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Abstract: Land surface temperature (LST) serves as a crucial variable in characterizing 15 

climatological, agricultural, ecological, and hydrological processes. Thermal infrared (TIR) remote 16 

sensing provides high temporal and spatial resolution for obtaining LST information. Nevertheless, 17 

TIR-based satellite-LST products frequently exhibit missing values due to cloud interference. Prior 18 

research on estimating all-weather instantaneous LST has predominantly concentrated on regional 19 

or continental scales. This study involved generating a global all-weather instantaneous and daily 20 

mean LST product spanning from 2000 to 2020 using XGBoost. Multisource data, including 21 

Moderate-Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) observations, 22 

surface radiation products, and reanalysis data, were employed. Validation using an independent 23 

dataset of 77 individual stations demonstrated the high accuracy of our products, yielding RMSEs 24 

of 2.787 K (instantaneous) and 2.175 K (daily). The RMSE for clear-sky conditions was 2.614 K 25 
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for the instantaneous product, slightly lower than the cloudy-sky RMSE of 2.931 K. Our 26 

instantaneous and daily mean LST products exhibit higher accuracy compared to the MODIS 27 

official LST product (RMSE=3.583 K instantaneous, 3.105 K daily) and the land component of the 28 

5th generation of European ReAnalysis (ERA5-Land) LST product (RMSE= 4.048 K instantaneous, 29 

2.988 K daily). Significant improvements are observed in our LST product, notably at high latitudes, 30 

compared to the official MODIS LST product. The LST dataset from 2000 to 2020 at the monthly 31 

scale, the daily mean LST on the first day of 2010 can be freely downloaded from 32 

https://doi.org/10.5281/zenodo.4292068(Li et al. 2024), and the complete product will be available 33 

at https://glass-product.bnu.edu.cn/.  34 
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1 Introduction: 37 

Land surface temperature (LST) is the skin temperature of the Earth’s surface, and one of the crucial 38 

parameters in the surface energy balance, and the hydrothermal cycle (Bastiaanssen et al. 1998; 39 

Tomlinson et al. 2011). LSTs retrieval from in situ measurements or satellites are widely used in many 40 

scientific fields (Kappas and Phan 2018), such as climate change (Auger et al. 2021; Weng 2009), urban 41 

heat island (Zhou et al. 2018), drought monitoring (Wan et al. 2010), longwave radiation estimation 42 

(Cheng and Liang 2016), evapotranspiration (Kalma et al. 2008; Yao et al. 2012), soil moisture estimation 43 

(Zhang et al. 2015), and air temperature estimation (Chen et al. 2021; Rao et al. 2019; Shen et al. 2020). 44 

High-precision measurements of LST aid in the recording of the long-term global temperature trends, 45 

thus, the International Geosphere and Biosphere Programme (IGBP) lists it as one of its priority 46 

parameters (Townshend et al. 2007). Owing to the complex and rapid variation in temporal and spatial 47 

scales, in situ measurements cannot provide regional LST or capture the spatial variation in LST. Remote 48 

sensing has become the only way to obtain LST with high spatial and temporal resolution from regional 49 

to global scales (Li et al. 2013). 50 

Over the past few decades, substantial advancements have been made in the inversion of LST from 51 

remote sensing satellites. The retrieval of satellite LST products is predominantly accomplished using 52 

thermal infrared (TIR) remote sensing data (Li et al. 2013). These LST products typically exhibit a 53 

notable spatial resolution, exemplified by the Visible Infrared Imaging Radiometer Suite (VIIRS) 54 

boasting a resolution of 750 meters, the Advanced Very High Resolution Radiometer (AVHRR) with 55 

0.05°(Li et al. 2023a; Ma et al. 2020a), and the Moderate-Resolution Imaging Spectroradiometer 56 

(MODIS) satellite with a resolution of 1 kilometer (Wan 2014; Wan and Li 1997). Nevertheless, due to 57 

the constrained penetration capability of thermal radiation, TIR data is exclusively applicable for 58 

observing LST under clear-sky conditions. Global average annual cloud coverage has been reported to 59 

exceed 70% (Mercury et al. 2012). The lack of data has significantly constrained the application of LST 60 

products. Consequently, all-weather LST estimation is one of the difficulties that need to be solved 61 

urgently. 62 

Besides data gaps due to cloud contamination, extending the temporal scale of LST poses a 63 

significant challenge in retrieving LST remote sensing products, requiring urgent attention. LST, a 64 

dynamic physical attribute, exhibits temporal variation. However, satellite-derived LST captures only 65 

instantaneous observations at specific times and angles. Instead of focusing solely on instantaneous LST, 66 
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certain researchers emphasize the importance of daily, monthly, or yearly average LST to track the impact 67 

of increasing LST on glaciers, ice sheets, and vegetation within the Earth's ecosystem (Lawrimore et al. 68 

2011). Currently, for MODIS LST products, there exist daily instantaneous L2 products, daily gridded 69 

instantaneous L3 products, and eight-day synthetic products (Wan 2014). Nevertheless, there's an 70 

absence of L4 products encompassing daily mean, monthly, and annual LST data. Hence, it holds 71 

significant importance to estimate daily mean LST based on limited MODIS observations. Acquiring the 72 

daily mean LST allows estimation of monthly or annual mean LST, crucial for prolonged monitoring 73 

across diverse research domains like climate change, agriculture, and drought studies.  74 

As for filling LST gaps under cloudy-sky conditions, researchers have explored various methods 75 

(Li et al. 2023c). One type of approach is based on space-time information, such as interpolation and 76 

fusion methods (Pede and Mountrakis 2018). Interpolation methods usually utilize temporally or 77 

spatially proximate clear-sky pixel information to fill in the pixels under the cloudy-sky condition. 78 

Nevertheless, the efficacy of the interpolation method is contingent upon the accessibility of clear-sky 79 

pixels. The reconstruction outcomes prove less satisfactory in instances of extensive missing regions or 80 

prolonged periods of cloud cover (Metz et al. 2014; Zhang et al. 2018; Zhang et al. 2022). In recent years, 81 

spatiotemporal fusion methods have been explored for obtaining all-weather LST(Chen et al. 2015; Long 82 

et al. 2020; Wu et al. 2019). The essence of spatiotemporal fusion for LST involves deriving high spatial 83 

resolution LST at time t0 from its counterpart with coarse spatial resolution at the identical time instance, 84 

achieved through the application of a scale conversion factor (Long et al. 2020; Wu et al. 2019). Due to 85 

the algorithm's complexity, fusion methods are commonly evaluated within limited geographical scopes, 86 

with their applicability constrained when extended to larger areas. Furthermore, both interpolation and 87 

spatiotemporal fusion methods hinge on information derived from clear-sky pixels, yielding 88 

reconstructed theoretical clear-sky LST rather than the real cloudy-sky LST. In order to obtain actual 89 

LST under cloudy-sky conditions, one type of approach considering the physical processes of the surface 90 

energy balance (SEB). Jin and Dickinson (2000) introduced a method utilizing SEB to account for 91 

changes in solar radiation on LST during cloudy conditions. This approach corrects clear-sky LST using 92 

the SEB equation to derive actual cloudy-sky LST. Over time, the SEB-based method has been refined 93 

for geostationary satellites (Jia et al. 2022; Liu et al. 2023; Zhang et al. 2024) and MODIS data (Jia et al. 94 

