temporal window size. 

 

      Then, it estimates the Scale of Natural Variation (SNV) of each sample by deriving the median of the absolute deviations 225 

of the VIs in the temporal window from the median. 

𝑆𝑁𝑉 = 𝑀𝑒𝑑𝑖𝑎𝑛{|𝑉𝐼(𝑡 − Δ𝑡) − 𝑉𝐼76,(*+|, … , |𝑉𝐼(𝑡 − 1) − 𝑉𝐼76,(*+|,			|𝑉𝐼(𝑡 + 1) − 𝑉𝐼76,(*+|, … , |𝑉𝐼(𝑡 + Δ𝑡) −

𝑉𝐼76,(*+|}                                                                                                                                                                (4) 

      If the center sample 𝑉𝐼(𝑡) differs from the median 𝑉𝐼76,(*+ by more than five SNV, it is flagged as an outlier. No filter 

is applied if there are less than 3 samples within a 60-day temporal window. To eliminate isolated outlier pixels that generate 230 



10 
 

a speckle effect, the sample pixel is flagged as an outlier only if the majority of its surrounding pixels are also flagged as 

outliers, cloud, or cloud shadow. 

 

3.3 Landsat cross-sensor calibration 

To ensure the temporal continuity of the generated SDC dataset, a Landsat cross-sensor calibration approach was employed 235 

to reduce the data inconsistencies between the input Landsat OLI and TM/ETM+ products. The linear regression models 

have been widely used to reduce cross-sensor reflectance difference (Chastain et al., 2019; Claverie, 2023; Claverie et al., 

2018; Roy et al., 2016a; Shang and Zhu, 2019). It has been found that a single set of linear transformation coefficients are 

not proper for global-scale applications (Olthof and Fraser, 2024; Shang and Zhu, 2019). Therefore, our approach aims at 

building multiple transformation models for each MGRS tile and each spectral band separately. 240 

      The Landsat 7 ETM+ and Landsat 8 OLI share a sun-synchronous orbit at an altitude of approximately 710 km. Both 

satellites revisit a specific area on Earth every 16 days, with an 8-day offset from each other. Notably, there exists a 

discernible across-track overlap between each ETM+ observation and an adjacent OLI observation acquired one day apart 

(Roy et al., 2016a). Our cross-calibration approach uses matched (acquired one day apart) ETM+ and OLI observations in 

these overlapped regions to build linear regression models for each MGRS tile and each spectral band separately, adjusting 245 

ETM+ (and TM) observations to match the OLI spectral responses (Roy et al., 2016a). 

      For each MGRS tile, ETM+ and OLI observations in the overlap regions acquired only one day apart during years 2014-

2021 are reprojected into the modified MGRS grid using nearest neighbour resampling. Pixels flagged as cloud, cloud 

shadow, and snow/ice were discarded. Then, the remaining candidate pixels are used to build linear regression models to 

adjust reflectance differences for each spectral band. If the number of available pixels is insufficient to build the regression 250 

model, candidate pixels from adjacent MGRS tiles would be included. This step helps improve stability and mitigate the 

issue of spatial inconsistency between neighbouring MGRS tiles. Table 3 shows an example of calibration coefficients 

obtained at three MGRS tiles in this study. 

𝜌(0)2 = 𝑎 × 𝜌(89/: + 𝑏,    for each band 𝑖.                       (5) 

Table 3: Calibration coefficients obtained at three MGRS tiles in this study. 255 
 

 

Band Tile 10SEH Tile 49SGV Tile 55HCC 
Blue OLI = 0.0021 + 0.9726 TM/ETM+ OLI = 0.0089 + 0.8958 TM/ETM+ OLI = 0.0056 + 0.9009 TM/ETM+ 
Green OLI = 0.0010 + 0.9856 TM/ETM + OLI = 0.0064 + 0.9405 TM/ETM + OLI = 0.0056 + 0.9344 TM/ETM + 
Red OLI = 0.0015 + 0.9719 TM/ETM + OLI = 0.0050 + 0.9479 TM/ETM + OLI = 0.0099 + 0.9232 TM/ETM + 
NIR OLI = 0.0062 + 0.9814 TM/ETM + OLI = 0.0027 + 0.9839 TM/ETM + OLI = 0.0317 + 0.8848 TM/ETM + 
SWIR1 OLI = 0.0039 + 0.9762 TM/ETM + OLI = 0.0005 + 0.9887 TM/ETM + OLI = 0.0354 + 0.8937 TM/ETM + 
SWIR2 OLI = 0.0019 + 0.9810 TM/ETM + OLI = 0.0015 + 0.9811 TM/ETM + OLI = 0.0306 + 0.8800 TM/ETM + 
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3.4 MODIS harmonization to Landsat bandpass 

Harmonizing MODIS to Landsat bandpass reduces inconsistencies between Landsat and MODIS observations, which has 

been proved effective to improve the reconstruction accuracy of subsequent gap filling and spatiotemporal fusion processes 260 

(Chen et al., 2023; Gevaert and García-Haro, 2015; Shi et al., 2022). Here, a cross-resolution data harmonization approach is 

employed for harmonizing MODIS to Landsat OLI bandpass. This method involves utilizing matched Landsat and MODIS 

observations to establish multiple linear transformation models for each spectral band and each local image patch. 

      In contrast to previous methods that construct distinct transformation models for each land cover type (Cao et al., 2020; 

Shen et al., 2013; Yang et al., 2020), our approach adopts a patch-wise harmonization strategy with an overlapping 265 

mechanism to tackle spatial heterogeneity. This strategy avoids the necessity for high-accuracy land cover maps while 

concurrently ensuring computational efficiency. As illustrated in Figure 3, Landsat images are paired with MODIS images 

acquired on corresponding dates, with the exclusion of contaminated Landsat pixels such as clouds and cloud shadows. 

