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Abstract. For nearly two decades, the Ozone Monitoring Instrument (OMI) aboard the NASA Aura spacecraft (launched in 

2004) and the Ozone Mapping and Profiler Suite (OMPS) aboard the NASA/NOAA Suomi National Polar-orbiting Partnership 

(SNPP) satellite (launched in 2011) have been providing global monitoring of SO2 column densities from both anthropogenic 

and volcanic activities. Here, we describe the version 1 NOAA-20 (N20)/OMPS SO2 product, aimed at extending the long-

term climate data record. To achieve this goal, we apply a principal component analysis (PCA) retrieval technique, also used 15 

for the OMI and SNPP/OMPS SO2 products, to N20/OMPS. For volcanic SO2 retrievals, the algorithm is identical between 

N20 and SNPP/OMPS and produces consistent retrievals for eruptions such as the 2018 Kilauea and 2019 Raikoke. For 

anthropogenic SO2 retrievals, the algorithm has been customized for N20/OMPS, considering its greater spatial resolution and 

reduced signal-to-noise ratio as compared with SNPP/OMPS. Over background areas, N20/OMPS SO2 slant column densities 

(SCD) show relatively small biases, comparable retrieval noise with SNPP/OMPS (after aggregation to the same spatial 20 

resolution), and remarkable stability with essentially no drift during 2018-2023. Over major anthropogenic source areas, the 

two OMPS retrievals are generally well-correlated but N20/OMPS SO2 is biased low especially for India and the Middle East, 

where the differences reach ~20% on average. The reasons for these differences are not fully understood but are partly due to 

algorithmic differences. Better agreement (typical differences of ~10-15%) is found over degassing volcanoes. SO2 emissions 

from large point sources, inferred from N20/OMPS retrievals, agree well with those based on OMI, SNPP/OMPS, and 25 

TROPOspheric Monitoring Instrument (TROPOMI), with correlation coefficients > 0.98 and overall differences < 10%.  The 

ratios between the estimated emissions and their uncertainties offer insights into the ability of different satellite instruments to 

detect and quantify SO2 sources. While TROPOMI has the highest ratios among all four sensors, ratios from N20/OMPS are 

slightly greater than OMI and substantially greater than SNPP/OMPS. Overall, our results suggest that the version 1 

N20/OMPS SO2 product will successfully continue the long-term OMI and SNPP/OMPS SO2 data records. Efforts currently 30 

underway will further enhance the consistency of retrievals between different instruments, facilitating the development of 

multi-decade, coherent global SO2 datasets across multiple satellites. 
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1 Introduction 

Sulfur dioxide (SO2) is emitted from both anthropogenic (e.g., burning of sulfur-containing fuels, oil and gas exploitation, and 

metal smelting) and volcanic activities. The adverse impacts of SO2 and its secondary product in the atmosphere, sulfate 35 

aerosols, have been well documented, including their effects on air quality (e.g., Wang et al., 2016), visibility (e.g., Hand and 

Malm, 2007), human health (e.g., Orellano et al., 2021, and references therein), and ecosystems (e.g., Fedkin et al., 2019; 

Likens et al., 1996). By scattering solar radiation (e.g., Chuang et al., 1997) and acting as cloud condensation nuclei (e.g., 

Haywood and Boucher, 2000), sulfate aerosols also influence earth’s radiation budget and the climate. Explosive volcanic 

eruptions inject sizable amounts of SO2 and other species (e.g., water vapor, halogens, CO2) into the stratosphere, leading to 40 

significant perturbations of stratospheric aerosols (e.g., Vernier et al., 2011) and consequently, substantial impacts on the 

global climate (e.g., Aubry et al., 2021; McGraw et al., 2024; Robock, 2000, Stenchikov, 2016; Timmreck, 2012) as well as 

stratospheric ozone (e.g., Evan et al., 2023; Solomon et al., 1996; Zhu et al., 2018). To better understand the influence of 

volcanic SO2 on the earth system, it is imperative to develop and maintain global monitoring capabilities from satellites, given 

that volcanic eruptions often happen with little warning in remote areas. In addition, large and varying changes in 45 

anthropogenic SO2 emissions have occurred across different regions in recent decades (e.g., Krotkov et al., 2016), amid various 

factors such as economic development, energy structure, and environmental policies. Long-term, global SO2 datasets are also 

valuable for the detection and attribution of these changes, offering insights into, for example, the efficacy of pollution control 

measures. 

Polar-orbiting satellites equipped with spectrometers that measure back-scattered solar radiation in the ultraviolet (UV) have 50 

been a major asset for global SO2 monitoring. Heritage instruments such as the Total Ozone Mapping Spectrometer (TOMS) 

take measurements at a small number of wavelengths and can only detect relatively large amounts of SO2 (e.g., Krueger, 1983; 

Fisher et al., 2019), but provide a record of SO2 from major eruptions dating back to the late 1970s (Carn, 2022). First launched 

in the 1990s, UV/Visible spectrometers (e.g., GOME, the Global Ozone Monitoring Experiment) make measurements at 

hundreds of wavelengths, allowing detection of SO2 signals from degassing volcanoes and large anthropogenic sources 55 

(Eisinger and Burrows, 1998). More recent instruments with 2-dimensional detectors such as the Ozone Monitoring Instrument 

(OMI, Levelt et al., 2018) and the TROPOspheric Monitoring Instrument (TROPOMI, Veefkind et al., 2012) are capable of 

daily global observations at greater spatial resolution, enhancing sensitivity to smaller SO2 emission sources (e.g., Krotkov et 

al., 2006; Theys et al., 2015; Yang et al., 2007).  

Along with advances in instrumentation, progress in retrieval techniques has led to continued improvements in satellite data 60 

products. Data-driven methods, for example the principal component analysis (PCA) based algorithm (Li et al., 2013) and the 

COvariance Based Retrieval Algorithm (COBRA, Theys et al., 2021), have proved to be useful for SO2 retrievals. Both PCA 

and COBRA SO2 algorithms inherently account for various interferences as well as instrumental factors. As a result, they can 

produce SO2 retrievals with reduced noise and biases as compared with other methods such as Differential Optical Absorption 
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Spectroscopy (DOAS), band residual difference, and linear fit. The data-driven retrieval technique is also relatively insensitive 65 

to drift in instrument calibration, thus helping to maintain the stability of long-term data record. For example, NASA’s latest 

standard OMI SO2 product based on the PCA algorithm shows little change in the mean SO2 over background areas during the 

15-year period between 2004 and 2019 (Li et al., 2020). The PCA SO2 algorithm has also been implemented with the Ozone 

Mapping and Profiler Suite (OMPS) Nadir Mapper (NM) aboard the NASA/NOAA Suomi National Polar-orbiting Partnership 

(SNPP) spacecraft. Despite the relatively coarse spatial (50 × 50 km2 at nadir) and spectral resolution (~1 nm vs. ~0.6 nm) of 70 

SNPP/OMPS as compared with OMI, the PCA-based retrievals are largely consistent between the two instruments for both 

anthropogenic (Zhang et al., 2017) and volcanic (Li et al., 2017) SO2. 

Comparisons between PCA satellite SO2 retrievals and limited ground-based measurements using Multi Axis Differential 

Optical Absorption Spectroscopy (MAX-DOAS) and Brewer instruments generally show modest correlation but substantial 

scatter for individual data points (e.g., Ialongo et al., 2015; Jin et al., 2016; Tian et al., 2018; Wang et al., 2017), suggesting 75 

that the noise remains relatively large for satellite retrievals. Ground-based measurements also point to a negative bias in PCA-

based satellite SO2 data that can be attributed to differences in air mass factor calculations (e.g., a priori profiles) as well as 

relatively coarse satellite pixels, although a more recent study suggests that the bias in monthly mean OMI and SNPP/OMPS 

PCA SO2 is quite small as compared with MAX-DOAS measurements over northern China (Wang et al., 2022). Comparisons 

of different satellite SO2 datasets also reveal overall good agreement between the PCA retrieval algorithm and other retrieval 80 

techniques. For example, OMI PCA SO2 retrievals over polluted areas have been found to agree well with OMI DOAS 

retrievals (Theys et al., 2015). Similarly, there is also good consistency between TROPOMI and SNPP/OMPS PCA SO2 

retrievals and TROPOMI COBRA retrievals (Theys et al., 2021). For relatively large volcanic eruptions, it has been found that 

the estimates of the SO2 mass tend to agree to within ~10% between SNPP/OMPS PCA and TROPOMI DOAS retrievals (e.g., 

Carn et al., 2022). 85 

An important application enabled by this progress in satellite instruments and retrieval techniques is to use satellite data to 

infer SO2 emissions from large point sources (Fioletov et al., 2015). These top-down estimates, compiled in a publicly available 

catalogue (Fioletov et al., 2016), offer independent constraints on annual emissions from both anthropogenic sources (Li et al., 

2017; Liu et al., 2018; McLinden et al., 2021; Zhang et al., 2019) and degassing volcanoes (Carn et al., 2017), and have helped 

to uncover emission sources that were previously missing from bottom-up inventories (McLinden et al., 2016). The most recent 90 

SO2 emission catalogue (version 2, Fioletov et al., 2023) has been updated to include inputs from multiple satellite instruments 

including OMI, SNPP/OMPS, and TROPOMI. 