2021; Yu et al. 2014; Zeng et al. 2018). However, widespread application is limited due to gaps in data 95 
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coverage and the necessity of meteorological SEB parameters (e.g., air temperature, wind speed), which 96 

are challenging to obtain accurate data on a large scale. 97 

Apart from the mentioned methods for LST retrieval under cloudy-sky conditions, alternative 98 

approaches utilize all-weather data like microwave data, reanalysis data, or model simulations to derive 99 

the cloudy-sky information. Passive microwave (PMW) data are less affected by cloud contamination, 100 

providing a possibility for all-weather LST estimations (Duan et al. 2017b; Holmes et al. 2009). However, 101 

the existing microwave observations usually have coarse resolutions (e.g., AMSR-E with 25km) (Mao 102 

et al. 2007). Since the land surface microwave emissivity is sensitive to land surface characteristics and 103 

difficult to measure, the accuracy of the PMW LST data is relatively lower than that of TIR 104 

LST(McFarland et al. 1990).In addition, PMW data basically have swath gaps, especially at low latitudes, 105 

which makes it difficult to obtain full-coverage LST (Holmes et al. 2009; Zhou et al. 2015). Thus, LST 106 

retrieval from PMW data cannot satisfy the requirements of high-precision and refined applications. 107 

Some scholars have explored the possibility of combining PMW and TIR data to estimate all-weather 108 

LST. These methods perform well at regional or national scales (Duan et al. 2017b; Wu et al. 2022; Xu 109 

and Cheng 2021; Zhang et al. 2020). However, owing to the availability of PMW data and the complexity 110 

of algorithms, it is difficult to achieve long-term production at a global scale. 111 

 In comparison, reanalysis data can provide another way for all-weather LST estimation, with all-112 

weather observations, long-term and seamless characteristics. With the updating of reanalysis and 113 

modeled data, spatial resolution and accuracy are improved (Muñoz-Sabater et al. 2021). Several studies 114 

have attempted to utilize reanalysis data combined with TIR (Long et al. 2020; Tang et al. 2024; Zhang 115 

et al. 2021) and PMW data (Zhang et al. 2020; Zhou et al. 2022) to obtain all-weather LST, which were 116 

well implemented on the regional scale. In recent years, researchers have a growing interest in the 117 

estimation of global all-weather LST. Shiff et al. (2021) integrated modeled temperature data to 118 

supplement missing values in MODIS LST using the Google Earth Engine (GEE). Nevertheless, the 119 

proposed approach solely addressed missing pixels, potentially introducing border effects. Globally, 120 

continuous spatiotemporal LST data at a resolution of 0.05° have been generated, rectifying reconstructed 121 

missing data under cloudy-sky conditions using reanalysis data (Yu et al. 2022). Additionally, global 122 

seamless 8-day and monthly average LST data, featuring a 30 arcsecond resolution, were created by 123 

integrating reanalysis data (Yao et al. 2023). These studies confirm the potential of reanalysis data for 124 



 

6 

 

estimating all-weather LST, yet there remains ample room for exploration at a spatiotemporal scale of 125 

one kilometer per day. 126 

Regarding daily mean LST, researchers have investigated acquiring it from polar-orbiting satellites. 127 

Specifically, they have employed MODIS instantaneous LSTs to estimate the daily mean 128 

LST(Williamson et al. 2014; Xing et al. 2021). The maximum-minimum method determined the daily 129 

mean LST by averaging its maximum and minimum values, exhibiting a strong correlation with surface 130 

air temperature (Williamson et al. 2014). Despite its relatively low accuracy, it presents a straightforward 131 

means of estimating daily mean LST using the limited observations from polar orbiting satellites. 132 

Another approach involves the diurnal temperature cycle (DTC), employing various nonlinear models 133 

based on heat conduction and energy balance equations(Aires et al. 2004; Duan et al. 2012; Inamdar et 134 

al. 2008; Sun and Pinker 2005), capable of retrieving daily mean LST. However, the DTC method 135 

requires specific satellite observation counts within a daily cycle, existing challenges for all-weather 136 

daily mean LST retrieval, especially for polar-orbiting satellites. Hong et al. (2021) proposed a 137 

framework combining the annual temperature cycle (ATC) and DTC to retrieve all-weather daily mean 138 

LST at a spatial resolution of 0.5°×0.5° (Hong et al. 2022). Xing et al. (2021) utilized global in situ 139 

measurements and multiple linear regression to enhance the MODIS daily mean LST model accuracy 140 

under clear-sky conditions. Then, Li et al. (2023b) integrated pre-2000 polar-orbiting satellite data to 141 

improve the global daily mean LST model. Most mentioned methods are applicable exclusively under 142 

clear-sky conditions, and all-weather estimation remains a challenge. Besides, the sine or cosine assumed 143 

in the DTC and the multiple linear regression equations may not necessarily fit the relationship between 144 

instantaneous observations and daily mean value. Thus, more appropriate relational models need to be 145 

constructed. The main limitation of MODIS daily mean LST estimation has been their restricted 146 

observations. MODIS data in swath type can provide more observations, which potentially improving 147 

the accuracy, but few researchers have attempted it. Obtaining all-weather daily mean LST from polar-148 

orbiting satellite observations (e.g., MODIS), particularly at a global scale with a 1 km spatial resolution, 149 

still remains a significant challenge.  150 

Recently, machine learning and deep learning techniques have gained significant traction in remote 151 

sensing due to their superior model fitting capabilities (Ma et al. 2019; Yuan et al. 2020). Scholars have 152 

investigated LST retrieval using learning techniques across various satellite platforms (Li et al. 2021; Ma 153 
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et al. 2024; Mao et al. 2018; Wang et al. 2010). However, the majority of these methods utilized clear-154 

sky pixels as the true value to construct the model, possibly failing to capture the relationship under 155 

cloudy-sky conditions. Additionally, learning methods have not yet been applied for estimating daily 156 

mean LST. Our former research has estimated all-weather LST from MODIS data using a random forest 157 

over the conterminous United States (Li et al. 2021). Considering the urgency of obtaining all-weather 158 

LST on a large regional scale and expanding the daily mean time scale, this study refined our previously 159 

developed algorithm for an all-weather instantaneous LST product and developed a new method for a 160 

daily mean LST product at a global scale. The improvements over our previous study include: 1) More 161 

sufficient information: MODIS top-of-atmosphere (TOA) information was taken into account; 2) Expand 162 

the estimated LST time scale: a novel algorithm was proposed to estimate both instantaneous and daily 163 

mean LST; and 3) Higher efficiency algorithm and larger region: the global all-weather LST products 164 

were generated.  165 

The rest of the paper is organized as follows. Section 2 describes the data used in this paper. Section 166 

3 provides a summary of the proposed method. The results are presented in Section 4. A discussion part 167 

is presented in Section 5. Section 6 is the data availability. Finally, Section 7 presents the conclusions. 168 

  169 
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2 Data  170 

In this study, the remote sensing data, reanalysis data and in situ measurements from 2002-171 

2018 were used to construct all-weather LST models. These data, spanning 2000 to 2020, along 172 

with the developed models, were used to generate the instantaneous and daily mean LST products. 173 

In situ measurements validated the accuracy of the proposed algorithm and the generated products. 174 

The data used are described in detail as follows: 175 

2.1 Remotely sensed and reanalysis data 176 

The remote sensing data and reanalysis data used in this study are summarized in Table 1. Among 177 

them, remote sensing data are mainly from official MODIS products and the Global LAnd Surface 178 

Satellite (GLASS) product suite. MOD021KM and MYD021KM are MODIS TOA observational 179 

datasets. The shortwave bands (B1–B7, B19) and longwave bands (B27–B36) were selected as model 180 

inputs. Geolocation information was obtained from MODIS geolocation data (MOD03 and MYD03). 181 

The coordinates from MODIS geolocation data were used to match up with products and in situ 182 

measurements, while height, solar zenith angle, solar azimuth angle, view zenith angle and view azimuth 183 

angle were used as the model inputs. MODIS LST (MOD11L2/MYD11L2) was used for the comparison 184 

and identification of cloudy-sky conditions. The GLASS product suite includes at least 12 land surface 185 

variables, which have high spatial resolutions (1 km and 0.05°), long-term temporal coverage (1981– 186 

present), spatial continuity, and high quality (Liang et al. 2021; Liang et al. 2013a; Liang et al. 2013b). 187 