Subsequently, for each image patch and each spectral band, a linear transformation model is constructed utilizing candidate 

pixels within that image patch. The MODIS reflectance is then adjusted using the obtained transformation coefficients to 270 

generate more “harmonized” MODIS data. In areas of patch overlap, the transformation coefficients are averaged for the 

final adjustments. This approach employs multiple regional transformation models to better account for material-dependent 

spectral characteristics that vary across regions and uses an overlapping mechanism to enhance spatial consistency between 

neighbouring image patches. 

 275 

 
Figure 3: An illustration of patch-wise harmonization with overlapping. 
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3.5 Unified gap filling and spatiotemporal fusion 

Existing spatiotemporal fusion algorithms generally require cloud-free seamless Landsat images as input (Gao et al., 2006; 280 

Shi et al., 2022; Zhu et al., 2016, 2010), which may harm their data efficiency and performances, especially in cloudy areas 

where there are few cloud-free Landsat images available. Therefore, previous studies (Chen et al., 2018; Liu et al., 2021) 

applied gap filling algorithms to partly contaminated Landsat images first, and then use these gap-filled images for 

subsequent fusion process. Different from these approaches, we propose the Unified, ROBust, OpTimization-based 

spatiotemporal reconstruction model (uROBOT), which can tackle both gap filling and spatiotemporal fusion problems in a 285 

unified manner. 

 

As shown in Figure 4, the input data for uROBOT consist of a matched time series of Landsat-MODIS image patches D; 

and D< acquired at {𝑇=, … , 𝑇+}, a MODIS image patch C> acquired at the prediction phase 𝑇?, and a partially contaminated 

Landsat image F> acquired at 𝑇? (case 1 in Figure 4). The output is the predicted reflectance values for the unobserved 290 

segments of the Landsat image F>@  at 𝑇?.  Should 𝐹?  be entirely contaminated/unobserved, the scenario simplifies to a 

conventional spatiotemporal fusion problem (case 2 in Figure 4).  

 
Figure 4: Input/output settings of uROBOT. The superscripts “+” and “-” indicate the corresponding observed and unobserved 
(or contaminated) segments of Landsat image at the prediction phase. The uROBOT can tackle both gap filling (case 1) and 295 
spatiotemporal fusion (case 2) problems in a unified manner. 

 

3.5.1 Preliminaries of the uROBOT model 

Similar to the previous spatiotemporal fusion model (Chen et al., 2023), the basic assumption of uROBOT is that the 

MODIS image 𝐶? can be accurately approximated by a linear combination of other similar MODIS images in the input time-300 

series data, given by 
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𝐶? ≈ 𝐷A𝛼,            (6) 

where 𝐶? is the MODIS image patch acquired at the prediction phase 𝑇?, 

𝐷B is a matrix that stacks the input MODIS time-series image patches acquired at {𝑇=, … , 𝑇+}, 

𝛼 is a sparse vector that selects out MODIS image patches similar to 𝐶? and combines them to approximate 𝐶?. 305 

       

      Then, it is assumed that the representation coefficients 𝛼 can be transferred to corresponding Landsat images, and obtain 

an estimation for F> 

𝐹]? = 𝐷C𝛼,            (7) 

where 𝐹]? is the estimated Landsat image patch at 𝑇?, 310 

𝐷C is a matrix that stacks the input Landsat time-series image patches acquired at {𝑇=, … , 𝑇+}. 

 

      The representation coefficients 𝛼 can be obtained by solving an optimization problem with two extra regularization 

terms. Detailed explanations regarding these two regularization terms will be provided subsequently. 

min
D
^𝐶? −𝐷B𝛼^E

E + 𝜆|𝛼|= + 𝛽^𝐹(+.6F? −𝐷C𝛼^E
E + 𝜇^𝐹?: −𝐷C:𝛼^E

E
,      (8) 315 

    where λ, 𝛽, 𝜇 are scalars, 

    𝛼 is a vector that flattens the representation coefficients, 

    𝐶? is a vector that flattens the MODIS image patch at 𝑇?, 

    𝐷B is a matrix that stacks the MODIS time-series image patches acquired at {𝑇=, … , 𝑇+}, 

    𝐷C is a matrix that stacks the Landsat time-series image patches acquired at {𝑇=, … , 𝑇+}, 320 

    𝐹(+.6F?  is a vector that flattens an interpolated Landsat image patch at 𝑇?  (further elucidation on this matter will be     

presented subsequently), 

				𝐹?: is a vector that flattens the observed part of 𝐹?, 

and 𝐷C: is a matrix that stacks the corresponding observed parts of 𝐷C. 

      Beyond the previous spatiotemporal fusion model (Chen et al., 2023), the uROBOT model accepts the observed part 𝐹?: 325 

(if there is, as case 1 in Figure 4) as an extra input. Hence, the regularization term 𝜇(^𝐹?: −𝐷C:𝛼^) allows uROBOT to 

exploits the observed segments 𝐹?: to better reconstruct the target image 𝐹?. This feature enables the uROBOT model to 

handle both gap filling and spatiotemporal fusion problems in a unified manner. Additionally, uROBOT utilizes the 
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interpolated Landsat image 𝐹(+.6F?  in the temporal continuity penalty term, which further improves the performance of 

uROBOT. The 𝐹(+.6F? is an interpolated Landsat image patch at 𝑇?, obtained using the combination of nearing-date Landsat 330 

observations weighted by corresponding MODIS data. Therefore, the regularization term 𝛽(^𝐹(+.6F? −𝐷C𝛼^E
E) serves to 

enhance the temporal continuity of the final predicted Landsat image 𝐹]? = 𝐷C𝛼.  