With OMI approaching the end of its mission by 2026 and SNPP/OMPS already in its second decade of operation, data 

products from newer instruments are needed to continue the long-term SO2 climate data record. The inclusion of TROPOMI 

in the emission catalogue is a necessary first step, but the existing TROPOMI SO2 products (Theys et al., 2017; 2021) are not 95 

fully consistent with NASA’s OMI/OMPS products due to differences in algorithms and ancillary datasets. In addition, the 
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follow-on instruments for TROPOMI are planned for morning orbits (Fig. 1) that may pose additional challenges from a data 

continuity perspective. Like TROPOMI, the U.S. Joint Polar Satellite System 1 (JPSS-1, also known as NOAA-20)/OMPS 

was also launched in 2017 and has similar spatial resolution as OMI. The four OMPS instruments planned for the JPSS program 

(including the two already launched on NOAA-20 and NOAA-21) can potentially extend global SO2 monitoring capabilities 100 

from the afternoon orbits into the 2040s (Fig. 1). Our goal here is to produce a continuity NOAA-20 (N20)/OMPS SO2 product 

that bridges SNPP/OMPS with the follow-on JPSS/OMPS sensors. To this end, we have implemented the PCA-based SO2 

algorithm with N20/OMPS. In this paper, we describe our version 1 N20/OMPS SO2 product that has been publicly released 

(Li et al., 2023). The rest of the paper is organized as follows: section 2 briefly introduces the PCA SO2 retrieval algorithm 

and specific implementation details for N20/OMPS. In section 3, we assess the quality of N20/OMPS SO2 retrievals and 105 

compare them with SNPP retrievals. This is followed by data availability statement in section 4 and conclusions in section 5.  

 

Figure 1: Current and planned UV instruments for global monitoring of SO2 from the afternoon Sun-synchronous orbits. 

2 Data and Methodology 

2.1 NOAA-20/OMPS Nadir Mapper 110 

The NOAA-20 (N20) spacecraft is the first of four satellites planned for the NASA/NOAA JPSS program and flies in a Sun-

synchronous, ascending orbit with a local equator crossing time of approximately 1:30 p.m. Flying in the same orbit plane as 

SNPP, N20 initially operated ahead of SNPP by a half orbit (~50 min) and currently leads SNPP by a quarter orbit (~25 min), 

2000

OMI

SNPP/OMPS

NOAA-20/OMPS

S5P/TROPOMI

2005 2010 2015 2020 2025 2030 2035 2040

NOAA-21/OMPS

2045

13 × 24 km2

50 × 50 km2

17 × 13 km2

5.5 × 3.5 km2

~10 × 10 km2

SNPP Standard SO2 Product

Continuity for OMI and SNPP

Spatial Resolution (at nadir)

JPSS-3/-4/OMPS

~10 × 10 km2 Direct readout only*

^OMI is scheduled to end operation in 2025, no ending date is set for other missions as of July 2024. #EOS: Earth 
Observing System. *As of July 2024, only direct readout SO2 data with limited areal coverage are available for 
volcanic hazard monitoring from few ground stations that can receive and process broadcast data from NOAA-21 (see 
Krotkov et al., 2021 for details).



5 
 

after the launch of NOAA-21. The N20/OMPS instrument suite is comprised of two nadir-viewing spectrometers (the Nadir 

Profiler (NP) and Nadir Mapper (NM)), whereas its predecessor, SNPP/OMPS, also contains a limb-viewing spectrometer (the 115 

Limb Profiler, LP). The N20/OMPS NM sensor measures earthshine radiances and solar irradiance in the wavelength range 

of 300–420 nm at a spectral resolution of ~1 nm. With a 110° field of view (FOV), it covers a cross-track swath of ~2800 km 

and provides nearly daily global coverage. The configurable 2-D Charge Coupled Device (CCD) detector of N20/OMPS NM 

contains 340 pixels in the spectral dimension and 720 pixels in the spatial (cross-track) dimension (Wang et al., 2022). At the 

beginning of the mission, the pixels in the spatial dimension were aggregated to 104 macropixels (cross-track positions or 120 

CCD rows). This configuration, together with a 2.5 second integration time along the flight direction, provides a spatial 

resolution of 17 km (along-track) × 17 km (across-track) at nadir. Starting from orbit 6419 on 13 February 2019, the spatial 

pixels have been aggregated to 140 macropixels, providing a finer spatial resolution of 13 km across-track at nadir. As 

compared with its counterpart on SNPP, N20/OMPS NM has a spatial resolution that is ~10 times greater, but its signal-to-

noise ratio is lower by approximately a factor of 3-4. The enhanced spatial resolution allows N20/OMPS to detect smaller SO2 125 

sources, but also leads to larger retrieval noise as shown in the following sections of the paper. 

2.2 PCA-based SO2 retrieval algorithm 

Detailed descriptions of our PCA-based SO2 retrieval algorithm and its implementation with OMI and SNPP/OMPS have been 

given elsewhere (Li et al., 2013, 2017, 2020). Here we provide a brief overview of the algorithm (section 2.2.1) and the 

modifications that are specific to implementation with N20/OMPS (section 2.2.2). 130 

2.2.1 Algorithm overview 

Our PCA SO2 retrieval algorithm utilizes satellite measured, sun normalized earthshine radiances at the top of the atmosphere 

(TOA) in the spectral range of ~310-340 nm. By applying a PCA technique to the radiance spectra, we extract spectral features 

(principal components, or PCs) and rank them based on the spectral variance they each explain. In the absence of large SO2 

signals (e.g., from volcanic eruptions), the leading PCs (that explain the most spectral variance) are often associated with 135 

geophysical processes (e.g., ozone absorption, rotational Raman scattering) or instrument measurement details (e.g., 

wavelength shift, dark current) other than SO2 absorption in the atmosphere. We then fit the first 𝑛! non-SO2 PCs (𝑣"), along 

with the absorption cross sections of SO2 (𝜎#$!), to the measured TOA radiances (𝐼), to simultaneously estimate the coefficients 

of the PCs (𝜔") and the SO2 slant column density 	(𝑆𝐶𝐷#$!). 

−𝑙𝑛-𝐼.𝜔, 𝑆𝐶𝐷#$!01 = ∑ 𝜔"𝑣" + 𝑆𝐶𝐷#$!𝜎#$!
%"
"&'  .        (1) 140 

The number of PCs (𝑛!) included in Eq. (1) is usually set at 20-30 depending on the number of wavelengths in the fitting 

window but can be smaller if potential SO2 features are identified in the leading PCs due to unscreened SO2 signals in the 
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radiance spectra (see Li et al., 2013 for details). The SO2 SCD is then converted to vertical column density (VCD, 𝛺#$!) using 

an air mass factor (AMF): 

𝛺#$! =
#()#$!
*+,

 .            (2) 145 

The AMF is calculated using radiative transfer (RT) code that accounts for factors such as the sun-target-satellite geometry, 

surface albedo and surface pressure, cloud fraction and cloud pressure, ozone amount and profile, temperature profile, as well 

as the a priori profile of SO2. Alternatively, we can also fit the radiance spectra using the PCs and the total column Jacobians 

of SO2 (-.%
(0)

-2#$!
) that are determined from RT calculations and represent the sensitivity of TOA radiances at different wavelengths 

to a perturbation in SO2 VCD. This allows us to obtain VCDs in a single step. In our retrievals, VLIDORT (Spurr, 2008), a 150 

vector RT code, is used for AMF/Jacobian calculations. 