In this study, we used the following four products from the GLASS product suite: Broad band emissivity 188 

(BBE), broadband albedo (albedo), downward solar radiation (DSR), and downward thermal radiation 189 

(LWDN). BBE product was used to obtain in-situ LST (Cheng and Liang 2013, 2014). Albedo was used 190 

as the model input to describe surface characteristics (Liu et al. 2013a; Qu et al. 2016; Qu et al. 2014). 191 

Because LST is affected by both solar radiation and surface longwave radiation, DSR and LWDN were 192 

also used in the model construction (Cheng et al. 2017; Zhang et al. 2019).  193 

In recent years, an enhanced global dataset for the land component of the fifth generation of 194 

European ReAnalysis (ERA5-Land) has been developed (Hersbach et al. 2020; Muñoz-Sabater et al. 195 

2021). ERA5-Land describes a consistent long terms evolution of water and energy cycles over land. It 196 

was generated through global high-resolution numerical integrations of the European Centre for 197 

Medium-Range Weather Forecasts (ECMWF) land surface model driven by the downscaled 198 
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meteorological forcing from the ERA5 climate reanalysis. Compared with the previous ERA-Interim (80 199 

km) and ERA (31 km), ERA5-Land has a higher spatial resolution (9 km) and temporal resolution (1 h). 200 

Because ERA5-Land LST includes worldwide and all-weather data, it was used in the model construction 201 

as the background value and was also used for comparison. ERA5-Land LST is hereafter referred to as 202 

ERA LST. 203 

Table 1. Summary of remote sensing and reanalysis data 204 

Product Variables Resolution  

(temporal 

/spatial) 

Temporal 

coverage 

Usage Data link 

MOD021KM 

/MYD021KM 

Toa reflectance, 

brightness temperature 

Instantaneous

/1 km 

 

2000-present 

for MODIS 

Terra / 

2002-present 

for MODIS 

Aqua 

Model inputs  

 

https://earthdata.nasa.gov/ MOD03/ 

MYD03 

Latitude, longitude, 

height, 

Instantaneous

/1 km 

Model 

inputs/match 

up 

MOD11L2/ 

MYD11L2 

LST Instantaneous

/1 km 

Comparison 

GLASS BBE 8 days/1km 2000-2022 Calculate in 

situ LSTs 

 

http://glass.umd.edu/ 

or 

https://glass-product.bnu.edu.cn/ 

GLASS Albedo 8 days/1km 2000-2022 Model inputs 

GLASS DSR Daily/0.05° 2000-2022 Model inputs 

GLASS LWDN Instantaneous

/1 km 

2000-2020 Model inputs 

ERA5-land LST 1 hour/ 9 km 1981-present Model inputs https://cds.climate.copernicus.eu/ 

 205 

2.2 In situ measurements 206 

To obtain in situ LSTs, we collected upwelling and downwelling longwave radiation measurements 207 

from 315 sites with different land cover types and geolocations on a global scale. Both instantaneous and 208 

daily mean in situ LSTs were retrieved from in situ measurements. As shown in Fig.1, ground 209 

measurements from 238 stations were used to develop the proposed network (blue circles), whereas the 210 

measurements from the remaining 77 stations (red circles) were selected as independent validation 211 

datasets to evaluate the performance of the trained model. The collection sites were mainly from eight 212 

observation networks, which are described in the following paragraphs.  213 
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 214 

Fig.1 Spatial distribution of the selected sites at a global scale. Land use cover types of 2018 (background color shading) were 215 

from the MODIS land use cover product MCD12C1. The sites used for model training are shown with blue circles while the 216 

separated validation sites are shown with red circles. 217 

AmeriFlux (https://ameriflux.lbl.gov/) is a network of stations that continuously measures 218 

ecosystem carbon dioxide, water, energy fluxes, and related environmental variables using eddy 219 

covariance techniques (Baldocchi 2003). The network was launched in 1996 and was established to 220 

connect research on field sites representing major climate and ecological biomes(Boden et al. 2013). The 221 

network has more than past and present flux towers, and sites with longwave radiation measurements 222 

were selected. These sites are distributed across North, Central, and South America. The observation 223 

interval of these sites was half an hour.   224 

FLUXNET (https://fluxnet.org/) is a global network of micrometeorological tower sites that uses 225 

eddy covariance methods to measure carbon dioxide, water vapor, and energy fluxes (Baldocchi et al. 226 

2001). It has more than 500 flux towers worldwide are operating on a long-term basis. The overarching 227 

goal of the FLUXNET data collection is to provide information for validating remote sensing products, 228 

such as net primary productivity and energy fluxes. Sites with longwave radiation records were used in 229 

this study. The observation interval of the sites was half an hour. 230 

The Baseline Surface Radiation Network (BSRN, https://bsrn.awi.de/) is a project of the Data and 231 

Assessments Panel of the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of 232 

the World Climate Research Programme (WCRP) (Ohmura et al. 1998). The purpose of this network is 233 

to provide validation materials for satellite radiometry and climate models. It further aims to detect long-234 

term variations in the radiation field at the Earth’s surface, which play a vital role in climate changes 235 

(Driemel et al. 2018). The stations (currently 74 in total, 58 active) are distributed in contrasting climatic 236 
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zones, covering a latitude range from 80° N to 90° S. The required longwave radiation measurements 237 

were obtained with high accuracy and high time resolution (1 – 3 minutes). 238 

AsiaFlux (https://www.asiaflux.net/) is a scientific community with the aim of developing 239 

collaborative research and datasets on carbon, water, and energy cycles in key Asian ecosystems. 240 

AsiaFlux has grew from a small network in 1999 to a multi-national science community with more than 241 

400 members from 28 countries (Yamamoto 2005). Currently, there are 109 flux towers in Asia, and 242 

more sites are underway. The biomes covered in AsiaFlux range from rainforests near the equator to 243 

tundra in the Arctic and Antarctic, and from wetlands near sea level to grasslands at high altitudes, such 244 

as the Tibetan Plateau. Most sites have a time resolution of 0.5 hour, while 15 minutes and 1 hour are 245 

used for individual sites.  246 

The Atmospheric Radiation Measurement (ARM, https://www.arm.gov/) Program, supported by the 247 

U.S. Department of Energy, is a project for atmospheric measurement and modeling. The purpose of the 248 

project was to detect processes that affect atmospheric radiation and describe these processes in climate 249 

models (Stokes and Schwartz 1994). The quantities measured at these stations included longwave and 250 

shortwave radiation, clouds properties, water vapor, other radiation-related quantities, and 251 

meteorological variables. These sites had the high temporal resolution of 1 minute. 252 

The Ice and Climate group at the Institute for Marine and Atmospheric Research of Utrecht 253 

University (UU/IMAU, https://www.projects.science.uu.nl/iceclimate/) has deployed several Automatic 254 

Weather Stations (AWS) on different glaciers around the world (Antarctica, Greenland, Alps, Norway, 255 

Iceland, Svalbard), and in different climate regimes. The stations were designed to operate on a long-256 

term basis and measure meteorological and radiation variables in remote regions under harsh weather 257 

conditions. The main purpose of these stations is to detect the energy balance in these regions in view of 258 

climate change and, sea-level variation. The stations from the IMAU project have time resolutions of 1 259 

and 2 hours. 260 

Denmark launched the Programme for Monitoring of the Greenland Ice Sheet (PROMICE, 261 

https://www.promice.dk/) to detect variations in the mass balance of the Greenland ice sheet. Several 262 

weather stations were established on the ice sheet to provide filed data for modeling and validation. The 263 

weather stations were equipped with CNR1 or CNR4 instruments to measure radiation data with a time 264 

resolution of 10 minutes. 265 
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The National Tibetan Plateau Data Center (TPDC, http://data.tpdc.ac.cn) has integrated and released 266 

various scientific data from the Qinghai-Tibet Plateau and surrounding regions. Integrated data resources 267 

include the atmosphere, cryosphere, hydrosphere, and energy balance. Among these data sources, there 268 

are various published ground measurements. We selected several stations in the Heihe Basin (Liu et al. 269 