      All the constraint terms in Equation (8) contribute to addressing gradual and step changes. To handle extreme conditions 

such as ephemeral land cover changes, the uROBOT model also distributes the approximation residuals into the prediction 

(Chen et al., 2023), and the final prediction is formulated as 335 

𝐹]? = 𝐷C𝛼 + (𝐶? −𝐷B𝛼),           (9) 

      In regions with frequent cloud cover, the scarcity of cloud-free observations can pose a challenge. To address this, the 

temporal continuity constraint 𝛽^𝐹(+.6F? −𝐷C𝛼^E
E
 and the residual distribution in Equation (9) ensure that our estimations 

are consistent with 𝐶? and are at least as accurate as the interpolated results 𝐹(+.6F?. 

3.5.2 Implementation of uROBOT for SDC reconstruction 340 

As shown in Figure 4, the uROBOT model reconstructs seamless Landsat images for each prediction phase separately. At 

each prediction phase 𝑇?, the uROBOT model takes three main steps to reconstruct the corresponding Landsat image 𝐹?: 

 

       (1) Firstly, the uROBOT model constructs an interpolated image 𝐹(+.6F? using the weighted combination (Zhu et al., 

2010) of clear-sky Landsat pixels acquired nearest to the prediction phase 𝑇?. 345 

𝐹(+.6F?(𝑥, 𝑦) = 𝑤= × 𝐹=(𝑥, 𝑦) + 𝑤E × 𝐹E(𝑥, 𝑦),     for each pixel location (𝑥, 𝑦)    (10) 

    where (𝑥, 𝑦) indicates a given pixel location,  

    𝐹=(𝑥, 𝑦) is the cloud-free Landsat pixel acquired nearest to and before 𝑇?, 

    𝐹E(𝑥, 𝑦) is the cloud-free Landsat pixel acquired nearest to and after 𝑇?, 

and the weights 𝑤= and 𝑤E are obtained using corresponding MODIS pixels. 350 

𝑤= =
(B0($,&)@B1($,&))0

(B2($,&)@B1($,&))0:(B0($,&)@B1($,&))0
    and.   𝑤E =

(B2($,&)@B1($,&))0

(B2($,&)@B1($,&))0:(B0($,&)@B1($,&))0
,    (11) 

where 𝐶?(𝑥, 𝑦) is the corresponding MODIS pixel acquired at 𝑇?, 

𝐶=(𝑥, 𝑦) is the corresponding cloud-free MODIS pixel acquired on the same date as 𝐹=(𝑥, 𝑦), 

and 𝐶E(𝑥, 𝑦) is the corresponding cloud-free MODIS pixel acquired on the same date as 𝐹E(𝑥, 𝑦). 
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 355 

       (2) Secondly, the uROBOT model utilizes all input time series data and the spatial information of 𝐹?: to do similar 

image matching and approximation (Chen et al., 2023), by solving the optimization problem in Equation (8) to obtain the 

representation coefficients 𝛼. 

 

       (3) Then, the last step is to reconstruct the target 𝐹?@ using the obtained coefficients 𝛼 and all input data, as 360 

𝐹]?@ = 𝐷C@𝛼 + (𝐶?@ −𝐷B@𝛼),          (12) 

where 𝐹]?@ is an estimation of the unobserved/contaminated segments of 𝐹?,  

𝐷C@, 𝐶?@, and 𝐷B@ are the corresponding masked parts of 𝐷C, 𝐶?, and 𝐷B. 

 

3.6 Quantitative assessment using the leave-one-out approach 365 

The leave-one-out assessment approach has been widely used to evaluate the accuracy of reconstructed surface reflectance 

values in previous gap filling and spatiotemporal fusion studies (Chen et al., 2011; Gao et al., 2006; Zhu et al., 2016, 2010). 

This approach initially excludes a certain Landsat image from the input data, subsequently using the remaining input data to 

reconstruct the excluded image and thereafter evaluating discrepancies between the originals and reconstructions using 

standard metrics, such as Correlation Coefficient (CC), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 370 

rMAE (MAE normalized by true surface reflectance values), and Robert’s edge (Edge) spatial features (Zhu et al., 2022). 

We calculated the normalized difference of the Edge spatial features between reconstructed image and actual Landsat image. 

The normalized metric values range from -1 to 1, indicating the under- or over-estimate of spatial details. The average 

normalized metric value of pixels with Edge value higher than 90th percentile in the actual Landsat image was used to 

represent the spatial accuracy of the reconstructed image (Zhu et al., 2022). 375 

      A total of 425 test sites that distributed across the globe are selected randomly, each of which covers a 6 km × 6 km area. 

These test sites were grouped by their dominant land cover types using the FROM_GLC land cover map (Gong et al., 2013; 

C. Li et al., 2017). Figure 5 shows the spatial distribution and corresponding dominant land cover types of the 425 global 

test sites. For each Landsat image at each test site, we exclude it from the input data and applied SDC reconstruction with the 

remaining data, separately. Then, the reconstruction accuracy is evaluated by comparing the reconstructed images with the 380 

original Landsat images. The accuracy assessment is conducted in four years (2001, 2004, 2012, 2021) representative of 

different input data conditions. 
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Figure 5: Spatial distribution and corresponding dominant land cover types of the 425 global test sites. 

 385 

 

3.7 Quantitative assessment by cross-comparing with the HLS products 

Another assessment approach is to cross-compare the gap-filled SDC dataset with actual observations from other sensors. 