For implementation with OMI and SNPP/OMPS, we process data from each cross-track position (or row) of the 2-D detector 

separately, effectively treating each as an individual spectrometer. To minimize the impact of orbit-to-orbit changes in the 

measured radiances (for example in dark current), we also process each orbit separately. As a result, the input data (for each 

row of a given orbit) to the PCA algorithm typically include ~1600 radiance spectra (or pixels) sampled along the flight track 155 

of OMI (~400 spectra for SNPP/OMPS). They are subject to three successive processing steps: 

Step 1) Initial data screening: the spectra are first screened to exclude pixels with large solar zenith angles (SZA > 75°) or 

those potentially affected by the South Atlantic anomaly (SAA). They are then examined for potential large volcanic SO2 

signals by computing the residuals (i.e., the differences between the measured and calculated TOA radiances) at two 

wavelength pairs (313/314 nm and 314/315 nm), using O3 column amounts from the total O3 product (Bhartia, 2005) and the 160 

simple Lambertian equivalent reflectivity (SLER, Ahmad et al. 2004) derived at longer wavelengths (342, 354, and 367 nm). 

The radiance calculations assume zero SO2, and the wavelength pairs are chosen to detect the spectral contrast between 

wavelengths near (313 and 315 nm) and off (314 nm) the SO2 absorption peaks. Spectra that have relatively large residuals at 

313 and 315 nm as compared with 314 nm are considered to potentially contain large SO2 signals (e.g., from a volcanic plume) 

and are excluded from the PCA analysis, although SO2 retrievals are still conducted for those pixels (see Li et al., 2020 for 165 

details). 

Step 2) PCA analysis and additional SO2 screening: after filtering large volcanic SO2 signals, we attempt to remove any residual 

SO2 signals in the remaining radiance spectra, using two procedures. In the first procedure, a PCA analysis is conducted on 

the spectra and the resulting leading PCs are used to fit the spectra, essentially reconstructing the spectra using those PCs. We 

flag pixels as potentially SO2 contaminated, if they have residuals that are spectrally correlated with the SO2 cross sections 170 

(see Li et al. 2020). This helps to filter out relatively small SO2 signals, as compared with the volcanic SO2 screening in Step 
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1). In the second procedure, we conduct PCA on the remaining spectra and use the PCs and SO2 cross sections (or Jacobians) 

to obtain first guess SO2 retrievals (Eq. 1). Pixels having relatively large negative (< –2σ from the mean, where σ is the standard 

deviation) or positive (> 1.5σ from the mean) first guess SO2 are excluded from additional PCA analyses. We divide the pixels 

from the row into 3 subgroups (subsectors) based on their latitudes and solar zenith angles: a tropical subsector with SZA <  175 

SZAmin + 0.4 ´ (75° - SZAmin), where SZAmin is the minimum of the row, and two extratropical subsectors to the north and 

south.  For each subsector, we repeat the second procedure twice to derive the final PCs and SO2 SCDs. The use of subsectors 

reduces biases in retrievals (Li et al., 2013), as will be further discussed in section 3.1.  

Step 3) Jacobian calculations and final SO2 VCD estimates: using the final PCs from Step 2) and Jacobians calculated 

employing a table lookup approach, we conduct spectral fitting to obtain final estimates of SO2 VCDs for all pixels that have 180 

SZA ≤ 75°, including those flagged for SO2 during Steps 1) and 2). The Jacobian calculations are separate for anthropogenic 

and volcanic SO2 retrievals. For anthropogenic SO2 retrievals, the Jacobians are calculated once for each pixel using cloud 

fraction and cloud pressure from the rotational Raman scattering cloud product (Joiner and Vasilkov, 2006; Vasilkov et al., 

2014) and a priori SO2 profiles based on a climatology from multi-year global model simulations (see Li et al., 2020 for 

details). For explosive volcanic eruptions, the SO2 Jacobians strongly depend on the SO2 amounts, and absorption signals at 185 

shorter wavelengths may become saturated. To account for these factors, we use an iterative procedure to estimate volcanic 

SO2 Jacobians based on the retrieved SO2 VCD from the previous iteration and optimize the fitting window by dropping 

potentially saturated wavelengths (see Li et al., 2017 for details). As the volcanic SO2 plume heights are often unknown 

immediately following eruptions, in our volcanic SO2 retrievals we also produce four estimates of the SO2 VCD for each pixel, 

assuming four different a priori profiles. These SO2 profiles centered at 3, 8, 13, and 18 km altitudes, respectively, are chosen 190 

to represent typical plume heights from volcano degassing (3 km: lower troposphere, TRL), moderate eruptions (8 km: middle 

troposphere, TRM), or explosive eruptions (13 km: upper troposphere, TRU and 18 km: lower stratosphere, STL). 

2.2.2 Implementation with NOAA-20/OMPS 

While our N20/OMPS SO2 algorithm shares the same general design with our OMI and SNPP/OMPS algorithms, some 

implementation details differ. Here, we summarize the algorithm modifications that are specific to the current version of the 195 

N20/OMPS SO2 algorithm.  

Volcanic SO2 screening: for N20/OMPS, instead of the residual-based scheme (see section 2.2.1), we have implemented a new 

scheme based on spectral fitting using reference PCs from a presumably SO2-free orbit over the remote Pacific. For orbits with 

104 rows (see section 2.1), the reference PCs are derived on a row-by-row basis from orbit 4506 on 1 October 2018, whereas 

for orbits with 140 rows, the reference PCs are from orbit 17460 on 1 April 2021. Both are days without major volcanic 200 

eruptions and the leading modes of the reference PCs are likely free from SO2 features. We conduct spectral fits using the 

reference PCs and a SO2 Jacobian spectrum assuming 18-km plume height to obtain an initial SO2 VCD estimate for each 
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pixel. Pixels having initial SO2 > 2 DU (Dobson Units, 1 DU = 2.69 × 1016 molecules cm-2) are flagged for potential volcanic 

influence. As compared with the residual based volcanic SO2 screening scheme implemented with OMI and SNPP/OMPS 

(section 2.2.1), this new scheme is more sensitive and flags more pixels (see Fig. S1 in the supplemental information). The 205 

selection of data sources for reference PCs (e.g., from a different day) is expected to affect the initial SO2 estimates and 

consequently the final estimates of SO2. However, test retrievals using different reference PCs suggest that the resulting 

differences in the final SO2 SCDs are well within the typical retrieval noise for N20/OMPS, especially outside of areas affected 

by the SAA (see Fig. S2 in the supplemental information). 

Anthropogenic SO2 retrievals: other than the scheme for initial volcanic SO2 screening, the algorithm for volcanic SO2 210 

retrievals as implemented with N20/OMPS is identical to that for SNPP/OMPS. The N20/OMPS anthropogenic SO2 algorithm, 

on the other hand, has several changes. These include: 

1) Algorithm settings for SCD retrievals: for N20/OMPS SO2 SCD retrievals, pixels within each row are grouped into five 

subsectors, instead of three as for OMI and SNPP/OMPS (see section 2.2.1). Additionally, in step 2) of the N20 algorithm, 

pixels having first guess SO2 that falls within ±1.5σ from the mean are considered SO2-free and retained for additional PCA 215 

analysis. This is different from OMI and SNPP/OMPS algorithms that retain pixels with first guess SO2 between (mean - 2σ) 

and (mean + 1.5σ). The change in the threshold was made to mitigate potential positive biases in SO2 SCDs (see Fig. S3 in the 

supplemental information), although this may have led to an overall negative bias for N20/OMPS SO2 SCDs as compared with 

SNPP (see section 3). Additionally, for OMI and SNPP/OMPS, an iterative process is used to examine fitting residuals for 

SCD retrievals over areas affected by the South Atlantic Anomaly (SAA) and to exclude wavelengths that have large residuals 220 

in a second step SCD fitting. This process helps to reduce SCD noise over the SAA areas but has not yet been implemented 

with N20/OMPS. 