2018), Haihe Basin (Liu et al. 2013b), and Qinghai-Tibet Plateau (Ma et al. 2020b). The time resolutions 270 

of these stations were 10 minutes, 30 minutes and 1 hour, respectively.  271 

Some stations from various flux networks overlapped, and we curated observations with extended 272 

time series and heightened time resolution. Attaining high model accuracy necessitates superior in situ 273 

measurements, necessitating rigorous quality assessment. Initially, adjacent stations potentially causing 274 

interference were removed, alongside the manual elimination of anomalous observations and 275 

discontinuous measurements. Subsequently, the collection sites were strategically dispersed globally. 276 

Fig.2 depicts a histogram illustrating the distribution of land cover types and climate zones across the 277 

sites. Each land cover type was accounted for, and additional sites encompassing water bodies were 278 

incorporated to estimate LST for inland water. The stations were dispersed across five distinct climate 279 

zones, with a higher concentration in temperate and continental climates. Importantly, we meticulously 280 

gathered data from numerous high-latitude stations within a polar climate to address substantial 281 

estimation uncertainties in the area.  282 

 283 

Fig.2 Land cover types (a) and climate zones (b) of sites (The land surface type represented by the x-axis in (a) refers to the 284 

legend in Fig.1 285 

 286 

  287 
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3 Methods 288 

The study's comprehensive framework is depicted in Fig.3. Initially, the in situ LST and remote 289 

sensing data underwent preprocessing and pairing. Subsequently, the data pairs were randomly divided 290 

into two segments: one for model training and validation, while the other served as an independent dataset 291 

for model evaluation. The XGBoost algorithm was employed to sequentially develop models for 292 

instantaneous and daily mean LST, while also conducting parameter tuning. The estimated all-weather 293 

instantaneous LST served as an input for the daily mean LST model. Ultimately, the optimal models 294 

underwent separate evaluation and comparison with alternative products.  295 

In situ LST
（instantaneous）

Radiation data
(LWDN,DSR,

albedo)

Toa observations
(refelctance,brightness temperature)

Preprocessing
（interpolation，

resampling）

XGBoost
(instantaneous model) 

Model validation 
and

comparision

Estimated 
all-sky LST

(instantaneous)

Preprocessing
（interpolation，

resampling）

XGBoost
(daily  model) 

Model validation
and

comparision

Estimated 
all-sky LST

(daily)

Quality control Quality control

ERA5-land LST
（instantaneous）

Geolocation data
(VZA,SZA,RAA,

height)

BBE
In situ 

radiation

In situ LST
（daily）

ERA5-land LST
（daily）

In situ LST
（instantaneous）

average

output

output

input input

input

 296 

Fig.3 Flowchart of the XGBoost algorithm for all-weather instantaneous and daily mean LST estimation.  297 

3.1 Data Preprocessing 298 

3.1.1 In situ instantaneous LST 299 

The in situ LST in this study was calculated from surface broadband emissivity and in situ upwelling 300 

and downwelling longwave radiation, according to Stefan–Boltzmann’s law, as follows: 301 

                             𝑇  ,                                         (1) 302 

where 𝑇   represents the in situ LST, 𝐹   is the upwelling longwave radiation, and 𝐹   is the 303 

downwelling longwave radiation, 𝜀 is surface broadband emissivity, and  𝜎 is the Stefan-Boltzmann 304 

constant (5.67× 10 -8 W/m2/K4). 305 

Surface broadband emissivity was acquired from the GLASS BBE product through nearest 306 
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interpolation to derive daily values. 𝐹   and 𝐹   were derived from in situ measurements. Due to 307 

varying observation intervals across different networks, spanning from 1 minute to 1 hour, a linear 308 

interpolation method was applied to determine the in situ LST corresponding to the MODIS satellite 309 

observation time. 310 

3.1.2 Daily mean LST 311 

To construct a daily mean LST model, in situ daily mean LST and ERA daily mean LST are required. 312 

Once the instantaneous LST from in situ measurements was obtained, the daily mean in situ LST was 313 

calculated according to Eq. (2). The ERA daily mean LST was obtained using Eq. (3).  314 

   𝐿𝑆𝑇 ∑ 𝐿𝑆𝑇 𝑖                           (2) 315 

𝐿𝑆𝑇 ∑ 𝐿𝑆𝑇 𝑖                             (3) 316 

𝐿𝑆𝑇  and 𝐿𝑆𝑇  represent the daily mean in situ LST and ERA daily mean LST respectively, and 317 

n is the count of the in situ measurements per day. 𝐿𝑆𝑇  and 𝐿𝑆𝑇 𝑖  are the instantaneous in situ 318 

LST values calculated from Eq. (1) and ERA LST, respectively. If the in situ measurements were 319 

incomplete in a day, the record for that day was not used. 320 

One traditional daily mean LST method, which was retrieved from the official MODIS Aqua LST 321 

for both daytime and nighttime (Williamson et al. 2014), was used for comparison. The equation can be 322 

expressed as follows: 323 

    𝐿𝑆𝑇 0.5 ∗ 𝐿𝑆𝑇 0.5 ∗ 𝐿𝑆𝑇  ,                  (4)  324 

where 𝐿𝑆𝑇  represents the retrieval of the daily mean LST, and 𝐿𝑆𝑇  and 𝐿𝑆𝑇  represent 325 

the daytime and nighttime LST, respectively from the official MODIS Aqua LST.                                    326 

3.1.3 Data normalization 327 

Due to discrepancies in spatial and temporal resolutions among the utilized products, preprocessing 328 

was conducted. Albedo and BBE had an 8-day temporal resolution, and the daily data were acquired 329 

through nearest interpolation. DSR and ERA LST were adjusted to a spatial resolution of 1 km via the 330 

nearest-neighbor method. The ERA LST, with a temporal resolution of 1 hour, was interpolated linearly 331 

to obtain the reanalysis LST at the satellite observation time. Matching of in situ measurements and 332 

satellite data was performed based on coordinates from MOD03/MYD03 products. 333 
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3.2 Developing the estimation algorithm 334 

Extreme Gradient Boosting (XGBoost) is an effective and scalable gradient boosting 335 

implementation introduced by Chen and Guestrin (2016). It amalgamates multiple classification and 336 

regression trees to create a robust learner. In regression, the initial tree is constructed based on split 337 

features, followed by the creation of subsequent trees to capture residuals from the preceding ones. 338 

Additional trees are iteratively generated until they meet the stopping criteria. Notably, the regression 339 

trees within XGBoost are interrelated, progressively diminishing the residuals of predictions with new 340 

trees. The ultimate prediction is derived by aggregating scores from each tree. 341 

In contrast to the random forest method, which also employs decision trees (Breiman 2001), 342 