The NASA’s HLS products provide dense 30-m observation data by harmonizing Landsat OLI (since 2014) and Sentinel-2 

MSI (since 2016) products, making itself a good reference data to evaluate the SDC product for the period 2016-2022. We 390 

selected 22 MGRS tiles representative of different land cover types as test sites (Chen et al., 2023) and evaluated the 

agreement between the SDC and HLS products in the year 2021. Figure 6 shows the spatial distribution of the 22 MGRS 

tiles in the cross-comparison. Each MGRS tile covers a 109.8×109.8 km area. Since the L30 product are derived from 

Landsat OLI data, we employed the leave-one-out validation strategy (the same as in last section) for the cross-comparison 

with L30 data. The least square regression method was used to reduce spectral bandpass differences between the SDC and 395 

HLS data for each spectral band and each test site. 
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Figure 6: Spatial distribution of the 22 MGRS tiles involved in the cross-comparison with HLS. 

 

 400 

 

4 Results 

4.1 Global 30-m daily Seamless Data Cube (SDC) of land surface reflectance 

Based on the developed framework, a global, 30-m, 23-year (2000-2022), and daily surface reflectance SDC dataset was 

generated by combining multi-sensor observations from Landsat TM/ETM+/OLI and MODIS Terra products. The generated 405 

SDC dataset is tiled into the UTM-based grid, as described in Section 3.1. This gridding system includes 18,466 tiles (each 

of which includes 3661×3661 Landsat pixels), covering most of global land surface except Antarctica, as shown in Figure 7. 
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Figure 7: Distribution of the 18,466 tiles used for SDC generation. 

 410 

Figs. 8-11 depict four examples of SDC time series in comparison with the HLS data (not used in the generation of SDC), 

with a specific focus on land cover changes. Figure 8 illustrates a crop harvest event that took place in April 2021 in Egypt. 

Remarkably, the SDC time series demonstrates a more adept representation of the various crop harvest stages compared to 

the L30 time series. This enhanced performance is attributed to the incorporation of more frequent temporal information 

from MODIS. Figure 9 presents the second case in the Poyang Lake wetland, a region prone to frequent cloud cover. 415 

Although there are only limited cloud-free Landsat observations, the temporal phases of land-water transition are effectively 

captured in the SDC time series. The third case typified a tundra region in Canada. As shown in Figure 10, the SDC time 

series accurately reflects the snow season and vegetation growth in the tundra ecosystem. The fourth case in Figure 11 

illustrates a flood event that occurred in India. This region experienced flooding in October 2013, a period when Sentinel-2 

data was unavailable. During December, the water gradually receded, as depicted in the figure. The results demonstrate the 420 

proficiency of the SDC data in monitoring rapid land cover changes. Further, the SDC dataset exhibits robust consistency in 

both spatial and temporal dimensions, with an extended temporal coverage dating back to 2000. 
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Figure 8: False-color composites of SDC and HLS data, and time series of red SR (red) and NIR SR (blue) of the central pixel 425 
located at 30.4851º N, 31.9383º E (Egypt, tile 36RUU) from Feb-15 to Jul-15 2021. 
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Figure 9: False-color composites of SDC and HLS data, and time series of red SR (red) and NIR SR (blue) of the central pixel 
located at 29.0965º N, 116.1107º W (China, tile 50RMT) from Feb-15 to Jul-15 2021. 430 
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Figure 10: False-color composites of SDC and HLS data, and time series of red SR (red) and NIR SR (blue) of the central pixel 
located at 56.2778º N, 110.9034º W (Canada, tile 12VWH) from Feb-15 to Jun-15 2021. 

 435 
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Figure 11: False-color composites of SDC and HLS data, and time series of red SR (red) and NIR SR (blue) of the central pixel 

located at 23.2923º N, 68.7947º E (India, tile 42QVL) from Nov-15 2013 to Mar-15 2014. 

 

 440 
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4.2 Accuracy assessment results using the leave-one-out approach 

Table 4 displays the results of quantitative assessments for the 425 global test sites across four typical years, utilizing 

different input data settings. Notably, the SDC attains its peak reconstruction accuracy in 2021, when incorporating Landsat 

ETM+, OLI, and MODIS data. The reconstruction accuracy of SDC is comparatively diminished in 2012, when Landsat TM 

and OLI observations are not available. Table 5 illustrates the SDC reconstruction accuracy across test sites characterized by 445 

different land cover types. The reconstruction accuracy of SDC in water bodies and tundra areas is observed to manifest 

relatively higher error levels. Figure 12 displays scatter plots depicting the predicted SDC and actual Landsat surface 

reflectance values in the leave-one-out assessment. The majority of data points closely align with the 1:1 line, indicating a 

robust consistency between the predicted and actual reflectance values. Overall, these results substantiate that reconstructed 

SDC surface reflectance values achieve a high level of accuracy on a global scale. 450 

 
Table 4: Accuracy of SDC reconstruction at the 425 global test sites (ETM+*: scan-line corrector failure). 
Band 

(mean 

±𝑠𝑡𝑑) 

2001 

(TM and ETM+) 

RMSE MAE CC Edge 
 

2004 

(TM and ETM+*) 

RMSE MAE CC Edge 
 

2012 

(ETM+*) 

RMSE MAE CC Edge 
 

2021 

(ETM+* and OLI) 