2) AMF/Jacobians: as the N20/OMPS Raman cloud product is still under development, it is presently unavailable for the 

calculation of anthropogenic SO2 AMF/Jacobians. In the current version of the N20/OMPS anthropogenic SO2 algorithm, a 

fixed AMF (0.36) is used to convert all SCDs to SO2 VCDs, regardless of the observation conditions for different pixels. This 225 

AMF corresponds to a simplified scenario under cloud-free conditions with fixed surface albedo (0.05) and pressure (1013.25 

hPa), solar (30°) and viewing (0°) zenith angles, and typical mid-latitude temperature and O3 profiles (total column O3 = 325 

DU). It is also assumed that SO2 is mostly in the planetary boundary layer (PBL), or the lowest ~1 km of the atmosphere. The 

same AMF was used for SO2 VCDs, referred to as PBL SO2, in the early versions of OMI SO2 product (Krotkov et al., 2006). 

Following this convention, we use “ColumnAmountSO2_PBL” as the data fiеld name for SO2 VCDs derived using this fixed 230 

AMF in the version 1 N20/OMPS SO2 product (see section 2.3 for description). We plan to produce a refined anthropogenic 

N20/OMPS SO2 VCD dataset using the same Jacobian calculation method as for OMI and SNPP/OMPS (see section 2.2.1), 

once the Raman cloud product becomes available. 
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3) Algorithmic refinement for pixels in the transition zones between different subsectors: it has been previously noted that 

there are relatively large gradients in OMI SO2 SCD uncertainties (and to a lesser extent, in SCDs) near the boundaries between 235 

different subsectors, as different sets of PCs are used in spectral fitting for those subsectors (see Figure 2, Li et al., 2020). To 

reduce this gradient, we have refined N20/OMPS SCD retrievals for pixels within the transition zone, defined here as the 50 

pixels located immediately across the boundary between two subsectors (with 25 on either side).  For each transition zone 

pixel, we conduct multiple spectral fits using different sets of PCs from all subsectors. We then select the fit that has the 

smallest root mean square (RMS) of the fitting residuals for the final SO2 SCD. 240 

2.3 Description of version 1 NOAA-20/OMPS SO2 product 

Detailed description of the current version of our PCA-based N20/OMPS SO2 product (product name: 

OMPS_N20_NMSO2_PCA_L2_Step1), including its file format in netCDF-4 and data fields, is given in the product readme 

file, available at https://disc.gsfc.nasa.gov/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_1/summary (Li et al., 2023). A 

summary of the data fields that are of interest to most data users is given in the supplemental information. 245 

2.4 Multi-satellite SO2 emission catalogue   

Our previous version 2 global catalogue of large SO2 emission sources is based on OMI, SNPP/OMPS, and TROPOMI data, 

covers the period of 2005-2021, and includes a total of 759 continuously emitting point sources releasing from about 10 kt y-1 

to more than 4000 kt y-1 of SO2 (Fioletov et al., 2023).  Here, we use N20/OMPS SO2 data to estimate annual emissions for 

these sources and then use the N20 emission estimates, in addition to those from the other three satellite sensors, to produce 250 

an updated (2005-2023) unified emission catalogue. For N20/OMPS emission estimates, we apply the same algorithm as for 

the other satellite sensors, including the same site-specific AMFs. For each source, we first estimate a local retrieval bias based 

on the average upwind SO2 that is subsequently subtracted from the SO2 retrievals. To estimate emissions, the total average 

SO2 mass near the source is calculated using a fitting algorithm and then emissions are derived as the ratio of the total mass to 

the lifetime, assumed to be constant at 6 h. In addition to the assumed lifetime, the algorithm uses a prescribed constant 255 

parameter (ω) that represents the average plume width across the wind direction. The values of the prescribed parameter are 

ω=20 km, 25 km, and 15 km for OMI, SNPP/OMPS and TROPOMI, respectively. The parameter ω=20 km is chosen for 

N20/OMPS as it has similar pixel sizes as OMI. As in Fioletov et al. (2023), the OMI and OMPS-based emission estimates 

presented here have been increased by +10 % to match the values to the earlier version of the catalogue (Fioletov et al., 2016). 

Similarly, for TROPOMI, a +22% correction is applied to account for differences in temperatures for the SO2 absorption cross 260 

sections used in the retrievals.  

https://disc.gsfc.nasa.gov/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_1/summary
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3 Results and Discussion 

In this section, we evaluate our version 1 N20/OMPS SO2 product. Given the similarities between the N20 and SNPP/OMPS 

NM sensors, we focus on the comparisons between the two OMPS SO2 products. Sect. 3.1-3.3 are dedicated to analyses of 

SO2 SCDs and PBL SO2; we first assess the quality and stability of N20/OMPS SO2 SCDs (Sect. 3.1) and then compare the 265 

spatial distribution (Sect. 3.2) and long-term time series (Sect. 3.3) of N20 PBL SO2 retrievals with those from SNPP. In Sect. 

3.4, we present the results using N20/OMPS SO2 SCD data for emission estimates and compare N20-based emission estimates 

with other instruments. In Sect. 3.5, we compare N20 volcanic SO2 retrievals with SNPP/OMPS and TROPOMI for selected 

eruptions. 

3.1 Quality and long-term stability of NOAA-20/OMPS SO2 slant column densities 270 

In Fig. 2, we compare the statistics of N20 and SNPP/OMPS SO2 SCDs over the east Pacific on 1 April 2019. For such a day 

without major volcanic eruptions, the actual loading and variability of SO2 are presumed to be quite small over remote 

background areas, and the mean and standard deviation of the retrieved SO2 SCDs can be used to assess the biases and noise 

in the retrievals. As shown in Fig. 2a, both mean SNPP and N20/OMPS SO2 SCDs are within ±0.05 DU, indicating relatively 

small biases for both retrievals, although N20/OMPS SCDs are in general smaller than those from SNPP/OMPS, especially at 275 

middle (30-50°N) to high (70-80°N) latitudes in the northern hemisphere. The offset in the mean SO2 is likely due to different 

algorithm settings, especially the threshold for pixels that are assumed to contain SO2 and excluded from PCA analysis. For 

N20/OMPS, we also generate experimental retrievals without grouping the pixels into different subsectors (see section 2.2.2). 

The mean SO2 SCDs (see Fig. S4 in the supplemental information) from this experiment have greater latitudinal variations 

and overall larger biases. This is consistent with our previous observation that the use of subsectors helps to reduce retrieval 280 

biases (Li et al., 2013). As for the standard deviation of SCDs (Fig. 2b), both N20 and SNPP/OMPS show dependence on 

latitude, likely due to a generally smaller signal-to-noise ratio (SNR) in the measurements at lower radiance values associated 

with larger solar zenith angles (SZAs). Apart from the latitude band of 70-80°N, the N20/OMPS SCD standard deviation is 

~0.35-0.65 DU at its native resolution, or approximately 2-4 times greater than that of SNPP/OMPS. Recall that the size of 

each SNPP/OMPS pixel is ~10 times larger than N20/OMPS, due to the longer integration time along track (7.5 s versus 2.5 285 

s) and the aggregation of more pixels into fewer rows (macropixels) across track (36 versus 140 rows in this example). This 

indicates that the SCD retrieval noise from the two OMPS instruments approximately scales according to √𝑁, where N is the 

number of aggregated pixels, suggesting that the greater noise in N20/OMPS SO2 SCDs is largely driven by larger random 

noise in the radiances. Indeed, if we average the N20/OMPS SO2 SCDs to the same resolution as SNPP/OMPS, the standard 

deviation of binned SCDs (blue triangles, Fig. 2b) is now comparable with that of SNPP/OMPS at most latitudes. The one 290 

noticeable exception is at 70-80°N, indicating additional SCD retrievals errors at larger SZAs for N20/OMPS. Note that for 

this analysis, the mean of SZAs for 70-80°N is similar between the two OMPS instruments. For analyses in Sect. 3.2-3.3, 

pixels with SZA > 65° are excluded. 
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Figure 2: Comparisons of the (a) mean, (b) standard deviation, and (c) number of pixels for SO2 SCD retrievals for 10° latitude 295 
bands over the remote Pacific (130-150°W) on 1 April 2019 between SNPP/OMPS (black asterisks), N20/OMPS at its native 

resolution (red triangles), and N20/OMPS binned to the same resolution as SNPP/OMPS (blue triangles, for standard deviation and 

pixel number only). Results are given in Dobson Units (DU). All pixels that have solar zenith angle < 70° are included in the analysis. 