XGBoost operates in parallel. Its algorithm design incorporates column blocks for parallel learning, 343 

cache-aware access, and facilitates out-of-core computation, substantially boosting computational 344 

efficiency. Owing to XGBoost's notable efficiency and precision, many studies in remote sensing have 345 

adopted this algorithm for regression tasks (Kim et al. 2021; Liu et al. 2021; Zhang et al. 2023). In this 346 

research, XGBoost was implemented using the Scikit-learn package in Python. Experiments were 347 

performed on a computer equipped with a 3.60 GHz CPU and 64 GB RAM, utilizing the same dataset 348 

and features. Detailed hyperparameters are elucidated in Section 3.3. 349 

3.3 Model development 350 

 The dataset for 2002-2018 were compiled at a global scale. Samples from 238 sites were randomly 351 

chosen for model training. The remaining samples from 77 sites were used as independent dataset for the 352 

model validation. The features used to construct the instantaneous LST model, included MODIS TOA 353 

observations, ERA LST, DSR, LWDN, albedo, and geolocation data. MODIS TOA observations were 354 

used to describe the contributions of shortwave and longwave radiation to the LST, which is greatly 355 

changed with solar radiation influenced by clouds. Hence, DSR was used to reflect the effect of solar 356 

radiation on the LST (Zeng et al. 2018). Longwave radiation is less affected by the atmosphere, has a 357 

certain penetration, and has a close correlation and interaction with the LST during the daytime and 358 

nighttime. In this study, the LWDN was used to reflect the effect of thermal infrared radiation on LST. 359 

LST is also influenced by land cover types, and broadband albedo was used to represent land surface 360 

characteristics. In addition, geolocation information, such as solar angles, view angles and height, also 361 
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affects LST retrieval from satellites. All the input variables were all-weather conditions with high 362 

resolution. In addition, ERA LST can provide all-weather LST, but with coarse resolution (0.1°). It was 363 

considered as a background field and, provided an initial value for the model. After the instantaneous 364 

model was constructed, the daily mean model was developed. Research has confirmed linear or nonlinear 365 

relationships between the daily mean LST and instantaneous LSTs for polar orbiting satellites (Duan et 366 

al. 2014; Xing et al. 2021). Hence, the instantaneous retrieval of all-weather LST data was used in the 367 

daily LST model. In addition, the ERA daily LST rather than the ERA LST was used as the initial value 368 

in the daily LST model. Except for these two variables, the inputs of the two models were the same. 369 

Specifically, the daily mean LST was finally retrieved from the average of multiple observations in one 370 

day. 371 

Model tuning was performed to prevent over-fitting of the models. Several hyper-parameters in 372 

XGBoost needed to be tuned, including the number of gradient boosted trees (n_estimators), maximum 373 

depth of trees (Max_depth), the minimum sum of weights of all observations required in a child 374 

(Min_child_weight), minimum loss reduction required to make a split (gamma), the fraction of 375 

observations to be random samples for each tree (subsample), the fraction of columns to be randomly 376 

sampled for each tree (Colsample_bytree). Lambda and alpha represent the regularization of the weights 377 

in XGBoost, which can improve the speed performance. A random search combined grid search was used 378 

to tune the model. Table 2 presents the candidate values of the random search and the final settings for 379 

the two LST models. 380 

Table 2. Candidate values and selected values of hyper-parameters in XGBoost 381 

Hpyer-parameter Candidate values 

(start, end, step) 

Selected values 

Instantaneous model Daily model 

n_estimators 50,401,10 160 140 

Max_depth 1,10,1 9 9 

Min_child_weight 1,10,1 5 6 

gamma 0,1,0.1 0.8 0.5 

subsample 0.1,1,0.1 1 1 

Colsample_bytree 0.1,1,0.1 0.8 0.8 

lambda 0.1, 2, 0.1 0.6 1.4 

alpha 0.1, 2, 0.1 1.6 1.19 

 382 
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3.4 Evaluation approaches 383 

In this study, validation from training and independent datasets of separated ground measurements 384 

was used to evaluate the instantaneous and daily mean LST models. A widely used ten-fold cross 385 

validation (10-CV) method was used to evaluate the stability of the models. Then, model performance 386 

was assessed for different weather conditions, and observation times. In addition, time series of 387 

individual sites and spatial distribution at regional and global scales were chosen to further demonstrate 388 

the effectiveness of the developed models. Finally, the proposed framework and generated products were 389 

compared with those of previous studies and products.  390 
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4 Results 391 

4.1 Model training and validation 392 

In general, 70% of the dataset was used for the model training. The remaining dataset was used for 393 

model adjustment and validation. Independent validation and 10-CV results were used to evaluate the 394 

models. Fig.4 and Fig.5 show the accuracies of the instantaneous and daily mean LST models, 395 

respectively. From the scatter density plots, all the validation results for both the instantaneous and daily 396 

models are close to the 1:1 line, with R2 values ranging from 0.974 to 0.990. The Root Mean Squared 397 

Error (RMSE) of the training and validation results were 2.413 K and 2.787 K for the instantaneous 398 

model, while 1.758 K and 2.175 K for the daily mean LST model. Both models showed high accuracy 399 

in model training and validation, with no obvious overfitting. The 10-CV method is also used to 400 

comprehensively validate the models and the results of both models are also satisfactory, with RMSEs 401 

=2.421 K and 1.808 K for the instantaneous and daily mean LST models, respectively. Overall, the 402 

validations from the independent dataset and 10-CV results show acceptable accuracy and robustness of 403 

the two models. Both models are robust. The daily mean LST model shows a higher accuracy than the 404 

instantaneous LST model. Probably because the daily mean LST is obtained by averaging multiple 405 

observations in one day, which reduces the uncertainty. In addition, some daily inputs (daily mean in situ 406 

LST and ERA LST) used in the daily model have less uncertainty than instantaneous observations. 407 

 408 

Fig.4 The (a) training, (b) independent validation and (c) 10-CV results of the instantaneous LST model 409 

 410 

 411 
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 412 

Fig.5 The (a) training, (b) independent validation and (c) 10-CV results of the daily mean LST model 413 

In addition, we further verify the model performance under different conditions using an 414 

independent dataset. Table 3 presents the validation results for different observation times and satellites 415 

for the instantaneous model. The RMSEs are 3.03 K and 2.67 K for daytime and nighttime data 416 

respectively. The accuracy of nighttime data is higher than that of daytime data. It probably because of 417 

the absence of differential solar heating and higher spatial-temporal heterogeneity in daytime (Duan et 418 

al. 2019; Liu et al. 2023). In addition, the LST value during the daytime is higher than that during 419 

nighttime, which results in a higher RMSE value. For the validation of the MOD and MYD satellites, 420 

the RMSE of the MOD is nearest to that of the MYD. We further verify the accuracy in the presence and 421 

absence of clouds; the density plots are shown in Fig.6. The accuracy under clear-sky conditions was 422 

relatively higher with an RMSE= 2.614 K, whereas the RMSE is 2.931 K under cloudy-sky conditions. 423 

More effective observation information and higher accuracy of inputs under clear-sky conditions, result 424 

in a higher accuracy of clear-sky estimation. This phenomenon is also present in other studies (Duan et 425 

al. 2023; Ma et al. 2024). Furthermore, to explore whether clouds have an effect on daily mean LST 426 

retrieval, we calculate the accuracy under different cloud proportions, as shown in Table 3. The results 427 

show that the RMSE values increased slightly as the proportion of cloudy-sky observations increased. 428 

This demonstrates that cloud contamination has a limited impact on the daily mean LST estimation in 429 

the proposed method. 430 

Table 3. Validation for different observation times, satellites and weather conditions of instantaneous the model, and the 431 

proportion of cloudy-sky MODIS observations of the daily mean LST model 432 

 Groups R2 RMSE (K) Bias (K) 

 

Instantaneous LST model 

Daytime 0.960 2.99 0.30 

Nighttime 0.980 2.61 0.05 

MOD 0.980 2.80 0.19 
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MYD 0.980 2.82 0.17 

Daily mean LST model 

(Proportion of cloudy  

MODIS observations %) 

0-30 0.980 2.01 -0.07 

30-60 0.980 2.14 -0.16 

60-100 0.980 2.26 -0.04 

 433 

 434 

Fig.6 Validation under (a) cloudy-sky conditions and (b) clear-sky conditions  435 