RMSE MAE CC Edge 
 

Blue 
0.017 

±0.009 

0.012 

±0.006 

0.745 

±0.063 

-0.280 

±0.108 

0.016 

±0.009 

0.012 

±0.006 

0.771 

±0.063 

-0.264 

±0.105 

0.016 

±0.010 

0.012 

±0.006 

0.795 

±0.053 

-0.250 

±0.099 

0.015 

±0.007 

0.011 

±0.005 

0.792 

±0.075 

-0.245 

±0.093 

Green 
0.017 

±0.008 

0.013 

±0.005 

0.806 

±0.053 

-0.215 

±0.098 

0.016 

±0.008 

0.012 

±0.006 

0.832 

±0.055 

-0.205 

±0.096 

0.015 

±0.009 

0.011 

±0.006 

0.844 

±0.050 

-0.189 

±0.087 

0.016 

±0.008 

0.012 

±0.005 

0.863 

±0.058 

-0.186 

±0.080 

Red 
0.019 

±0.008 

0.014 

±0.006 

0.840 

±0.052 

-0.198 

±0.098 

0.018 

±0.008 

0.013 

±0.006 

0.866 

±0.053 

-0.188 

±0.093 

0.018 

±0.009 

0.013 

±0.006 

0.874 

±0.052 

-0.179 

±0.084 

0.018 

±0.008 

0.013 

±0.005 

0.891 

±0.059 

-0.174 

±0.081 

NIR 
0.029 

±0.008 

0.021 

±0.006 

0.891 

±0.027 

-0.178 

±0.083 

0.027 

±0.009 

0.020 

±0.006 

0.910 

±0.024 

-0.164 

±0.076 

0.027 

±0.009 

0.020 

±0.007 

0.912 

±0.025 

-0.157 

±0.068 

0.028 

±0.009 

0.021 

±0.007 

0.922 

±0.029 

-0.154 

±0.061 

SWIR1 
0.025 

±0.003 

0.018 

±0.002 

0.834 

±0.022 

-0.180 

±0.092 

0.022 

±0.004 

0.016 

±0.003 

0.851 

±0.037 

-0.163 

±0.082 

0.022 

±0.004 

0.016 

±0.003 

0.867 

±0.037 

-0.154 

±0.071 

0.022 

±0.003 

0.016 

±0.003 

0.887 

±0.033 

-0.163 

±0.068 

SWIR2 
0.018 

±0.003 

0.014 

±0.002 

0.810 

±0.045 

-0.204 

±0.095 

0.016 

±0.003 

0.012 

±0.002 

0.841 

±0.061 

-0.190 

±0.091 

0.017 

±0.004 

0.012 

±0.003 

0.853 

±0.060 

-0.177 

±0.080 

0.016 

±0.003 

0.012 

±0.002 

0.861 

±0.058 

-0.167 

±0.071 
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Table 5: Accuracy of SDC reconstruction at the 425 global test sites for different land cover types. 

Band 

Cropland 

RMSE MAE CC rMAE 

(%) 
 

Forest 

RMSE MAE CC rMAE 

(%) 
 

Grassland 

RMSE MAE CC rMAE 

(%) 
 

Shrubland 

RMSE MAE CC rMAE 

(%) 
 

Blue 0.012 0.009 0.763 13% 

0.012 0.010 0.812 9% 

0.015 0.012 0.866 11% 

0.027 0.020 0.892 7% 

0.026 0.019 0.867 8% 

0.021 0.016 0.882 10% 
 

0.014 0.010 0.684 17% 

0.013 0.010 0.750 11% 

0.015 0.011 0.777 13% 

0.029 0.022 0.880 8% 

0.020 0.015 0.820 10% 

0.013 0.010 0.766 11% 
 

0.015 0.011 0.808 11% 

0.015 0.011 0.858 8% 

0.017 0.013 0.896 9% 

0.026 0.019 0.907 7% 

0.022 0.017 0.863 8% 

0.018 0.013 0.856 9% 
 

0.011 0.008 0.758 11% 

0.011 0.008 0.826 8% 

0.013 0.009 0.875 9% 

0.021 0.016 0.898 6% 

0.020 0.015 0.863 7% 

0.016 0.012 0.870 8% 
 

Green 

Red 

NIR 

SWIR1 

SWIR2 
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Band 

Water 

RMSE MAE CC rMAE 

(%) 
 

Tundra 

RMSE MAE CC rMAE 

(%) 
 

Impervious surface 

RMSE MAE CC rMAE 

(%) 
 

Bareland 

RMSE MAE CC rMAE 

(%) 
 

Blue 0.023 0.017 0.778 15% 

0.023 0.017 0.829 12% 

0.025 0.018 0.834 14% 

0.033 0.024 0.858 13% 

0.020 0.015 0.818 15% 

0.016 0.012 0.778 15% 
 

0.049 0.033 0.921 15% 

0.048 0.033 0.927 13% 

0.051 0.035 0.930 13% 

0.058 0.043 0.931 12% 

0.035 0.026 0.795 22% 

0.026 0.020 0.714 20% 
 

0.012 0.009 0.726 13% 

0.013 0.009 0.792 10% 

0.015 0.011 0.836 12% 

0.027 0.019 0.906 8% 

0.022 0.016 0.883 9% 

0.017 0.013 0.880 11% 
 

0.012 0.009 0.784 6% 

0.013 0.010 0.858 5% 

0.016 0.012 0.877 4% 

0.018 0.014 0.880 4% 

0.021 0.015 0.847 6% 

0.016 0.012 0.856 6% 
 

Green 

Red 

NIR 

SWIR1 

SWIR2 

                 

 

 
Figure 12: Scatter plots of the actual and predicted values for the test sites of different land cover types. 

 460 

4.3 Accuracy assessment results by cross-comparing with the HLS products 

Table 6 presents the quantitative cross-comparison results between the SDC and HLS L30/S30 products at the 22 MGRS 

tiles. The results indicate a higher level of agreement between the SDC and HLS L30 products compared to that between the 

SDC and HLS S30 products. This discrepancy may be attributed to the spectral differences between the Landsat OLI and 
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Sentinel-2 MSI instruments. Notably, since the metric values listed in Table 6 are calculated for test sites at a different 465 

spatial scale (109.8 km×109.8 km here, and 6 km×6 km in Section 4.2), the listed RMSD and CC values are not directly 

comparable to those in Tables 4-5. As described in Section 3.1, the gridding system of SDC has a 15-meter offset compared 

to the Sentinel-2 gridding system used by the HLS products. This 15-meter offset may also cause systematic deviations in 

the cross-comparison. 