Only latitude bands having at least 500 native N20/OMPS pixels from the day are shown. On this day, N20 was operating a half 

orbit (~50 min) ahead of SNPP, and the number of SNPP and binned N20/OMPS pixels is different but comparable for all latitudes. 300 
The smaller number of pixels at high latitudes is due to the limit on the solar zenith angle. 

For long-term monitoring, it is important to minimize the drift over time that can introduce spurious trends in the dataset. To 

evaluate the stability of OMPS SO2 retrievals, we examine the daily mean and standard deviation of SO2 SCDs over the 

equatorial Pacific, after screening out days affected by large volcanic eruptions. As can be seen from Fig. 3a, both N20 and 

SNPP/OMPS retrievals are quite stable, showing no statistically significant trends in the mean SO2 SCDs from the beginning 305 

of the missions through 2023. The change in the SNPP/OMPS SCD standard deviation is also very small at 0.0002 DU y-1 

(Fig. 3b). One may notice a jump in the standard deviation for N20/OMPS SCDs (red, Fig. 3b) in early 2019 due to the change 

in instrument spatial resolution (Sect. 2.1), but the trend is again quite small at -0.00023 DU y-1, once N20/OMPS SCDs are 

binned to the same resolution as SNPP/OMPS. The changes for both OMPS instruments are much smaller than a previous 

study on OMI SO2 retrievals by Li et al. (2020), who reported trends of 0.00023 DU y-1 and 0.0015 DU y-1 in the mean and 310 

standard deviation of OMI SCDs, respectively, over the equatorial Pacific during 2004-2019. 
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Figure 3: Time series of daily (a) mean and (b) standard deviation of SO2 SCDs over the equatorial Pacific (20°S-20°N, 130-150°W) 

from N20 and SNPP/OMPS from the beginning of the data records to 2023. In panel (b) results at native N20/OMPS resolution (red) 

and those aggregated to the SNPP/OMPS resolution (blue) are given to account for the change in instrument resolution in February 315 
2019. Days affected by volcanic plumes are excluded, as are days with fewer than 500 pixels within the domain. For N20/OMPS 

retrievals at native resolution, the first and last two rows are excluded due to relatively large retrieval noise. The estimated trends 

from linear regression are provided along with their 95% confidence intervals, except for the standard deviation at N20/OMPS 

native resolution. 

3.2 Spatial distribution of PBL SO2  320 

Figure 4 presents the spatial distribution of PBL SO2 VCDs from N20 and SNPP/OMPS and their differences for March to 

May 2021. The period has been selected due to its lack of major volcanic eruptions to facilitate comparisons for anthropogenic 

sources and degassing volcanoes. It is worth mentioning that the analysis here reflects the differences in SCDs between the 

two OMPS products, as the same fixed AMF (0.36, see Sect. 2.2.2) is applied everywhere. Overall, the spatial distribution of 

PBL SO2 VCDs is quite similar between the two OMPS products, with both showing relatively small values over oceanic areas 325 

and hotspots over major anthropogenic sources (e.g., Norilsk in Russia, South Africa, northeast India, and Persian Gulf) as 

well as degassing volcanoes (e.g., Kilauea in Hawaii, Nyiragongo in Congo, and Krakatau in Indonesia). More analyses on the 

long-term PBL SO2 time series over selected source areas, as marked in Figs. 4a and 4b, are given in Sect. 3.3. There are also 

noticeable differences (Fig. 4c). Over the SAA-affected areas, N20/OMPS PBL SO2 VCDs have larger noise that is partly due 

to the algorithmic difference in SCD fitting for the region (see Sect. 2.2.2). For most other areas in the middle and low latitudes, 330 

N20/OMPS VCDs are smaller, particularly over the dust belt from the Sahara to northwestern China and Mongolia. As 

discussed in Sect. 2.2.2, at least some of these negative biases in N20/OMPS retrievals (as compared with SNPP) can be 

attributed to the algorithm settings in SCD fitting, namely the threshold (based on first guess SO2 estimates) used to filter out 
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potentially SO2-contaminated pixels. Over most areas, the negative bias is relatively small. For example, only ~1% of the grid 

cells over the dust belt (defined here as the domain of 20-50°N, 0-110°E) have VCD differences that exceed -0.2 DU (i.e., -335 

0.072 DU in SCD difference). Despite their relatively small magnitude, the biases in N20/OMPS retrievals can still lead to 

substantial differences in the regional PBL SO2 time series (see Sect. 3.3 for details), but they can be well mitigated in the top-

down emission estimates (Sect. 3.4). Over high latitudes, near the coastal areas of Greenland, Antarctica, and the Arctic, 

N20/OMPS PBL SO2 VCDs also have relatively large positive and negative biases (Fig. 4c). This is consistent with the results 

shown in Fig. 2 and points to potential algorithm issues for scenes with low SNRs, although the exact reason is unknown as 340 

of the writing of this manuscript. The differences are also larger over mountainous areas (e.g., Andes over South America), 

possibly indicating retrieval biases related to terrain height or surface features that are more pronounced in high resolution data 

and cannot be completely averaged out.  
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Figure 4: Mean PBL SO2 VCDs for March to May 2021 retrieved from (a) SNPP/OMPS and (b) N20/OMPS using a fixed AMF 345 
(0.36) and (c) their differences. Both retrievals are gridded to 0.5°×0.5° horizontal resolution, and N20/OMPS data are binned to the 

same spatial resolution as SNPP before gridding to ensure consistent sampling. For both SNPP and the binned N20 datasets, pixels 

with SZA > 65° or those from the extreme off-nadir rows (first two and last two) are excluded. There is no data screening based on 

cloudiness. Blue rectangular boxes in (a) and (b) mark the domains of selected anthropogenic SO2 source areas, whereas the green 

boxes mark selected degassing volcanoes.  350 

The scatter plot (Fig. 5a) between the two gridded datasets over the entire global domain (excluding the SAA region) indicates 

that the N20 and SNPP/OMPS PBL SO2 VCDs are moderately correlated. Most (~81.8%) of the grid cells have near zero 

values (within ±0.1 DU) from both retrievals. This is as expected since SO2 loading outside of source areas is quite small in 

the absence of large volcanic plumes. About 19.6% of the grid cells have absolute VCD differences > 0.1 DU, likely reflecting 

the differences between the two retrievals especially over background areas and at high latitudes, although the absolute 355 

differences exceed 0.2 DU for only ~2.7% of them. For grid cells with SNPP/OMPS PBL SO2 VCDs > 1 DU, 234 (out of 248) 

have N20 and SNPP/OMPS VCDs agreeing to within ±30%. This is also demonstrated by the scatter plot in Fig. 5b that focuses 

on the selected source areas (as marked by boxes in Figs. 4a and 4b.). For these areas, N20 and SNPP/OMPS PBL SO2 VCDs 

are strongly correlated (r = 0.98) and have a small overall bias (slope = 1.03), suggesting overall good consistency between 

the two instruments for relatively strong SO2 signals.  360 

 

Figure 5: (a) The density map of gridded PBL SO2 VCDs from N20/OMPS vs. SNPP/OMPS for the same period and same domain 

(excluding SAA affected areas) as in Fig. 4. Colors represent the number of 0.5°×0.5° grid cells. The solid black line marks the best 

fit line through all grid cells from a linear regression analysis. The dashed lines represent scenarios where N20 SO2 is 30% higher 

than (y = 1.3x), equal to (y = x), and 30% lower than (y = 0.7x) SNPP, respectively. The correlation coefficient (r = 0.75) between 365 
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N20 and SNPP/OMPS VCDs for all grid cells is also given. (b) Same as (a) but only for selected source areas as marked by rectangular 

boxes in Figures 4a and 4b. 