4.2 Validation and assessment 436 

4.2.1 Evaluation across individual sites 437 

The validation of the instantaneous and daily mean LST for individual sites is shown in Fig.7. The 438 

color of the circles indicates the increasing level of errors. RMSEs rank from 1.16 to 4.90 K for 439 

instantaneous LST and 0.89 to 3.96 K for daily mean LST. The corresponding histograms show that the 440 

accuracy of nearly 75% of sites is below 3 K and 2.5 K for instantaneous and daily mean LST, 441 

respectively. Stations distributed in the continental United States with intensive LST monitoring 442 

generally have higher accuracy. High accuracy is also observed at stations in Alaska and Greenland, 443 

whereas a relatively lower accuracy is observed in the Antarctic. In Europe, most stations perform well, 444 

with the exception of some stations in the east. The stations in Asia are relatively discrete with relatively 445 

lower accuracy for individual sites in western China, which is probably due to the high elevation and 446 

complex terrain (Jia et al. 2023). In addition, several stations distributed in Australia, Africa, and South 447 

America also perform well in both models. In general, the results indicate a satisfactory predictive ability 448 

of both instantaneous and daily mean LST models at most individual sites.  449 

 450 

 451 
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 452 

Fig.7 Validation of individual sites for instantaneous LST (a), daily mean LST (c) and their corresponding histograms (b, d) 453 

4.2.2 Evaluation across land cover types and elevation  454 

LST is closely related to land cover types. The validation results for different land cover types are 455 

presented in Table 4. The results indicated that the data had high accuracies for most land cover types. 456 

For instantaneous LST, the RMSEs of most vegetation types were below 3 K, except for shrublands with 457 

an RMSE of 3.04 K. Among the vegetation types, cropland had an outstanding RMSE of 2.55 K. The 458 

accuracies of vegetation types for daily mean LST were higher than that of instantaneous LST, with 459 

RMSEs of approximately 2 K, except for shrublands with an RMSE of 2.55 K. The accuracy in water 460 

bodies was also satisfactory, with RMSEs of 2.43 and 2.04 K for instantaneous and daily mean LST, 461 

respectively. For both models, the accuracy of instantaneous and daily mean LST in snow/ice with RMSE 462 

of 2.94 and 2.35 K, respectively were notably improved compared with that found in our previous study 463 

(Li et al. 2021). This is probably due to the higher number of samples from high latitudes, which 464 

improved the model robustness in snow/ice. However, the accuracy for urban and barren areas was 465 

relatively low. This is likely due to the high heterogeneity of urban areas, high albedo and low specific 466 

heat capacity of barren land (Duan et al. 2017a). In general, for different land cover types, the daily mean 467 

model showed higher accuracy than the instantaneous model, and both models had acceptable accuracy. 468 

In addition, we summarized the accuracy of the different elevation ranges in Table 5. The results indicate 469 
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that elevation has an impact on LST retrieval accuracy. The relatively poor accuracy at high elevations 470 

is probably due to the harsh natural environment and complex terrain, which was also reflected in another 471 

study (Zhao et al. 2019). 472 

Table 4. Validation of instantaneous and daily mean LST models for various land cover types 473 

 Instantaneous LST model Daily mean LST model 

 R2 RMSE (K) Bias (K) R2 RMSE (K) Bias (K) 

Forest 0.941 2.82 0.11 0.960 2.08 -0.11 

Shrublands 0.980 3.04 -1.05 0.980 2.55 -0.85 

Savannas 0.960 2.74 0.12 0.980 2.13 0.24 

Grassland 0.960 2.65 0.12 0.960 2.02 0.06 

Wetland 0.980 2.87 -0.86 0.980 2.19 -0.35 

Cropland 0.960 2.55 -0.05 0.960 2.22 0.06 

Urban 0.774 3.76 0.4 0.883 2.51 -0.44 

Snow 0.941 2.94 0.77 0.960 2.35 0.69 

Barren 0.941 3.8 0.95 0.960 3.53 0.85 

Water 0.960 2.43 -0.34 0.980 2.04 -0.22 

Table 5. Validation of the instantaneous and daily mean LST models for different elevations 474 

 Instantaneous LST  Daily mean LST  

Elevation (m) R2 RMSE (K) Bias (K) R2 RMSE (K) Bias (K) 

<500  0.960 2.63 -0.06 0.980 2.14 0.12 

500-1000  0.980 2.85 0.60 0.980 2.16 -0.35 

1000-2000 0.980 3.25 0.39 0.980 2.29 -0.41 

>2000 0.941 3.79 -0.83 0.941 2.74 1.23 

4.2.3 Comparison with other products 475 

Official MODIS and ERA LST data were used for comparison with our LST products. Fig.8 presents 476 

the accuracy of ERA LST (RMSE = 4.048 K) and official MODIS LST (RMSE = 3.583 K), both of 477 

which were lower than the accuracy of the estimated LST proposed in this study (RMSE = 2.787 K,Fig.4). 478 

Furthermore, we noted that the official MODIS LST data had several abnormal points (Fig.8.(b)). The 479 

polar regions (Antarctica and the Arctic pole) were verified separately from the other regions, as shown 480 

in Fig.9. The results indicate that the majority of outliers were from stations located in Antarctica and the 481 

Arctic pole (Fig.9.(b)), probably because of cloud contamination. Owing to the spectral similarities 482 

between the ice and snow, the misjudgment of clouds leads to cloud top temperatures rather than LST 483 

(Liu et al. 2010; Østby et al. 2014). In contrast, the proposed method was unaffected by cloud 484 

contamination (Fig.9 (a)).  485 

 486 
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 487 

Fig.8 Density plots of (a) ERA LST and (b) MODIS clear-sky LST 488 

 489 

Fig.9 Density plots of estimated instantaneous clear-sky LST (a, c) and MODIS LST (b, d) in polar regions (first row) and 490 

other regions (second row) 491 

The daily mean LST from the ERA LST from Eq. (3), and official MODIS LST from Eq. (4)) were 492 

used for comparison (Fig.10). The ERA daily LST had an acceptable accuracy, with an RMSE of 2.988 493 

K. The RMSE of the daily mean official MODIS LST was 3.105 K. The accuracy of the MODIS official 494 

LST was relatively lower compared to what was reported in a previous study. This may be due to the 495 

large uncertainty in the official MODIS LST in polar regions. When removing the observations in polar 496 

regions, the accuracy improved with an RMSE of 2.799 K, similar to the result in previous studies 497 

(Williamson et al. 2014; Xing et al. 2021). The proposed method in this study has a higher accuracy than 498 

the daily mean LST from ERA and official MODIS LST, with an RMSE of 2.175 K at the global scale 499 

(Fig.4.(b)). Moreover, the daily mean LST obtained from official MODIS LST is only suitable under 500 

clear-sky conditions, whereas the daily mean LST obtained in this study was for all-weather conditions.  501 
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 502 
Fig.10 Density plots of (a) ERA daily mean LST and (b) official MODIS daily mean LST (c) official MODIS daily mean 503 

LST except polar regions 504 

4.3 Spatiotemporal performance 505 

To further evaluate the temporal performance of the estimated LST, four in situ LST measurements 506 

from different latitudes in 2010 were evaluated. Initially, instantaneous LST was examined separately for 507 

daytime and nighttime, and MODIS LST was provided for comparison (Fig.11). The RMSE values of 508 

the comparable accuracy with MODIS LST. The nighttime LST was more concentrated than the daytime 509 

LST. The estimated LST curves are in good agreement with the in situ LST and MODIS LST curves, but 510 

are more continuous than the curve of MODIS LST. Discontinuities observed at high-latitudes stations 511 