      Figure 13 presents scatter plots depicting the reconstructed SDC data in comparison to HLS data. The blue band in the 470 

plots indicates higher deviations, known to be sensitive to atmospheric conditions. Most data points lie near the 1:1 line, 

indicating a high degree of agreement between the SDC and HLS products. 
 

Table 6: Cross-comparison results of between the SDC with HLS L30 and S30 products at the 22 MGRS tiles. 
Band Compare SDC with HLS L30 

RMSD MAD CC Edge 
 

Compare SDC with HLS S30 
RMSD MAD CC Edge 

 

Blue 0.058 0.014 0.892 -0.217 0.059 0.017 0.849 -0.339 
Green 0.055 0.015 0.906 -0.217 0.060 0.020 0.863 -0.317 
Red 0.056 0.017 0.920 -0.214 0.060 0.022 0.890 -0.306 
NIR 0.054 0.023 0.924 -0.218 0.059 0.027 0.899 -0.233 
SWIR1 0.030 0.017 0.977 -0.201 0.034 0.022 0.971 -0.154 
SWIR2 0.025 0.014 0.980 -0.196 0.028 0.018 0.974 -0.164 

 475 
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Figure 13: Scatter plots of SDC and HLS reflectance values in the cross-comparison. 
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4.4 The effectiveness of Landsat cross-sensor calibration 

The evaluation of our Landsat cross-sensor calibration method involved a comparison of surface reflectance differences 

before and after the bandpass adjustment. The surface reflectance differences are quantified by the RMSDs between ETM+ 480 

and OLI observations (temporally interpolated to align with the acquisition dates of ETM+). This comparison is conducted 

for six spectral bands across six MGRS tiles (10SEH, 17RKQ, 32UNA, 36MWS, 49SGV, and 55HCC). Figure 14 presents 

the surface reflectance differences before and after the cross-calibration process for six spectral bands at the six test sites. 

Additionally, Figure 15 illustrates two examples of calibrated blue and NIR surface reflectance time series. The results 

demonstrate the effectiveness of our method in reducing the surface reflectance differences between ETM+ and OLI 485 

observations, aligning them more closely using obtained local-scale linear transformation models. 
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Figure 14: The mean RMSDs between ETM+ and OLI observations before and after the cross-calibration for six spectral bands at 

six MGRS tiles. 
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 490 
Figure 15: Time series of original and calibrated surface reflectance: (a) located at 23.2923º N, 68.7947º E; (b) located at 23.2923º 

N, 68.7947º E. The blue lines are the estimated curves of the OLI observations based on the Fourier approach (Dash et al., 2010; 

Shang and Zhu, 2019). 

 

4.5 The effects of remaining Landsat sensor differences 495 

The effects of remaining Landsat sensor differences on the SDC reconstruction accuracy were investigated in this section. 

We evaluated the reconstruction accuracy with different input data settings in three typical years (2001, 2004, 2021) using 

the 425 global test sites from Section 3.6. The accuracy assessment results presented in Table 7 suggest that incorporating 

more data from different sensors helps to improve the overall reconstruction accuracy. However, more in-depth analysis 

reveals that while incorporating ETM+* (*: scan-line corrector failure) images in the input data improved the accuracy of 500 
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TM image reconstructions in 2004, it simultaneously diminished the accuracy of OLI image reconstructions in 2021. In a 

similar vein, the inclusion of OLI somewhat reduced the accuracy of ETM+* image reconstructions in 2021, as evidenced in 

Table 8 and Figure 16. Despite this, these fluctuations in accuracy were relatively minor. 

 
Table 7:  Accuracy of SDC reconstruction (of all images) with different input data settings. Metrics were averaged over the six 505 
bands, and the best results are marked in bold. (ETM+*: scan-line corrector failure)  

Metrics 2001 TM and ETM+ 
TM ETM+ All 

 

2004 TM and ETM+* 
TM ETM+* All 

 

2021 ETM+* and OLI 
ETM+* OLI All 

 

RMSE 0.0205 0.0227 0.0203 0.0194 0.0264 0.0187 0.0240 0.0222 0.0187 
MAE 0.0152 0.0170 0.0150 0.0147 0.0194 0.0138 0.0182 0.0167 0.0140 
CC 0.7836 0.7459 0.8056 0.8302 0.7567 0.8297 0.7894 0.8117 0.8535 
 

Table 8: Accuracy of SDC reconstruction (of images from specific sensors) with different input data settings. Metrics were 

averaged over the six bands, and the best results are marked in bold.  

Metrics 2004 TM 
TM TM and 

ETM+ 
 

2021 ETM+ 
ETM+ OLI and 

ETM+ 
 

2021 OLI 
OLI OLI and 

ETM+ 
 

RMSE 0.0213 0.0198 0.0183 0.0186 0.0172 0.0177 
MAE 0.0161 0.0148 0.0137 0.0142 0.0125 0.0131 
CC 0.8083 0.8402 0.8365 0.8503 0.8732 0.8750 
 510 
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Figure 16: Comparison of the SDC reconstruction accuracy with different input data settings. The symbol “+” (increase) and “-” 

(decrease) indicate the change in accuracy with the additional input data. 515 
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4.6 The effectiveness of Landsat cloud masking 

To mitigate cloud mask omission errors in Fmask results, the SDC generation incorporated an enhanced cloud masking 

approach involving a brightness-threshold filter and a time-series-outlier filter. Figure 17 presents two cases of cloud 

masking results by Fmask and the enhanced cloud masking method. These cases reveal the presence of cloud or heavy 520 

aerosol pixels that remain undetected by the Fmask algorithm. Meanwhile, the enhanced cloud masking method adeptly 

identified and filtered out the majority of these previously undetected cloud pixels, demonstrating its effectiveness in 

ensuring the quality of the input Landsat data for SDC generation. 