3.3 Long-term time series of PBL SO2  

To evaluate the consistency between N20 and SNPP/OMPS PBL SO2 VCDs over extended periods, we also compare the time 

series of monthly mean SO2 mass (in kiloton, 103 metric tonnes) over selected major source areas (see Fig. 4a and Fig. 4b for 370 

the domains for anthropogenic and volcanic sources, respectively). For a given area, we first generate daily gridded N20 and 

SNPP/OMPS PBL SO2 VCDs at 0.5°×0.5° resolution following the same procedure and data filtering criteria as described for 

Fig. 4. For each day when over 90% of the domain is covered by the gridded data, we calculate the total SO2 mass by summing 

up the mass from all grid cells that have non-negative gridded SO2 VCDs. The monthly mean SO2 mass is then calculated by 

averaging the daily data.  375 

In addition, we attempt to correct for the monthly and latitude dependent biases in N20/OMPS PBL SO2. We first produce 

monthly gridded N20 and SNPP/OMPS PBL SO2 VCDs from the daily gridded data. For each month of the year, we use the 

monthly gridded data to estimate the latitude dependent biases in three steps: 1) filtering out areas that have relatively large 

SO2 (monthly SNPP/OMPS PBL VCD > 0.5 DU) or those affected by SAA; 2) calculating the mean N20-SNPP differences 

within 3° latitude bands for the same month of each year during 2018-2023; and 3) taking the median of the monthly mean 380 

biases from the 6-year period for each latitude band. The estimated biases are then used to produce bias-corrected N20 PBL 

SO2 times series (blue lines in Figs. 6 and 7). We choose to use SNPP/OMPS as the reference to bias-correct N20/OMPS due 

to its longer, more established record, the generally good consistency between SNPP/OMPS and OMI SO2 data (e.g., Li et al., 

2017; Zhang et al., 2017), as well as ongoing calibration work that will lead to updates to the N20/OMPS level 1 data. 

For anthropogenic source areas, the N20 and SNPP/OMPS PBL SO2 time series are mostly well-correlated (Fig. 6). The lowest 385 

correlation coefficient (r = 0.64) is found over Mt. Isa in Australia, where the SO2 mass is typically below 1 kt (Fig. 6e). For 

all other areas, the correlation coefficient exceeds 0.8. The 12-year SNPP/OMPS data record reveals some significant regional 

trends in SO2 pollution. For instance, SO2 over India gradually increases over time; there is a temporary dip in 2020 probably 

related to the COVID-19 pandemic (e.g., Biswas and Ayantika, 2021) followed by increases afterwards. Meanwhile, SO2 over 

China has decreased substantially since 2014, likely due to emission control measures (Li et al., 2017b). Qualitatively, these 390 

long-term regional changes are also confirmed by the N20/OMPS time series. On average, the N20/OMPS SO2 mass over 

Persian Gulf, India, China, and South Africa is smaller than SNPP/OMPS by -20%, -18%, -13%, and -13%, respectively. In 

comparison, the differences are much smaller over Norilsk and Mt. Isa at 5% and -1%, respectively. The monthly latitudinal 

bias correction improves the correlation between the N20 and SNPP/OMPS time series for all regions (Fig. 6), but the 

remaining differences between the two are still substantial over Persian Gulf (-15%), India (-11%), and South Africa (-10%), 395 

indicating marginal improvements for these aeras. The differences between the N20 and SNPP/OMPS are little changed over 
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Norilsk (8%) and Mt. Isa (-1%) after the bias correction. The results here suggest that the simple latitude dependent correction 

as outlined above is insufficient to significantly improve the agreement between the two datasets everywhere.   

 

Figure 6: Time series of monthly mean SO2 mass (in kiloton, 103 tonnes) based on SNPP/OMPS (black), N20/OMPS (red), and bias 400 
corrected N20/OMPS (blue) PBL SO2 VCDs over major anthropogenic source areas as marked in Fig. 4a. For a given area, only 

months having at least 10 days’ worth of data are shown. Months influenced by large volcanic SO2 plumes (September 2014, April 

to May 2015, July 2019, April 2021, January 2022, and April 2023) are also excluded. The average percentage differences and 

correlation coefficients between N20 and SNPP/OMPS time series (red), as well as those between the bias corrected N20 and 

SNPP/OMPS time series (blue) are given at the top of each panel. Note that the large seasonal change over Norilsk is likely due to 405 
snow/ice that is currently unaccounted for in retrievals. See Fig. S5 in the supplemental information for the same plot but for the 

period of 2018-2023. 

As for degassing volcanoes, the PBL SO2 time series in Fig. 7 show strong correlation between the two OMPS products. The 

correlation coefficient exceeds 0.9 for all cases and could be attributed to the large variations in the volcanic SO2 emissions as 
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well as generally consistent retrievals. Before the bias correction, the average relative differences between N20 and 410 

SNPP/OMPS during 2018-2023 are -12%, -11%, -25%, and 8% for Popocatepetl, Kilauea, Nyiragongo, and Sabancaya and 

Ubinas, respectively. The large relative difference over Nyiragongo is probably caused by the small SO2 loading since late 

2021, whereas the positive bias over Sabancaya and Ubinas could be due to the greater impact of SAA on N20/OMPS 

retrievals. After the bias correction, the average relative differences are -8%, 0%, -12%, and 8% for the four areas, respectively. 

It should be pointed out that for degassing volcanoes, the PBL SO2 retrievals likely overestimate SO2, as the fixed AMF used 415 

in these retrievals represents a scenario with SO2 predominantly in the boundary layer, while SO2 plumes from the volcanoes 

are typically at higher altitudes. In Sect. 3.5, we compare N20 and SNPP/OMPS volcanic SO2 retrievals that use more 

representative a priori SO2 profiles and Jacobians calculated for individual pixels (see Sect. 2.2.1).  

 

Figure 7: Same as Figure 6 but for degassing volcanoes (as marked in Fig. 4b) and all months during 2012-2023 (i.e., no exclusion of 420 
months affected by large volcanic eruptions). See Fig. S6 in the supplemental information for the same plot but for the period of 

2018-2023. 

3.4 SO2 Emission estimates for large point sources 

To assess the ability of N20/OMPS to detect and quantify SO2 point sources, we apply a top-down emission estimation 

algorithm (Fioletov et al., 2015, 2016, 2023) to N20/OMPS retrievals to derive annual emissions from 759 large point sources 425 

that are included in the version 2 satellite-based SO2 emission catalogue (Fioletov et al., 2023). As evidenced by Fig. 8, there 

is strong correlation between emissions estimated using N20/OMPS and those using OMI (Fig. 8a), SNPP/OMPS (Fig. 8b), 
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and TROPOMI (Fig. 8c), with correlation coefficients > 0.98 in all cases. The overall biases are also quite small with agreement 

within ~10% for all sensors: the estimated total annual emissions for all the sources, averaged over the period of 2018-2023, 

are 44.7, 47.0, 49.1, and 45.7 Mt y-1 (Megaton, 106 tonnes) for N20/OMPS, OMI, SNPP/OMPS, and TROPOMI, respectively. 430 

Note that the top-down emission algorithm relies on relative enhancement in SO2 signals over a relatively small domain (see 

section 2.4). This may explain the overall small differences in the estimated emissions between N20 and SNPP/OMPS (~10%), 

despite the substantial differences in their PBL SO2 column density time series as discussed in Sect. 3.3.  

One may find the agreement between TROPOMI and OMI/OMPS based emissions to be surprisingly good, given their 

substantial differences in spatial resolution, signal-to-noise ratio, and retrieval algorithms including AMF calculations. For 435 

TROPOMI, the SO2 data used in emission estimates are based on the COBRA algorithm that is conceptually similar to the 

PCA algorithm. Previous comparisons (Theys et al., 2021) indicate largely consistent SO2 SCDs between TROPOMI COBRA 

and OMPS PCA retrievals. The local bias corrections in the emission estimates further reduce the differences between 

instruments/algorithms. While differences exist in AMF calculations, for emission estimates, the same set of location-specific 

AMFs are applied to SCDs, thus eliminating the AMF as a source of differences. 440 

Figures 8d, 8e, and 8f compare the ratios between the estimated emissions and their associated uncertainties for different 

instruments. The uncertainties in the estimated emissions depend on the number of available retrievals as well as their noise. 

