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Figure S1. ResNet model structure 
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 errors in space in training dataset in test dataset 
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Figure S2. Errors in predicting surface PM2.5 with monitor-located grids training models 

  



model difference in error Difference in performance on the sites 

(a) Random Forest 

 

 

(b) XgBoost 

 

 

(c) lightGBM 

 

 

(d) DeepRF 

 

 

 

Figure S3. Improvement after implementing the features in surrounding grid cells (compared to 

each baseline model without spatiotemporal-neighbourhood features) 

  



 

 

(a) by density 

 

 

(b) by count 

Figure S4. Error distribution across the distance to monitor sites (D-site) based on ResNet-time 

model 

 



 

Figure S5. Error distribution across the monitor concentrations (B-conc) based on ResNet-time 

model 

  



B-conc* >30 20-30 10-20 

D-site** 1-5 2-5 3-5 

all 

100% 

   

Sample 

70% 

   

Sample 

40% 

   

Sample 

30% 

   

Sample 

20% 

   

Sample 

10% 

   
Figure S6. Spatial distribution of selected adding sites with certain levels of sampling (B-conc: 

conc in closed monitor sites; D-site: distance from monitor sites) 
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Figure S7. Improvement with selected adding sites with certain levels of sampling 

 

  



 

 (a) predicted surface PM2.5 concentration (b) performance on the sites 
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Figure S8. Improved performance with inclusion of spatiotemporal-neighbourhood features 

trained with real measurement dataset 

  



 

 

 (a) Population weighted PM2.5 (b) Exposure 
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*Note: within 5 grid cells 

Figure S9. Uncertainties in estimation of PM2.5-related exposure across China 

  



 

(a) performance in scenarios with adding points 

across distance to monitor sites 

 
  

(b) +sample new sites during 2017-2021 

Location of sites Prediction difference in errors 

 
*black dot: original monitor sites (619) 

  
 

Figure S10. Improvement with the inclusion of new sites after 2017 in testing with CMAQ 

simulations 

 