 

 525 
Figure 17: Comparison of cloud masks derived by Fmask and the enhanced cloud masking approach. The yellow shading in the 

cloud masks signifies cloud-free pixels. It can be seen that thin clouds undetected by Fmask were mostly screened out by the 

enhanced cloud masking. 

 

 530 
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4.7 Temporal continuity of reconstructed SDC time series 

The SDC product provides an extensive historical dataset of multi-spectral and medium resolution data covering the period 

from 2000 to 2022. As indicated in Table 2, this prolonged temporal coverage encapsulates multiple distinct phases, each 

characterized by varied input data configurations. The temporal continuity and consistency of the SDC data emerge as 

pivotal factors for its efficacy in monitoring long-term land dynamics. Figure 18 presents two distinct scenarios of SDC time 535 

series extending from 2000 to 2022. The first scenario pertains to a forest situated in a mountainous region, characterized by 

strong phenological changes and rugged terrain features. The second scenario depicts a desert location exhibiting minimal 

temporal variations and near Lambertian surfaces. It can be seen that there are no discernible discontinuities between the 

different phases in the SDC time series. 

 540 

 
Figure 18: Two cases of SDC and Landsat time series: (a) located at 35.4549º N, 113.4381º E; (b) located at 39.0850º N, 81.2460º E. 
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5 Discussion 

5.1 Global-scale land cover classification utilizing the SDC: a comparative analysis with Landsat composite and 
interpolated datasets 545 

Image compositing is a conventional approach employed to mitigate data gaps in optical remote sensing, which selects the 

highest-quality observations within a defined time interval, based on specific criteria, to create seamless clear images (Qiu et 

al., 2023). Contrary to best-pixel composite methods, there are also some interpolation methods to generate synthetic images 

based on harmonic time series fits (Zhou et al., 2022; Zhu et al., 2015). Figure 19 displays the comparison of SDC images 

with Landsat composite and interpolated images. The Landsat composite images are generated by the NLCD (Jin et al., 550 

2023) and MAX-RNB (Qiu et al., 2023) algorithms, and the Landsat interpolated images are generated using the HAPO 

algorithm (Zhou et al., 2022). Notwithstanding the good visual quality apparent in these Landsat composite and interpolated 

images, it is evident that certain temporal change information was lost during the process of image compositing and 

interpolation. 

      Moreover, we conducted a comparative analysis to evaluate the effectiveness of using Landsat composite and 555 

interpolated images versus using SDC data for land cover classification. To perform this assessment, we utilized the 

validation sample set provided in previous study (Li et al., 2017), which consists a total of 32,946 data points distributed 

globally. To facilitate a clear and equitable comparison, we employed solely the six-band surface reflectance time series 

from Landsat composite, interpolated images and SDC data as input features for the classification. Subsequently, we 

conducted a five-fold cross-validation procedure independently for each input data configuration, using the same LGBM 560 

classifier with default parameter settings. 

      Table 9 presents the results of overall classification accuracy for various input data configurations. It is discernible that 

there exist minor discrepancies in performance between the NLCD and MAX-RNB results. And the utilization of seasonal 

composite images led to a significantly higher level of classification accuracy compared to annual composite images. 

Remarkably, the highest classification accuracy was attained using SDC time series as input features, outperforming other 565 

input settings by a wide margin (2.4%~11.3%). Figure 20 shows two examples of land cover classification results, when 

using SDC can correctly identify land cover types, while other data cannot. The SDC time series preserves the temporal 

information of the original Landsat data and remains stable when Landsat observations are sparse. 
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Figure 19: False-color composites of Landsat, Landsat composite, and SDC images at 35.3104º N, 97.7974º W. 570 
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Table 9: Overall Accuracy (OA) of land cover classification results using NLCD composite images, MAX-RNB composite images, 

HAPO interpolated images, and SDC time series as input features. 

Input 

data 

NLCD  

Seasonal Annual 
 

MAX-RNB 

Seasonal Annual 
 

HAPO 

Daily 
 

SDC 

Daily 
 

OA 0.7179 0.6309 0.7131 0.6360 0.7197 0.7437 

 

 
Figure 20: Examples of land cover classification results using different input data: (a) ground truth is cropland; (b) ground truth is grass. 575 

5.2 The influence of Landsat 7 ETM+ scan-line corrector failure 

The scan-line corrector (SLC) of the ETM+ sensor onboard Landsat 7 failed permanently in May 2003, resulting in about 

22% of the pixels per scene not being scanned (caused wedge-shaped gaps) since that time (Chen et al., 2011). These wedge-

shaped gaps are evident in the Landsat ETM+ images as displayed in Figures 17, 18, and 19. However, this issue poses no 

obstacle to the SDC generation, as the uROBOT model can exploit time-series input data to fill these gaps and fuse them 580 
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with MODIS in a unified manner. In the year 2012 when there are only Landsat ETM+ SLC-off images available, the 

uROBOT model can still utilize these ETM+ image patches as input and achieve a relatively high reconstruction accuracy, 

as indicated in Table 4. Even in later years when Landsat OLI images become available, the incorporation of Landsat ETM+ 

images as input can still help improve the overall accuracy of the SDC generation, as indicated in Table 7. 