For the largest sources, all four sensors can well capture the enhancement in SO2, and the ratios are quite similar between 

different instruments. For smaller sources, TROPOMI has the best overall sensitivity and greatest ratios (Fig. 8f) owing to its 

fine spatial resolution and large number of retrievals. The ratios for N20/OMPS are overall comparable with those for OMI 445 

(Fig. 8d), with the former having slightly larger ratios for most sources. N20/OMPS provides more retrievals than OMI, but 

its advantage in sample size is likely partially offset by the relatively large retrieval noise. As for the comparison between N20 

and SNPP/OMPS (Fig. 8e), N20/OMPS has greater ratios for most of the sources. The results here imply that given two 

similarly designed instruments, the one with higher spatial resolution but larger noise will likely offer a stronger capability for 

point source detection and quantification. 450 
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Figure 8: Upper: scatter plots comparing the annual emissions of SO2 (kt y-1) averaged over 2018-2023 for large point sources (in 

the version 2 emission catalogue) based on SO2 retrievals from (a) OMI vs. N20/OMPS, (b) SNPP/OMPS vs. N20/OMPS, and (c) 

TROPOMI vs. N20/OMPS. Lower: scatter plots of the ratios between the estimated emissions and their uncertainties based on 

retrievals from (d) OMI vs. N20/OMPS, (e) SNPP/OMPS vs. N20/OMPS, and (f) TROPOMI vs. N20/OMPS. The dashed lines are 455 
1:1 lines. Each bubble represents a point source, and the bubble area is proportional to the annual SO2 emissions from the source. 

Figure 9 presents the time series of regional SO2 emissions during 2005-2023, based on emission estimates from the four 

individual satellite sensors. Over the period of 2018-2023, N20/OMPS shows similar changes in SO2 emissions as other 

instruments. For example, the emissions from Europe and the U.S. are relatively steady after significant declines in the 2000s 

and 2010s. Emissions from China have continued to decrease, although at a much lower rate than between 2014 and 2017. 460 

Emissions from India and the Middle East saw a drop around 2020 and have since recovered. The N20/OMPS based emissions 

also generally agree with other instruments for most regions, although relatively large differences are found for India and the 

Middle East, especially during 2018-2020 when the N20/OMPS based emissions are ~10-15% smaller than the weighted 

average. SNPP/OMPS based emissions for these two regions, on the contrary, appear to be biased high. It is possible that the 

relatively large differences in PBL SO2 between the two OMPS instruments (see Sect. 3.3) may have been caused by the 465 

negative biases in N20/OMPS retrievals as well as the positive biases in SNPP/OMPS retrievals. 
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Using the emissions derived separately from individual satellites, we obtain the unified emission estimates for the catalogue 

by calculating a weighted average of the emission estimates from the four satellite instruments using an inverse-variance 

weighting method (see Fig. S7 in the supplemental information for the relative contribution of individual satellite instruments 

to the weighted average as a function of emission strength). The weighted averages are also shown in Fig. 9 (the red lines). In 470 

version 2 catalogue, OMI, SNPP/OMPS, and TROPOMI data contribute 7%, 5%, and 88% to the average respectively for 

small (< 30 kt y-1) sources and 33%, 20%, and 47% respectively for large (> 300 kt y-1) sources. The addition of N20/OMPS 

changes the contribution of individual instruments to 6%, 4%, 10%, and 80% for small sources and 23%, 15%, 26%, and 35% 

for large sources (for OMI, SNPP/OMPS, N20/OMPS, and TROPOMI, respectively). Thus, the weighting coefficients for 

N20/OMPS are nearly twice of those for SMPP/OMPS. Again, this suggests that the superior spatial resolution of N20/OMPS 475 

is beneficial for emission estimates and yields substantially lower uncertainties in emissions than SNPP/OMPS, despite overall 

similar retrieval noise between the two when binned to the same spatial resolution (see Fig. 2b). 

Overall, these emission estimates demonstrate that N20/OMPS has the potential to augment and further extend the long-term 

satellite based SO2 emission catalogue. 
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Figure 9: Annual emissions for different regions during 2005-2023 from the point sources that are included in the version 2 satellite 

based SO2 emission catalogue. Colors represent emission estimates using different satellite sensors, as well as their weighted average. 

For individual satellite datasets, the scaling factors have been applied to match with an earlier version of the catalogue or to account 

for differences in SO2 cross sections in retrievals (see section 2.4 and Fioletov et al., 2023 for details). 

3.5 Comparisons of volcanic SO2 retrievals between SNPP and NOAA-20 485 

In this section, we compare volcanic SO2 VCDs between N20 and SNPP/OMPS for two eruptions that are quite different in 

terms of their strength and SO2 emissions. 

The first case for comparison is the fissure eruption of Kilauea volcano that started on 3 May 2018 and lasted for a few months. 

SO2 released from this eruption remained low in the troposphere (Tang et al., 2020), and we compare N20 and SNPP/OMPS 

TRL (lower troposphere) SO2 retrievals that assume an a priori profile centered at 3 km altitude (see Sect. 2.3). Given that the 490 

same algorithm is used for N20 and SNPP/OMPS volcanic SO2 retrievals (Sect. 2.2.2), one would expect generally consistent 

results between the two. Indeed, as shown in Fig. 10c, the estimates of SO2 mass over the domain around the volcano, calculated 

daily from N20 and SNPP/OMPS retrievals for the period of May-July 2018, are well-correlated with r > 0.9. The overall bias 

between the two datasets is also relatively small (slope = 1.05, intercept = 0.09 from a linear regression analysis). On the other 

hand, the differences between N20 and SNPP/OMPS mass estimates can exceed 10 kt at times. This is likely due to the very 495 

different pixel size of the two instruments (see Figs. 10a and 10b for an example) that in some cases may lead to sampling 

biases for a relatively small domain. Additional comparisons between N20/OMPS and TROPOMI (Fig. 10d) also show good 

agreement, despite the differences in algorithms and instrument characteristics. There are no TRL SO2 (3-km profile) retrievals 

available from the operational TROPOMI product (Theys et al., 2017) and part of the low bias for N20 (slope: 0.87) could be 

attributed to the differences in the assumed plume center height. 500 
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Figure 10: Volcanic SO2 VCDs around the Kilauea volcano in Hawaii on 8 May 2018 retrieved from (a) N20/OMPS and (b) 

SNPP/OMPS, assuming an a priori profile with a center mass altitude of 3 km (lower troposphere or TRL). (c) The scatter plot of 

N20 vs. SNPP daily SO2 mass near Kilauea during May to June 2018. (d) Same as (c) but for N20 (8-km profile) vs. TROPOMI (7-

km profile). The best fit line from a regression analysis between the two daily SO2 mass datasets, along with its slope and intercept, 505 
is also given in (c) and (d). For the calculation of daily SO2 mass, volcanic SO2 VCDs are first gridded to 0.5°×0.5° resolution using 

all pixels with SZA < 70° for both instruments. The daily mass within the domain (as in Fig. 10a and 10b) is then calculated by taking 

the sum of SO2 mass from all grid cells that have gridded SO2 VCD > 0.1 DU. Changing the threshold to 0.2 DU yields similar 

correlation coefficient (r = 0.92) and slope (1.04) for (c). 

The other case for comparison is the Raikoke eruption on 21 June 2019. The explosive eruption injected sizable amounts of 510 

SO2, ash, and sulfate aerosols into the lower stratosphere. The SO2 plume, soon dispersed over much of the northern 

hemisphere, could be observed from satellite instruments several weeks after the eruption (Gorkavyi et al., 2021). Here, we 
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estimate SO2 mass within the Raikoke plume for each day after the eruption until the end of July 2019, using STL (lower 

stratosphere, the assumed center altitude of the plume is 18 km) SO2 VCDs from N20 and SNPP/OMPS, as well as SO2 VCDs 

from TROPOMI that assume a plume height of 15 km (Theys et al, 2017). The SO2 mass estimates from the two OMPS 515 

products (Fig. 11) are well correlated (r = 0.98) and agree to better than ±15% for all days except for 21-22 June 2019 and 28-

31 July 2019. Immediately following the eruption, high SO2 concentrations in the dense volcanic plume can saturate the SO2 

absorption signals at shorter wavelengths, resulting in low biases in SO2 retrieved from UV instruments (see Li et al., 2017 for 

more details). Moreover, the effects of the light-absorbing volcanic ash are not explicitly accounted for in the current OMPS 

volcanic SO2 algorithm and may cause additional low biases in SO2 retrievals. These two factors likely have different impacts 520 

on retrievals from N20 and SNPP/OMPS, thus leading to relatively large differences between the two instruments at the 

beginning of the time series (Fig. 11). As for 28-31 July 2019, with the significant drop in SO2 VCDs due to plume dispersion 

and chemical loss, mass estimates are likely more strongly influenced by areas outside of the actual plume. The relatively large 

differences between N20 and SNPP/OMPS may point to slightly larger background noise in N20/OMPS retrievals, especially 

at higher latitudes. The SO2 mass from TROPOMI is well correlated with N20 (r = 0.99) and the differences with N20 are 525 

better than ±15% until 7 July 2024. After that, the TROPOMI based SO2 mass is ~20-40% greater, possibly reflecting both the 

greater sensitivity of TROPOMI (as the plume dissipated) and algorithmic differences including the assumed plume height.  