(latitude:79.835, longitude: -25.166) were due to polar day and night phenomena. The daily mean LST 512 

was also examined using in situ LST measurements (Fig.12). The daily mean LST retrieved from MODIS 513 

official LST were used for comparison. The results indicated higher accuracy and better consistency 514 

compared to instantaneous LST. The estimated daily LST also depicted more complete curves than the 515 

daily mean LST from MODIS LST, and captured the seasonal variation trends. The results demonstrate 516 

that both the estimated instantaneous LST and daily mean LST can correctly reflect the temporal 517 

variations in LST. 518 
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 519 
Fig.11 Time series of the estimated instantaneous LST, MODIS LST, and in situ LST at four sites from different regions in 520 

2010: (a) daytime, (b) nighttime. 521 

 522 
Fig.12 Time series of the estimated daily mean LST, daily mean LST retrieved from MODIS LST, and in situ LST at four 523 

sites from different regions in 2010 524 

 To further evaluate the spatial performance of the proposed methods, regional distributions and 525 
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global maps were compared. Fig.13 and Fig.14 present the spatial details of the estimated instantaneous 526 

LST and daily mean LST from tiles H10V04, H23V04 and H24V05. One of the grids, H24v05, is located 527 

on the Tibetan Plateau and contains mountainous terrain. The instantaneous and daily mean LST from 528 

ERA LST and MODIS LST were used for comparison. MODIS LST had missing values caused by cloud 529 

contaminants for both instantaneous and daily mean LST, while our method achieved spatially 530 

continuous estimation. In addition, the estimated LSTs had spatial patterns similar to those of MODIS 531 

LST under clear-sky conditions. Compared with the ERA LST, which was used as the model input, our 532 

results showed more spatial details and corrected the underestimation in some regions. In particular, the 533 

results of H24v05 reflect that the estimated LST has mountainous details. Demonstrates that our approach 534 

applies to mountainous regions with high heterogeneity. The spatial details of the daily mean LST show 535 

similar conclusions (Fig.14). However, there may exist boundary effects in some complex terrains, which 536 

is probably due to the introduction of ERA data with coarse resolution. Overall, for both instantaneous 537 

and daily mean LST, the proposed methods executed the spatially contiguous LST and, depicted the 538 

spatial LST details and variations. 539 

 540 
Fig.13 Spatial details of the MODIS LST, ERA LST and estimated instantaneous LST of three tiles, H10V04 (the first row), 541 

H23V04 (the second row) and H24V05 (the third row) from the ninetieth day in 2010 542 

 543 
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 544 

Fig.14 Spatial details of the daily mean LST retrieved from MODIS LST, ERA LST and estimated daily mean LST of three 545 

tiles H10V04 (first row), H23V04 (the second row) and H24V05 (the third row) from the ninetieth day in 2010. 546 

Urban heat island effect is one of the main applications of LST data. To further assess the spatial 547 

details of the estimated all-weather LST and the potential of urban heat island applications, we selected 548 

four cities in different regions around the globe. And demonstrated the estimated LST in conjunction 549 

with the boundary of urban regions extracted by using global artificial impervious area data (Li et al. 550 

2020), as shown in Fig.15. The figure shows that the built-up areas of four cities present higher LST than 551 

the periphery, and confirms that our estimated all-weather LST can capture the urban heat island 552 

phenomenon and present relevant details. 553 

 554 
Fig.15 Spatial pattern of the estimated all-weather LST in four representative cities. The black lines are the boundary of 555 

urban regions extracted by using global artificial impervious area data. 556 

In addition, Fig.16 and Fig.17 show the estimated instantaneous and daily mean LST at the global 557 
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scale on Days 90 and 270 of 2010. The instantaneous and daily mean LST from MODIS LST are shown 558 

for comparison. The estimated instantaneous and daily LST had similar spatial patterns to the 559 

corresponding LST from MODIS. All of the results reflected broad spatiotemporal variations. For 560 

instance, LSTs were relatively higher at middle and low latitudes, and lower in the Arctic and Antarctic. 561 

The instantaneous LST exhibited a larger range than the daily mean LST. In addition, the proposed 562 

method achieved the all-weather LST retrievals. For instantaneous LST (Fig.16), a small number of gaps 563 

in tropical regions were due to the polar-orbiting satellite configuration. The daily mean LST (Fig.17) 564 

was spatially continuous. Overall, the proposed instantaneous LST and daily mean LST perform well on 565 

a global scale. 566 

 567 
Fig.16 Spatial patterns of MODIS LST (a, c) and estimated instantaneous LST (b, d) at a global scale on the Days 90 (first 568 

row) and 270 (second row) of 2010. 569 

 570 
Fig.17 Spatial patterns of daily mean LST retrieved from (a, c) MODIS LST and (b, d) estimated daily mean LST at a 571 

global scale on Days 90 (first row) and 270 (second row) of 2010. 572 
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5 Discussion 573 

Although several LST satellite products have been published, they are missing data under cloudy-574 

sky conditions. Existing research on all-weather LST has mostly been conducted at the regional scale. 575 

This study proposes a highly accurate and efficient algorithm to retrieve all-weather LST at a global scale 576 

from multi-source data, including MODIS TOA, surface radiation, reanalysis and in situ data. An all-577 

weather daily mean LST algorithm was also proposed. Both the estimated instantaneous and daily mean 578 

LST had acceptable accuracy. In addition, it performs well based on independent ground measurements 579 

and space-time verification. 580 

5.1 Effect of introducing MODIS TOA information and ERA LST 581 

In view of the complexity of global climate conditions, and to include more information to estimate 582 

the all-weather LST, we introduced MODIS TOA data on the basis of using surface variables. In addition, 583 

since the Global Land Data Assimilation System (GLDAS) LST used in previous studies did not have 584 

global coverage (the Antarctica region was missing), we introduced the ERA LST in this study, which 585 

not only has global coverage, but also has a higher spatio-temporal resolution (0.1°,1 h). We conducted 586 

experiments with combinations of different features, to clarify the effect of introducing MODIS TOA 587 

information and ERA LST under different weather conditions. A comparison of the removal of ERA LST 588 

and MODIS TOA data in the models is shown in Table 6. The results show that when the ERA LST and 589 

TOA data were removed, the accuracy of the model was greatly reduced. The RMSEs increased from 590 

2.787 to 3.536 K and 3.466 K when ERA LST and TOA data were removed, respectively. However, the 591 

accuracy changes in the two feature combinations under different weather conditions were significantly 592 

different. When ERA LST was eliminated, although the accuracies of both weather conditions were 593 

reduced, the RMSE increase for the cloudy sky (0.95 K) was significantly greater than that for the clear 594 

sky (0.09 K). When the TOA data was removed, the results were the opposite. The accuracy of clear-sky 595 

LST estimation decreased significantly. Overall, introducing MODIS TOA information and ERA LST 596 

significantly improved the model accuracy. In addition, it can be inferred that ERA LST provides more 597 

effective information for cloudy-sky LST estimation, while TOA data contributes more to clear-sky 598 

conditions. 599 

 600 

 601 
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Table 6. The accuracy of the independent dataset with different feature combinations for the instantaneous LST model 602 

Feature 

combination 

All-weather Clear sky Cloudy sky 

RMSE (K) Bias (K) R2 RMSE (K) Bias (K) R2 RMSE (K) Bias (K) R2 

All features 2.787 0.178 0.974 2.614 0.082 0.982 2.931 0.240 0.965 

No ERA LST 3.536 -0.012 0.959 2.730 -0.14 0.980 3.950 0.07 0.941 

No Toa data 3.466 0.335 0.960 3.620 0.21 0.960 3.360 0.41 0.960 

5.2 Effect of station density on the model accuracy 603 

To further evaluate the station density on the model accuracy, experiments were conducted with 604 

different station densities. Firstly, the stations were reduced randomly in the training dataset, and the 605 

model performance was evaluated based on the same test samples. The accuracies of the instantaneous 606 

and daily mean models are shown in the Table 7. The result shows that the accuracy of both models 607 

decreases as the number of stations in the training sample decreases. When the number of stations in the 608 

training sample is reduced from 238 to 158, the RMSE of the instantaneous model increases from 2.787 609 