 585 

5.3 Limitations of SDC products 

The SDC is not equivalent to actual daily 30-m Earth observations data. It is an estimation based on Landsat and MODIS 

time series observations. Reconstructing missing Landsat data is an under-determined problem, meaning there can be 

infinitely many possible solutions (Shen et al., 2015). By using 500-m MODIS images as “guidance” and applying the 

constraints presented in Equation (8), we can narrow down the solution space and make more accurate estimations. 590 

However, achieving 100% accuracy is not feasible since the information provided in the input data is usually incomplete. 

Additionally, the effective spatial resolution of MODIS observations changes significantly due to the variations of view 

angles (Pahlevan et al., 2017). Even after BRDF normalization and temporal smoothing, these effects cannot be perfectly 

mitigated. The effective temporal resolution of SDC depends on the quality of the input Landsat and MODIS data, which can 

vary in space and time.  595 

      The LEDAPS atmospheric correction algorithm for Landsat TM and ETM+ does not perform as well as the LaSRC for 

Landsat OLI (Vermote et al., 2018). Additionally, the Fmask algorithm for Landsat-5,7 is less effective compared to its 

performance for Landsat-8,9, due to the absence of the cirrus band (Zhu et al., 2015a). Our enhanced cloud masking 

approach identifies most of the previously undetected clouds. Nonetheless, there are still certain thin aerosols and cloud 

shadows in Landsat imagery that can introduce temporal noise and spatial artifacts into the SDC dataset. Implementing a 600 

more aggressive cloud masking strategy could minimize these impacts, yet it could also significantly reduce the number of 

available observations. Therefore, the development of a more accurate and robust algorithm for cloud and cloud shadow 

detection is essential for future improvements. 

      As shown in Table 8 and Figure 16, remaining Landsat cross-sensor inconsistencies may reduce the reconstruction 

accuracy slightly. And the sensor differences between Landsat and MODIS sensors could also introduce errors. Future 605 

improvements may require a more effective method for cross-sensor calibration and data harmonization. 

      The influence of geographic registration errors was not considered in this study, since the Landsat Collection 2 products 

have significantly improved the absolute geolocation accuracy of Landsat data (Crawford, 2023). However, the co-

registration accuracy between Landsat imagery and MODIS data could also influence the reconstruction accuracy of SDC 

dataset. Future improvements could introduce co-registration processes to address this concern.   610 

      The SDC dataset could also benefit from integrating more data sources. For example, the European Space Agency (ESA) 

launched two satellites of the Sentinel-2 mission (S-2A and S-2B) in 2015 and 2017, respectively. The MultiSpectral 
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Instrument (MSI) onboard both satellites acquire multi-spectral data at a spatial resolution of 10 to 60 meters depending on 

the wavelength with a 5-day revisit period at the equator. The incorporation of Sentinel-2 could facilitate the generation of 

higher-quality SDC datasets with finer spatial resolutions. 615 

6 Conclusion 

In this study, a global-coverage, 30-m resolution, 23-year (2000-2022), and daily Seamless Data Cube (SDC) of land surface 

reflectance was developed, based on the fusion of multi-sensor observations from the Landsat-5, 7, 8, 9 and MODIS Terra 

constellations. The SDC generation relies on a novel processing framework, which comprises a set of processing stages: 

gridding and reprojection, Landsat cloud masking, Landsat cross-sensor calibration, MODIS harmonization to Landsat 620 

bandpass, and a unified gap filling and spatiotemporal fusion stage. The quality of the generated SDC dataset was evaluated 

using a leave-one-out approach and a cross-comparison with NASA’s Harmonized Landsat and Sentinel-2 products. The 

leave-one-out validation at 425 global test sites assessed the agreement between the SDC with actual Landsat surface 

reflectance values (not used as input), revealing an overall Mean Absolute Error (MAE) of 0.014 (the valid range of surface 

reflectance values is 0-1). The cross-comparison of the SDC with HLS products at 22 Military Grid Reference System 625 

(MGRS) tiles revealed an overall Mean Absolute Deviation (MAD) of 0.017 with L30 (Landsat-8-based 30-m HLS product) 

and a MAD of 0.021 with S30 (Sentinel-2-based 30-m HLS product). 

      The SDC has several advantages compared with other existing Landsat-based surface reflectance datasets: (i) it exhibits a 

higher observation frequency and enhanced capabilities for monitoring land cover changes; (ii) it is consistent in both spatial 

and temporal dimensions, without missing values; (iii) it has a global coverage and a prolonged 23-year duration from 2000 630 

to 2022; (iv) validation results revealed a high level of accuracy in SDC reconstruction. Moreover, the experiment 

employing the SDC for global-scale land cover classification underscore its advantages comparing with Landsat 

composite/interpolated datasets, achieving a sizable improvement in overall accuracy (2.4%~11.3%). The SDC will be a 

competitive analysis-ready surface reflectance dataset in many other studies related to global environmental monitoring. 

 635 

7 Code and data availability 

The SDC dataset is available at https://doi.org/10.12436/SDC30.26.20240506 (Chen et al., 2024) or on the project website 

http://sdc.iearth.cloud/, where a web-based interface is provided for all researchers to freely access the SDC dataset. Notably, 

the SDC dataset is dynamically generated upon request to optimize data storage efficiency. Furthermore, leveraging the 

generated SDC dataset, we have produced global 23-year (2000-2022) annual land cover maps using the FROM_GLC 640 

classification system, which are readily accessible on the website. All code utilized in our analyses and the accompanying 

experimental data are available upon reasonable request. 

https://doi.org/10.12436/SDC30.26.20240506
http://sdc.iearth.cloud/
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