 

Figure 11: The N20, SNPP, and TROPOMI times series of daily SO2 mass within the Raikoke volcanic plume after the eruption in 

June 2019, based on STL (18-km profile) volcanic SO2 retrievals (15-km profile for TROPOMI). The SO2 VCDs from all instruments 530 
are first gridded to 0.5°×0.5° resolution using the same process as for the Kilauea case study. To minimize the impact of other SO2 

emission sources, we only count grid cells located north of 20°N that have VCDs > 0.2 DU in the estimates of daily Raikoke SO2 

mass. 
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4 Data Availability 

The version 1 NOAA-20/OMPS PCA SO2 product is available at NASA’s Goddard Earth Sciences Data and Information 535 

Services Center (GES DISC): 

https://disc.gsfc.nasa.gov/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_1/summary (last access: 13 May 2024). The DOI 

identifier is https://doi.org/10.5067/OMPS/OMPS_N20_NMSO2_PCA_L2_Step1.1 (last access: 13 May 2024, Li et al., 

2023). 

The version 2 SO2 emission catalogue based on OMI, TROPOMI, SNPP, and N20 data is available at GES DISC: 540 

https://disc.gsfc.nasa.gov/datasets/MSAQSO2L4_2/summary (last access: 13 May 2024). The DOI identifier is 

https://doi.org/10.5067/MEASURES/SO2/DATA406  (last access: 13 May 2024, Fioletov et al., 2022). 

The version 2 TROPOMI SO2 data are available from Copernicus and NASA GES DISC: 

Copernicus Sentinel data processed by ESA, German Aerospace Center (DLR), Sentinel-5P TROPOMI Sulphur Dioxide SO2 

1-Orbit L2 5.5km x 3.5km, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 545 

Accessed: 15 July 2024, 10.5270/S5P-74eidii, 2020 

5 Conclusions 

In this paper, we introduce our newly released version 1 NOAA-20/OMPS SO2 product. Generated with our PCA-based 

retrieval algorithm that is also used for NASA standard OMI and SNPP/OMPS SO2 datasets, the N20/OMPS SO2 product aims 

to extend NASA’s long-term global SO2 data record into the JPSS era. The N20/OMPS SO2 retrieval algorithm shares many 550 

similarities with the OMI and SNPP/OMPS algorithms. This is especially the case for volcanic SO2 retrievals, and comparisons 

for the 2018 Kilauea eruption and 2019 Raikoke eruption demonstrate good consistency between N20 and SNPP/OMPS. On 

the other hand, several modifications have been made for anthropogenic (or PBL) SO2 retrievals, considering the instrumental 

characteristics of N20/OMPS Nadir Mapper (i.e., greater spatial resolution but reduced signal-to-noise ratio for N20 vs. 

SNPP/OMPS) as well as the availability of other input datasets (e.g., the Raman cloud product). 555 

Statistical analyses of SO2 SCDs confirm that N20/OMPS, like its predecessor SNPP/OMPS, can produce good quality 

retrievals suitable for long-term global monitoring of large anthropogenic sources and degassing volcanoes. In the absence of 

significant volcanic plumes, both N20 and SNPP/OMPS retrievals show generally small biases, with mean SCDs within ±0.05 

DU over the remote Pacific. At its native resolution, the standard deviation of N20/OMPS SO2 SCDs over the same areas is 

~0.35-0.6 DU and 2-4 times larger than SNPP/OMPS. Once aggregated to the SNPP/OMPS resolution, the N20/OMPS SCDs 560 

https://disc.gsfc.nasa.gov/datasets/OMPS_N20_NMSO2_PCA_L2_Step1_1/summary
https://doi.org/10.5067/OMPS/OMPS_N20_NMSO2_PCA_L2_Step1.1
https://disc.gsfc.nasa.gov/datasets/MSAQSO2L4_2/summary
https://doi.org/10.5067/MEASURES/SO2/DATA406
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have comparable standard deviation except at high latitudes (70-80°N). This suggests that the greater noise in N20/OMPS SO2 

retrievals is largely driven by reduced SNRs in measurements at higher spatial resolution. Retrievals at large solar zenith angles 

are probably subject to additional errors. Both N20 and SNPP/OMPS SO2 SCDs demonstrate remarkable stability over the 

entirety of their missions thus far. There are no significant changes in the mean SCDs over the equatorial Pacific and very 

small trends in the standard deviation of SCDs (0.0002 DU y-1 for SNPP/OMPS, and -0.00023 DU y-1 for N20/OMPS at SNPP 565 

resolution). 

Comparisons of N20 and SNPP/OMPS PBL SO2 VCDs, calculated using SCDs and a fixed AMF of 0.36, show similar spatial 

distribution between the two retrievals, with both revealing SO2 signals over major polluted areas such as India, the Middle 

East, and South Africa as well as degassing volcanoes. N20/OMPS PBL SO2 VCD is slightly lower over most areas as 

compared with SNPP/OMPS, outside of high latitudes and SAA-affected areas. The causes for these differences are not fully 570 

understood at this point but are at least partially attributable to algorithmic differences for SCDs, including algorithm settings 

(e.g., the threshold for filtering out SO2-laden pixels) and a noise reduction scheme for SAA areas that is implemented for 

SNPP but not yet for N20/OMPS. Even though the overall negative biases in N20/OMPS retrievals are quite small, they lead 

to substantial differences in the long-term PBL SO2 time series between the two OMPS datasets. Over selected anthropogenic 

source areas, the N20 and SNPP/OMPS time series are well correlated (r > 0.8 for all but one areas) but the SO2 mass based 575 

on N20/OMPS is on average ~20% smaller over the Middle East and India. Tighter correlation (r > 0.9) and better agreement 

(typical differences of ~10-15%) are found for selected degassing volcanoes, implying that sources with strong SO2 signals 

are less susceptible to the algorithmic differences. 

Despite the negative biases in N20/OMPS retrievals as compared with SNPP/OMPS, top-down SO2 emission estimates for 

large point sources (included in the version 2 emission catalogue) show very good agreement between N20/OMPS and other 580 

instruments including OMI, SNPP/OMPS, and TROPOMI (r > 0.98, differences in total emissions < 10%). To assess the 

sensitivity of each instrument to SO2 sources, we also compute the ratios between the estimated emissions and their 

uncertainties. As expected, TROPOMI has the highest ratios owing to its high spatial resolution and relatively small retrieval 

noise; the ratios for N20/OMPS are slightly larger than OMI and greater than SNPP/OMPS for most sources, suggesting that 

of the two OMPS instruments, N20/OMPS is better suited for continuing the long-term emission catalogue started with OMI. 585 

It is also interesting that for the Middle East and India, emission estimates from N20/OMPS are smaller than those from OMI 

and TROPOMI, whereas the emissions based on SNPP/OMPS are greater. This suggests that the relatively large differences 

in the PBL SO2 over these two regions could reflect the combined effects of the negative and positive retrieval biases from 

N20 and SNPP/OMPS, respectively. 

In summary, through extensive evaluation of the version 1 N20/OMPS SO2 product and the version 2 emission catalogue, we 590 

have demonstrated that N20/OMPS Nadir Mapper can further extend the long-term NASA SO2 climate data records from OMI 

and SNPP/OMPS. Efforts are currently underway to implement several updates for the next version (v2) N20/OMPS SO2 
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product. These include refinements in SCD retrievals (e.g., improved treatment for SAA areas) using an updated L1B product, 

the use of a new N20/OMPS Raman cloud product and model-based a priori profiles for AMF/Jacobian calculations, as well 

as the addition of box AMFs to the level 2 output files. These efforts, along with the recent advances in machine learning 595 

techniques for reducing retrieval noise and biases (e.g., Joiner et al., 2023; Li et al., 2022), will further enhance the consistency 

in the SO2 retrievals from different instruments and facilitate the development of multi-decade, coherent global SO2 datasets 

across multiple satellite missions. 
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