K to 2.988 K, and the RMSE of the daily model increases from 2.374 K to 2.479 K. The experiment 610 

indicates the model accuracy is affected by the station density, but to a limited extent when there is a 611 

sufficient amount of samples. It may be that the long time series of station data used in the experiment 612 

provided relatively sufficient samples. 613 

Table 7.The training and testing accuracy of instantaneous and daily mean LST with the number of stations decreasing in the 614 

model training. 615 
  

instantaneous model daily mean model 

training stations training samples RMSE (K) Bias (K) R2 RMSE (K) Bias (K) R2 

238 1797803 2.787 0.178 0.974 2.374 0.100 0.978 

218 1609953 2.828 0.203 0.974 2.397 0.121 0.978 

198 1420496 2.867 0.211 0.973 2.421 0.116 0.977 

178 1327160 2.877 0.243 0.973 2.426 0.140 0.977 

158 1072730 2.988 0.239 0.971 2.479 0.160 0.976 

5.3 Effect of multiple MODIS observations 616 

In contrast to most studies using MODIS data in sinusoidal projection, we used swath-type MODIS 617 

data to estimate daily mean LST in this study. MODIS swath data can provide more observations, 618 

particularly at high latitudes. Furthermore, we statistically analyzed the relationship between the daily 619 

mean LST model error and MODIS observation frequency. Fig.18 shows that the error decreased with 620 
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an increase in the MODIS observation frequency. For high-latitude areas with more observations, the 621 

model accuracy at high latitudes was improved. This demonstrates the superiority of using MODIS data 622 

in swath types with more observations to construct a daily mean LST model.  623 

 624 

Fig.18 Density plots of daily mean LST model error with respect to MODIS observation frequency  625 

5.4 Effect of in situ measurements in the model 626 

In contrast to previous studies that used machine learning algorithms, in situ measurements were 627 

used to construct the model instead of clear-sky MODIS LST. In situ measurements can obtain the real 628 

LST under cloudy-sky conditions, without obtaining the hypothetical LST from clear-sky MODIS LST. 629 

In addition, LST from in situ measurements is close to hemispherical LST, or observing the LST from 630 

the zenith. In contrast, MODIS LST is a directional LST with view angles ranging from 0°ups to >60°, 631 

resulting in a significant thermal radiation directionality (TRD) effect (Cao et al. 2019; Ermida et al. 632 

2017). This results in a difference in the LST of the same object at different observation angles. 633 

Theoretically, the proposed instantaneous LST weakens the influence of the TRD effect, which was been 634 

confirmed in our previous study (Li et al. 2021).  635 

5.5 Effect of the new algorithm on product generation 636 

In previous study, the random forest algorithm (RF) was used to estimate the all-weather LST over 637 

the conterminous United States (Li et al. 2021). Although the RF algorithm performs well, the application 638 

efficiency needs to be considered for generating global products. Hence, the model accuracy and 639 

efficiency were compared using RF and XGBoost. The model accuracies of RF and XGBoost was 640 

comparable, with RMSEs of 2.787 K and 2.801 K, respectively (Table 8). However, training the 641 

XGBoost model significantly less time, taking up 3.33 minutes compared to 60.01 minutes for RF 642 
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training. XGBoost also had an outstanding performance in the model application. As an example, to 643 

produce 100 LST swath-type images, the XGBoost took 8.93 minutes while the RF model took 38.85 644 

minutes (Table 8). Considering the quantities of swath files at the global scale, XGBoost is a better choice 645 

for long-sequence product generation, with high accuracy and efficiency. 646 

Table 8 Comparison of algorithms of model accuracy and efficiency. 647 

 

Algorithm 

Model accuracy Model efficiency 

RMSE (K) Bias (K) R2 Training time(minute) Application time (minute) 

XGBoost 2.787 0.178 0.974 3.33  8.93 

RF 2.801 0.196 0.974 60.01 38.85 

5.6 Limitations  648 

However, this study has certain limitations. Despite enhancements in LST accuracy on ice and snow 649 

surfaces, accuracy remains comparatively lower in barren and urban areas. Additionally, while the study 650 

aimed to select the highest possible number of representative ground stations for the long-term sequence, 651 

the spatial distribution was non-uniform, potentially impacting the generality of data-driven models. 652 

Furthermore, the accuracy of the high-altitude model was marginally lower, possibly attributed to the 653 

complex climatic environment and topographic conditions. For mountainous areas with complex terrain, 654 

there may be boundary effects, which is probably due to the reanalysis data with coarse resolution. Future 655 

investigations could employ advanced methods, such as deep learning, to develop a more adaptive model 656 

incorporating spatial and temporal information. Moreover, integration with other satellite sensors has the 657 

potential to extend the temporal-spatial resolution and time span of all-weather LST products. 658 

  659 
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6 Data availability 660 

The global all-weather LST data at monthly scale from 2000-2020 can be freely downloaded from 661 

https://doi.org/10.5281/zenodo.4292068(Li et al. 2024), the daily mean LST on the first day of year 2010 662 

is freely available at (Li et al. 2024), all the data will be available at https://glass-663 

product.bnu.edu.cn/dload.html.    664 

665 
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7 Conclusion 666 

LST is a crucial parameter of the Earth’s energy budget, and current LST satellite products are 667 

affected by cloud contamination, resulting in missing values. This study attempted to retrieve all-weather 668 

instantaneous and daily mean LST at a global scale. A new framework that generating global, long-669 

sequence LST product is proposed. Multiple all-weather datasets from MODIS TOA observations, 670 

surface radiation data, geolocation data, reanalysis data, and ground measurements were used to construct 671 

the models.  672 

Based on the XGBoost algorithm and multisource data from 2002-2018, all-weather instantaneous 673 

and daily mean LST models were successively built. The validation of the independent dataset showed 674 

high accuracy. The ten-fold cross validation demonstrated the robustness of the models. For the 675 

instantaneous LST model, clear-sky LST showed higher accuracy than cloudy-sky LST, while cloud 676 

contamination had limited effects on daily mean LST estimations. Both models performed well for most 677 

land cover types and geolocation conditions. The time series for validation at the four sites from different 678 

regions was temporally contiguous. The results showed high consistency with in situ measurements and 679 

the corresponding official MODIS LST. The spatial distributions of MODIS tiles showed more spatial 680 

details than the ERA LST. Global mapping illustrated spatial continuity and similar patterns with 681 

instantaneous and daily mean LST from the official MODIS LST data.  682 

Compared with previous products, adding TOA observations effectively improved the accuracy of 683 

the instantaneous model, especially under clear-sky conditions. Moreover, multiple effective swath-type 684 

observations from the MODIS data significantly improved the accuracy of the daily mean LST model. 685 

In contrast to the MODIS and ERA LST, the proposed all-weather method has a higher accuracy and is 686 

less affected by cloud contamination, especially at high latitudes. In terms of product generation, 687 

XGBoost has higher precision and efficiency compared with RF, and provides effective support for mass 688 

data production. 689 

Overall, the proposed models were effective and robust, demonstrating the potential of estimating 690 

all-weather instantaneous and daily mean LST from multisource data. The constructed models can be 691 

used to generate long-sequence LST products from 2000 to present. The generated product is a 1 km all-692 

weather instantaneous and daily mean LST products at a global scale. It has great significance for studies 693 

on climate change, surface energy balance, and many other scientific fields. In the future, new methods 694 
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involving spatial and temporal information, as well as other satellite sensors, should be considered to 695 

expand the spatiotemporal monitoring capabilities of LST products. 696 
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